Squeezed states of magnons and phonons in cavity magnomechanics
Jie Li, Shi-Yao Zhu, and G. S. Agarwal
Phys. Rev. A 99, 021801 — Published 21 February 2019
DOI: 10.1103/PhysRevA.99.021801
Squeezed states of magnons and phonons in cavity magnomechanics

Jie Li,1, 2 Shi-Yao Zhu,1 and G. S. Agarwal2, 3

1Department of Physics, Zhejiang University, Hangzhou 310027, China
2Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA
3Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA

We show how to create quantum squeezed states of magnons and phonons in a cavity magnomechanical system. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and couple to cavity microwave photons and phonons (vibrational modes of the ferrimagnet) via the magnetic dipole interaction and magnetostrictive interaction, respectively. The cavity is driven by a weak squeezed vacuum field generated by a flux-driven Josephson parametric amplifier, which is essential to get squeezed states of the magnons and phonons. We show that the magnons can be prepared in a squeezed state via the cavity-magnon beamsplitter interaction, and by further driving the magnon mode with a strong red-detuned microwave field, the phonons are squeezed. We show optimal parameter regimes for obtaining large squeezing of the magnons and phonons, which are robust against temperature and could be realized with experimentally reachable parameters.

Introduction. Recent years have witnessed a significant progress of realizing strong light-matter interaction using collective excitations of spin ensembles in ferrimagnetic systems, for example in yttrium iron garnet (YIG), thanks to their very high spin density and low damping rate. The Kittel mode [1] (uniformly precessing mode) in the YIG sphere can strongly couple to the microwave cavity phonons leading to cavity polaritons [2–7]. Many other interesting phenomena have been studied in the system of cavity-magnon polaritons, such as the observation of magnon dark modes [8], the exceptional point [9], manipulation of distant spin currents [10], and bistability [11]. Another stimulating direction is to extend cavity-magnon systems to hybrid systems by coupling the magnons to a superconducting qubit [12], or phonons [13], which allow one to resolve magnon number states [14], or generate tripartite entangled states of magnons, photons, and phonons [15].

Magnon systems, in particular the YIG spheres, provide a totally new platform for the study of macroscopic quantum phenomena. It is natural to study macroscopic quantum states in magnon-photon systems owing to a large size of the YIG sphere. An important quantum state would be a squeezed state. Squeezed states can be used not only to improve the measurement sensitivity [16], but also to study decoherence theories at large scales [17]. Besides, squeezed states are a vital ingredient for continuous variable information processing [18]. Furthermore, the magnon-phonon interactions in YIG spheres are well studied. The nonlinear magnetostrictive (radiation pressure-like) interaction allows one to create magmomechanical entanglement which then transfers to the photon-magnon and photon-phonon subsystems, forming a tripartite entangled state [15]. Such an interaction can also be used to cool the mechanical motion and to generate a variety of nonclassical states in both the magnon and mechanical modes by suitably driving the YIG sphere. We note that the field of cavity optomechanics [19] has witnessed a considerable progress in observing quantum effects in massive systems, where quantum squeezing of mechanical motion [20], nonclassical correlations between single photons and phonons [21], and quantum entanglement between two massive mechanical oscillators [22, 23] have been observed.

Here we present a scheme to generate squeezed states of both the magnons and phonons in a hybrid magnon-photon-phonon system. Typically the generation of squeezing is based on the nonlinearity of the system, for example Kerr nonlinearity in the case of optical fibers [24]. For magnons the nonlinearity is small and hence we follow an alternative method where we drive the cavity with a squeezed field [25, 26]. The microwave cavity is driven by a weak squeezed vacuum field generated by a flux-driven Josephson parametric amplifier (JPA), which is used to shape the noise properties of quantum fluctuations of the cavity field, leading to a squeezed cavity field. The squeezing is then transferred to the magnons due to the effective cavity-magnon beamsplitter interaction. By further driving the magnon mode with a strong red-detuned microwave field, the magnomechanical state-swap interaction is activated, resulting in the transferring of squeezing from the magnons to phonons. The generated squeezed states are in the steady state and robust against environmental temperature. We study the system by using the standard Langevin formalism and by linearizing the dynamics, and we finally discuss the validity of our linearized model and provide strategies to measure the squeezing.

The model. We consider a cavity magnomechanical system [13, 15], as shown in Fig. 1 (a), which consists of cavity microwave photons, magnons, and phonons. The cavity is one sided and the output field of the cavity can be used for measuring the magnon state. The magnons are embodied by a collective motion of a large number of spins in a YIG sphere, and couple to the cavity photons via the magnetic dipole interaction and to the phonons via the magnetostrictive interaction [27]. We consider the size of the sphere to be much smaller than the microwave wavelength, and the Hamiltonian of the system reads

\[
\mathcal{H} = \frac{\omega a^\dagger a + \omega m^\dagger m + \omega_b (q^2 + p^2) + g_{mb} m^\dagger m q}{2} + g_{ma} (a^\dagger a) (m + m^\dagger) + i \Omega (\epsilon - \omega_a) - m \epsilon e^{i \omega_b t},
\]

where \(a\) and \(m\) (\(a^\dagger\) and \(m^\dagger\)) are the annihilation (creation) operator of the cavity and magnon modes, respectively, \([O, \mathcal{O}^\dagger] = 1\) \((O = a, m)\), and \(q\) and \(p\) \((q \cdot \epsilon - \omega_a = i\)) are the dimensionless position and momentum quadratures of the mechanical mode, and
action is typically referred to as the beamsplitter interaction. In the frame rotating at the drive frequency \(\omega_0\), the quantum Langevin equations (QLEs) describing the system are as follows:

\[
\dot{a} = -i(\Delta_a + \kappa_a) a - ig_{ma} m + \sqrt{2\kappa_a} \hat{a}^\dagger,
\]

\[
\dot{m} = -i(\Delta_m + \kappa_m) m - ig_{ma} a + \omega_m q + \sqrt{2\kappa_m} \hat{m},
\]

\[\hat{q} \equiv \omega_0 p,
\]

\[\hat{p} = -\omega_0 q - \gamma_0 p - g_{mb} m^\dagger m + \xi,
\]

where \(\Delta_a = \omega_a - \omega_0\), \(\Delta_m = \omega_m - \omega_0\), \(\gamma_0\) is the mechanical damping rate, and \(g_{ma}\) and \(g_{mb}\) being respectively the squeezing parameter, phase, and frequency of the squeezed vacuum field, which is generated by degenerate parametric down-conversion in a flux-driven JPA [31–41] based on the nonlinearity of Josephson junctions. It has been reported that the degree of squeezing as high as 10 dB has been produced [33]. If the JPA is working with a pump field at frequency \(\omega_a\) and vacuum fluctuations at the signal input port, it generates a squeezed vacuum microwave field at frequency \(\omega_a\) [see Fig. 1 (a)] [34, 37]. Alternatively, one can produce a squeezed vacuum field by a degenerate parametric amplifier with a microwave pump [42]. The other input-noise correlation functions are \(\langle a^\dagger(t)a^\dagger(t')\rangle = [N_m(\omega_m) + 1] \delta(t-t')\), \(\langle a^\dagger(t)a^\dagger(t')\rangle = N_m(\omega_m) \delta(t-t')\), and \(\langle \xi(t)\xi(t') + \xi(t')\xi(t)\rangle/2 = \gamma_0[2N_b(\omega_b)+1] \delta(t-t')\), where a Markovian approximation has been made, which is valid for large mechanical quality factor \(Q = \omega_b/\gamma_0 \gg 1\) [43], and \(N_j(\omega_j) = [\exp(\hbar\omega_j/2kT) - 1]^{-1}\) (\(j=m,b\)) are the equilibrium mean thermal magnon and phonon numbers, respectively.

Squeezing the magnons. We first show that the magnons can be squeezed by resonantly driving the cavity with a squeezed vacuum field, and then in the next section we show that this squeezing can be transferred to the phonons by further driving the magnon mode with a strong red-detuned field. In the absence of the magnon drive and due to the fact that \(g_{mb} \ll g_{ma}\) [44], the mechanical mode is effectively decoupled with the magnon mode, and the system then reduces to a two-mode system with zero averages. The fluctuations of the system are described by the QLEs

\[
\dot{\delta a} = -i(\Delta_a + \kappa_a) \delta a - ig_{ma} \delta m + \sqrt{2\kappa_a} \delta \hat{a}^\dagger,
\]

\[
\dot{\delta m} = -i(\Delta_m + \kappa_m) \delta m - ig_{ma} \delta a + \sqrt{2\kappa_m} \delta \hat{m},
\]

which are linear and can be solved straightforwardly [45]. Here \(\Delta_a\) and \(\Delta_m\) are redefined with respect to the drive frequency \(\omega_0\). For the resonant case \(\Delta_a = \Delta_m = 0\), we obtain relatively simple expressions for the variances of the squeezed cavity and magnon quadratures, \(\delta Y = i(\delta \hat{a}^\dagger - \delta \hat{a})/\sqrt{2}\), and
\[\delta x = (\delta m + \delta m')/\sqrt{2}, \] which are respectively
\[\langle \delta Y(t)^2 \rangle = \frac{g_{ma}^2(2N_m + 1)k_m + k_m(g_{ma}^2 + k_a k_m)(\cosh 2r - \cos \theta \sinh 2r)}{2(k_a + k_m)(g_{ma}^2 + k_a k_m)}, \]
\[\langle \delta x(t)^2 \rangle = \frac{(2N_m + 1)k_m(g_{ma}^2 + k_a k_m + k_a^2) + g_{ma}^2 k_a(\cosh 2r - \cos \theta \sinh 2r)}{2(k_a + k_m)(g_{ma}^2 + k_a k_m)} \]

The variance of the magnon amplitude quadrature \(\langle \delta x(t)^2 \rangle \) takes a simple form
\[\langle \delta x(t)^2 \rangle \approx \frac{1}{2} (e^{-r} + k_m/k_a), \] (5)

for the optimal squeezing regime: \(\theta = 0, g_{ma} \gg k_a \gg k_m) \) for the detection of the magnon state [15]).

The cavity field is squeezed as a result of the squeezing transferring from the cavity to the magnon mode. When the cavity photons and magnons are decoupled \(g_{ma} = 0 \), the cavity field is squeezed as a result of the squeezed driving field, while the magnon mode possesses vacuum fluctuations as \(N_m = 0 \) at 20 mK. As the coupling grows, the cavity squeezing decreases while the magnon squeezing increases, implying that the squeezing has been partially transferred from the cavity to the magnons. For example, for \(r = 1 \) the cavity squeezing is about 8.69 dB when \(g_{ma} = 0 \), and the magnon (cavity) squeezing is about 5.40 dB (3.56 dB) when \(g_{ma}/2\pi = 20 \text{ MHz} \) (In Ref. [3] \(g_{ma}/2\pi = 47 \text{ MHz} \) has been realized). Note that we have assumed the bandwidth of the squeezed vacuum field is larger than the cavity linewidth. In Ref. [41] a 3.87 dB squeezed vacuum with a bandwidth of 30 MHz has been produced. This will yield a 2.89 dB squeezing of the magnons for \(g_{ma}/2\pi = 20 \text{ MHz} \). The cavity and magnon squeezing are quite robust against the temperature, as shown in Fig. 3 (c) and (d). Moderate squeezing in both the cavity and magnon quadratures can be found even at \(T = 0.5 \text{ K} \). The squeezed microwave drive produces squeezing of the collective mode in steady state. It, however, does not affect the decay of the mode, which is in contrast to the behavior of a spin in squeezed field [30, 42]. Thus we study the amount of squeezing in steady state.

Squeezing the phonons. Once the magnons are squeezed, we turn on the strong red-detuned magnon drive [see Fig. 1 (b)] to activate the magnetomechanical state-swap operation. We adopt the linearization treatment as used in Ref. [15], and the linearized QLEs describing the system quadrature fluctuations \(\delta X, \delta Y, \delta x, \delta y, \delta q, \delta p \), where \(\delta X = (\delta a + \delta a^\dagger)/\sqrt{2} \), and \(\delta y = i(\delta m^\dagger - \delta m)/\sqrt{2} \), can be cast in the matrix form
\[u(t) = Au(t) + n(t), \] (6)

where \(u(t) = [\delta X(t), \delta Y(t), \delta x(t), \delta y(t), \delta q(t), \delta p(t)]^T \), \(n(t) = [\sqrt{2}\kappa_o \delta X(t), \sqrt{2}\kappa_o \delta Y(t), \sqrt{2}\kappa_o \delta x(t), \sqrt{2}\kappa_o \delta y(t), 0, \xi(t)]^T \) is the vector of input noises, and the drift matrix \(A \) is given by
\[A = \begin{pmatrix}
-k_a & \Delta_a & 0 & g_{ma} & 0 & 0 \\
-\Delta_a & -k_a & -g_{ma} & 0 & 0 & 0 \\
0 & g_{ma} & -k_m & \Delta_m & -G_{mb} & 0 \\
-\Delta_m & -k_m & -G_{mb} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \omega_p & -\gamma_b \\
0 & 0 & 0 & G_{mb} & -\omega_b & -\gamma_b \\
\end{pmatrix}. \] (7)
where $\tilde{\Delta}_m = \Delta_m + g_{mb}(q)$ is the effective magnon-drive detuning including the frequency shift due to the magnon-phonon interaction, and $G_{mb} = i\sqrt{2}g_{mb}(m)$ is the effective magnomechanical coupling rate, where $\langle q \rangle = -\frac{\omega_m}{\omega_b}|m|^2$, and

$$\langle m \rangle = \frac{\Omega(i\Delta_m + \kappa_m)}{g_{mb}^2 + (i(\Delta_m + \kappa_m))(\Delta_m + \kappa_m)}, \quad (8)$$

which becomes $\langle m \rangle = \Omega\Delta_m/(g_{mb}^2 - \Delta_m\Delta_g)$ when $|\Delta_m|, |\Delta_g| \gg \kappa_m, \kappa_g$, which is a pure imaginary number. The drift matrix A is given under this condition. By taking the Fourier transform of Eq. (6) and solving it in the frequency domain, the variances of the mechanical position and momentum quadratures $\langle \delta q(t)^2 \rangle$ and $\langle \delta p(t)^2 \rangle$ can be obtained [45], which are, however, too lengthy to be reported here.

Figure 4 shows the variance of the mechanical position quadrature $\langle \delta q(t)^2 \rangle$ versus various key parameters of the system. All the results are in the steady state guaranteed by the negative eigenvalues (real parts) of the drift matrix A. We have employed experimentally feasible parameters $[13, 48]$; $\omega_{mb}/2\pi = 10$ GHz, $\omega_b/2\pi = 10$ MHz, $\gamma_b/2\pi = 10^7$ Hz, $\kappa_b/2\pi = 5\kappa_m/2\pi = 3$ MHz, and at low temperature $T = 10$ mK. Clearly, there is an optimal regime around $\Delta_m = \Delta_g = \omega_b$ [see Fig. 4 (a)], where the mechanical squeezing is prominent. At this detuning, the effective Hamiltonian of the magnomechanical interaction is $H_{ml}/\hbar = g_{mb}(m'b + mb')$ [49], where $b = (q + ip)/\sqrt{2}$, which results in the mechanical mode significantly cooled close to the ground state. This interaction also realizes the magnon-phonon state-swap operation leading to the transferring of squeezing to the phonons. Figure 4 (b) shows that an optimal coupling g_{mb} exists as a result of the balance between the efficiency of squeezing transferring and the heating of the mechanical mode. For optimal detunings, the effective magnomechanical coupling $G_{mb} \approx \sqrt{2}g_{mb}\omega_m/\omega_b$, and G_{mb} takes moderate values keeping the nonlinear effect negligible (we verify this later on). The optimal coupling $G_{mb}/2\pi = 1.5$ MHz in Fig. 4 corresponds to the drive magnetic field $B_0 = 3.0 \times 10^5$ T and the drive power $P = 5.3$ mW [51] for $g_{mb}/2\pi = 0.1$ Hz and an optimal coupling $g_{mb}/2\pi = 4.2$ MHz, which yields the largest mechanical squeezing of 5.21 dB for the squeezed vacuum driving field of $r = 1$ (8.69 dB). The squeezing is robust against temperature as shown in Fig. 4 (c), which is still below vacuum fluctuations when $T = 200$ mK and $r > 0.42$ (3.65 dB). For a 3.87 dB squeezed vacuum drive [41], a mechanical squeezing of 2.77 dB (2.05 dB) can be achieved at 10 mK (50 mK).

The above results are valid only when the assumption of the low-lying excitations, $(m' m) \ll 2N_f = 5N$, is satisfied. For what we use a 250-µm-diameter YIG sphere [13], the number of spins $N \approx 3.5 \times 10^{16}$, and $G_{mb}/2\pi = 1.5$ MHz corresponds to $(m' m) = 1.1 \times 10^7$ and $\Omega \approx 5.5 \times 10^{14}$ Hz. Therefore, $(m' m) \approx 1.1 \times 10^{14} \ll 5 N = 1.7 \times 10^{17}$, and the assumption is thus well satisfied. The strong magnon drive may bring about unwanted nonlinear effects due to the Kerr nonlinear term $Km'm'm'$ in the Hamiltonian [11, 28], with K the Kerr coefficient, which is inversely proportional to the volume of the sphere. For a 1-mm-diameter YIG sphere used in Refs. [11, 28], $K/2\pi \approx 10^{-10}$ Hz, and thus for a 250-µm-

![FIG. 4: Variance of the mechanical position quadrature $(\delta q(t)^2)$ versus (a) detunings Δ_m and Δ_g, (b) couplings g_{mb} and G_{mb}, and (c) squeezing parameter r for temperatures $T = 10$ mK (solid), 100 mK (dashed), and 200 mK (dot-dashed). We take $g_{mb}/2\pi = 4.2$ MHz and $G_{mb}/2\pi = 1.5$ MHz in (a) and (c), $\Delta_m = \omega_b$ and $\Delta_g = 1.1\omega_b$ in (b)-(c), $r = 1$ in (a)-(b), and $\Delta_m = \omega_b$ and $\theta = 0$ for all the plots. In (a) [(b)] the blank area denotes $\langle \delta q(t)^2 \rangle > 0.5$ (0.74). See text for details of the other parameters.](image)
squeezing of the drive field and working at a lower temperature. The squeezed states of the magnons and phonons realized in a massive object represent genuinely macroscopic quantum states [52], and are thus useful in the study of quantum-to-classical transition, test of decoherence theories [17], as well as for ultrasensitive detections. The hybrid system may find its applications in quantum information processing, where the mechanical oscillator can act as storage of information which can be transferred to photonic and magnonic systems.

Acknowledgments. This work has been supported by the National Key Research and Development Program of China (Grants No. 2017YFA0304200, and No. 2017YFA0304202) and the Air Force Office of Scientific Research (Grant No. FA9550-18-1-0141).

[44] In the experiment of Ref. [13] a small value of the magnon-phonon coupling $g_{mb}/2\pi < 10^{-2}$ Hz has been measured, while the magnon-cavity coupling g_{mb} can be 8 or 9 orders of magnitude larger than g_{mb}, as reported in Refs. [2–6].
[45] See Supplemental Material for the details of solving the QLEs in the two cases of magnon and mechanical squeezing, and for the squeezing spectrum of the cavity output for inferring the magnon squeezing, which includes Refs. [26, 46, 47].
[48] Here we adopt slightly different parameters from those (of Ref. [3]) in the study of magnon squeezing. One may choose the parameters according to the purpose of producing squeezed states of magnons or phonons.
[51] The relation between the drive magnetic field B_0 and the power P is $B_0 = \frac{1}{2} \sqrt{\frac{2P}{\pi \mu c}}$ [15], with R the radius of the YIG sphere, c the speed of an electromagnetic wave propagating through the vacuum, and μ_b the vacuum magnetic permeability.
[52] The magnon mode (spin wave) is a collective mode, which contains a large number of spins (3.5×10^{16} for a 250-µm-diameter YIG sphere), and we consider that it is at macroscopic scale and can be referred to as a macroscopic quantum state.