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Diffraction of orbital angular momentum carrying Laguerre-Gauss vortex (LGV) beams by N -fold
rotationally symmetric regular polygons is studied analytically and experimentally. The structure,
symmetry, and dependence of the diffraction pattern on the angular momentum index of the LGV
beam and the number of sides in the polygon are systematically investigated and novel features and
trends are identified. The evolution of the diffraction pattern and its symmetry with the aperture
position relative to the waist was also studied leading to a generalized Friedel’s Law for diffraction
of LGV beams. PACS numbers:

I. INTRODUCTION

Diffraction is a common occurrence when a wave field
encounters an obstacle. Far field or Fraunhofer diffrac-
tion of plane waves from two dimensional objects such as
an aperture is of particular interest, of which, many ex-
amples can be found in textbooks [1, 2]. It is well known
that the Fraunhofer diffraction is the Fourier transform of
the incident field distribution in the plane of the aperture
multiplied by the aperture transmission function [3]. For
an incident plane wave, the field in the plane of the aper-
ture is a constant. The structure of the diffracted field
is then determined by the shape and symmetry of the
aperture. Of course, the aperture, in general has a lower
symmetry than the diffraction field. In inverse problems,
the relation between the symmetry of the diffracted field
and structure of the scatterer is of interest in all branches
of diffraction physics [4–7]. Plane wave diffraction by reg-
ular polygonal apertures has been treated in a number of
classic papers, which among other things, show that the
diffraction pattern has the same rotational and mirror
symmetries as the aperture transmission function [8–11].
For an incident field with a more complex spatial profile
than a plane wave, the structure of the diffracted field is
no longer determined solely by the symmetry of the aper-
ture transmission function. Of particular interest are the
so-called Laguerre-Gauss vortex (LGV) beams, which are
solutions to the paraxial scalar wave equation in circular
cylindrical coordinates [12–15]. The LGV beams have a
helicoidal phase front with a phase singularity (field null)
along the beam axis, where the spatial dependence can
be written as ρ`ei`ϕ, with ` a positive or negative inte-
ger or zero. These beams carry intrinsic orbital angular
momentum (OAM) of `~ per photon. The integer ` is re-
ferred to as the OAM index of the beam. With their new
degree of freedom in OAM, the LGV beams have inspired
new thinking in many light-matter-interaction processes
and found novel applications [16–19]. Studies of scat-
tering of LGV beams by simple apertures have revealed
many unexpected features in the diffraction pattern [20–
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25] and interesting implications for the relationship be-
tween the symmetries of the diffraction pattern and the
scattering object [7, 26–28]. These investigations used
slits, triangular or square apertures or their combination
to study diffraction, primarily as a tool to determine the
magnitude and sign of the OAM index and much less
to study the symmetry in diffraction [27, 28]. In this pa-
per we present a systematic theoretical and experimental
investigations of the interaction between discrete geomet-
rical symmetries of regular polygonal apertures and the
OAM of an incident LGV beam and how it constraints
the symmetry of the diffraction pattern. We discuss the
structure, symmetry and trends in the diffraction pat-
tern as N and ` are varied. We also discuss how these
features evolve as the longitudinal position of the aper-
ture is changed relative to the beam waist and present
experimental evidence for theoretical conclusions [29].

II. THEORY

Consider a two-dimensional N -sided regular polygonal
aperture A in an opaque plane screen occupying x′-y′

plane illuminated by a monochromatic field incident from
z < 0. Throughout the paper we will consider the trans-
mission function of the aperture to be real. The spatial
part of the Fraunhofer field Ef , observed by placing the
aperture in the front focal plane of a lens of focal length
f and the detector in the back focal plane [see the exper-
imental setup in Fig. 4], is given by [3]

Ef (x, y; z) =
ik

2πf

∫∫
dAEin(x′, y′, z) e−

ik
f (xx′+yy′) ,

(1)
where Ein(x′, y′, z) represents the spatial part of the inci-
dent wave field in the aperture plane at a distance z from
the waist of the incident beam, k = 2π/λ is the wavenum-
ber, λ being the wavelength of light, x′, y′ are the trans-
verse coordinates of a point in the aperture plane and x, y
are the transverse coordinates of a point in the back focal
plane of the lens. For an incident Laguerre-Gauss Vortex
(LGV) beam (zero radial index) traveling in direction z,
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the complex field amplitude is given by

E
(`)
in (x′, y′, z) = const× ρ′|`|eikz−i(|`|+1)θ

× exp

[
i`ϕ′ − ρ′

2

wwo
e−iθ

]
, (2)

where ρ′ =
√
x′2 + y′2 and ϕ′ = tan−1(y′/x′) are the ra-

dial and angular coordinates of a point in a plane trans-
verse to the direction of propagation, z

R
= πw2

o/λ is the
Rayleigh range, w ≡ w(z) = wo

√
1 + z2/z2

R
is the spot

radius, which has its minimum value wo at the beam
waist z = 0, and θ ≡ θ(z) = tan−1 (z/z

R
) is the Guoy’s

phase of the beam. The factor ei`ϕ
′

describes the az-
imuthal variation of the phase responsible for the helical
twist of the phase front. The OAM index ` is also referred
to as the topological charge of the vortex.

For analytic description, we take the aperture trans-
mission to be unity over the extent of the aperture A
and zero outside and the LGV beam to be incident nor-
mally and beam axis to pass through the center of the
aperture. Then, using polar coordinates ρ′, ϕ′ for the
aperture plane and ρ, ϕ for the observation plane, the
diffraction integral can be written as

E`(ρ, ϕ; z) = C`

∫∫
A
dρ′dϕ′ρ′|`|+1

× ei`ϕ
′− ρ′2

wwo
e−iθ−i

(
kρρ′
f

)
cos(ϕ−ϕ′)

, (3)

where the factor eikz−i(|`|+1)θ(z), which does not depend
on the variables of integration, has been absorbed into
the constant C` and the aperture A is a regular polygo-
nal of side N , which has N -fold rotational symmetry and
N mirror lines. Before proceeding further, we can draw
several general conclusions regarding the diffraction pat-
tern by examining the structure of the diffraction integral
(3) for an LGV beam.

We note that for ` = 0 and w → ∞, the integral re-
duces the plane wave diffraction by polygonal apertures,
considered in earlier investigations [8–11]. In this case,
the diffraction field reflects the symmetries of the aper-
ture. In addition, the diffraction profile (∝ |Ef (ρ, ϕ; z|2))
has a center of inversion, even if the aperture lacks one
[5]. In contrast, for an LGV beam (` 6= 0), because of the
azimuthal variation of the phase of the incident field, the
integrand does not have a center of inversion. This can
be seen by comparing E`(ρ, ϕ; z) to its complex conju-
gate E∗` (ρ, ϕ; z) and recalling cos(φ+ π) = − cosφ. This
leads to the relation

|E`(ρ, ϕ; z)|2 = |E−`(ρ, ϕ+ π;−z)|2 , (4)

where we have used |E`|2 = |E∗` |
2
. Equation (4) implies

that, in general, the LGV diffraction patterns do not have
a center of inversion. For the special case of an aperture
at beam waist z = 0, this reduces to the result derived in
Ref. [7, 26], according to which the diffraction patterns
for LGV beams of indices ` and −` from two dimensional

apertures with real transmission function are related by a
rotation of π (centrosymmetric in two dimensions). For
aperture position away from the waist, the diffraction
patterns for ±` produced by the aperture are not cen-
trosymmetric to one another. Instead, the pattern for `
with the aperture at z and the pattern for −` with the
same aperture at −z are related by a rotation of π. Re-
verting back to Cartesian coordinates, the relation (4)
can be written as |E∗` (x, y; z)|2 = |E−`(−x,−y;−z)|2,
which shows that the patterns for ` and −` are not cen-
trosymmetric in two dimensions but they are related by
a three dimensional inversion through the center of the
beam in the waist plane. Equation (4) is thus the gener-
alized Friedel’s law for diffraction of LGV beams by two
dimensional apertures. To avoid confusion, we will use
centrosymmetric in the rest of paper in the sense of inver-
sion through origin in two dimensions (x, y → −x,−y).
We will return to this point later in the discussion of the
experimental results.

It is important to mention here that the symmetry
condition implied by Eq. (4) holds not only for the LGV
beams given by Eq. (2) (Laguerre-Gauss beams of zero
radial index) but also for more general type of angular
momentum carrying beams. For example, if we use the
expression for the field of a Laguerre-Gauss beams of
nonzero radial index [13], which differs from Eq. (2) by
the multiplicative factor L`p(2ρ

2/w(z)) exp[−i2pθ(z)], in
the diffraction integral, we again arrive at Eq. (4). An-
other class of orbital angular momentum carrying beams
are the so-called Bessel-Gauss beams [30, 31]. Using the
field of these beams, we can again show that the relation
(4) holds.

More generally, the z-dependent aspect of relation (4)
will be important not only for OAM carrying beams but
for all paraxial beams diffracted by real apertures. To see
this, we consider the free-space paraxial wave equation
for the (scalar) field amplitude[

∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

]
E(x, y, z) = 0 . (5)

By comparing this to the equation for the complex con-
jugate of the field amplitude, we find that the complex
field amplitude satisfies the condition

E∗(x, y,−z) = eiφoE(x, y, z) , (6)

where φo is some constant phase. As a check, the
all well-known paraxial laser beam families Laguerre-
Gauss, Hermite-Gauss, Ince-Gauss, Bessel-Gauss, and
Airy beams [13, 30–33] satisfy this condition. By taking
the incident field Ein in Eq. (1) to be that of a paraxial
beam, which satisfies Eq. (6), we find that the diffracted
field from real apertures satisfies

E∗f (−x,−y;−z) = −eiφoEf (x, y; z) , (7)

and |E∗f (−x,−y;−z)|2 = |Ef (x, y; z)|2 . (8)

Equation (8) is the generalized Friedel’s law for paraxial
laser beams, which for LGV beams leads to Eq. (4).
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For idealized beams where the dependence of the
field amplitude on the transverse coordinates and the
z-coordinate (coordinate in the direction of propaga-
tion) can be factorized as, for example, for nondiffract-
ing Bessel beams [34], Eq. (4) reduces to |E`(ρ, ϕ)|2 =
|E−`(ρ, ϕ+ π)|2.

1

x′

y′

02

N-1

2π
N

R

h

b

π
N

O

FIG. 1. Coordinate system for the polygonal aperture.

To continue with our analytical treatment, we consider
the polygon to be inscribed in a circle of radius R, label
its N vertices, counterclockwise, 0, 1, 2, · · · , N − 1 and
choose the x′ axis to pass through the vertex labeled 0
and y′ axis perpendicular to it as shown in Fig. 1. The
integral can then be written as the sum of integrals over
N congruent isosceles triangles. The base (b) and height
(h) of isosceles triangles, and the angular coordinates of
the vertices (ϕn) and the midpoints of the sides (ϕn+ 1

2
)

of the polygon are given by

h = R cos(π/N) , b = 2R sin(π/N) , ϕn =
2πn

N
,

ϕn+ 1
2

=
π(2n+ 1)

N
, n = 0, 1, · · · , (N − 1) .

(9)

and the nth triangle occupies the angular range ϕn ≤
ϕ′ ≤ ϕn+1. Then the diffracted field can be written as
the contribution from N triangles

E`(ρ, ϕ; z) = C`

N−1∑
n=0

∫ ϕn+1

ϕn

dϕ′
∫ ρm(ϕ′)

0

dρ′ρ′|`|+1

× ei`ϕ
′−

(
e−iθ
wwo

)
ρ′2

e−iκρ
′ cos(ϕ−ϕ′) , (10)

where the abbreviation κ = kρ/f has been introduced
and ρm(ϕ′) = h

cos(ϕ′−ϕ
n+1

2
) is the maximum height of

a wedge of angular width dϕ′ located around ϕ′. By
introducing a local angular variable φ′ relative to the
midpoint of the base of the nth triangle by

φ′ = ϕ′ − ϕ
n+

1
2
, −π/N ≤ φ′ ≤ π/N , (11)

the diffracted field can be written as

E`(ρ, ϕ; z) = C`

N−1∑
n=0

e
i`ϕ

n+1
2

∫ π/N

−π/N
dφ′ei`φ

′
∫ ρm(φ′)

0

dρ′

× ρ′|`|+1e
−
(
e−iθ
wwo

)
ρ′2

e
−iκρ′ cos(ϕ−ϕ

n+1
2
−φ′)

, (12)

with ρm(φ′) =
h

cosφ′
. (13)

Thus the diffracted field is the superposition of fields pro-
duced by N isosceles triangle sources with the epoch an-
gle varying, counterclockwise, in steps of 2π`/N , start-
ing with π`/N for n = 0. Additional contribution to
the phase comes from the integral as it yields, in gen-
eral, a complex quantity that depends on ρ, ϕ, n and
N . As a quick check of this form, we see that in the
limit N → ∞, with 2π/N → dψ, ϕn+ 1

2
→ ψ, and

ρm = h/ cosφ′ = R cos(π/N)/ cosφ′ → R, we get

E`(ρ, ϕ; z) = C`
ei`ϕ

2π

∫ 2π

0

dψe−i`(ϕ−ψ)
∫ R

0

dρ′ ρ′|`|+1

× e−
(
e−iθ
wwo

)
u2−iκu cos(ϕ−ψ)

= C`e
i`ϕ

∫ R

0

dρ′ ρ′|`|+1e
−
(
e−iθ
wwo

)
u2

J`(κu),

(14)

which is the correct limit for diffraction from a circular
aperture of radius R [25].

Returning to Eq. (12), the dependence on n via ϕn + 1
2

in each term in Eq (12) can be factored out by expanding

the exponential e
−iκρ′ cos(ϕ−ϕ

n+1
2
−φ′)

in a series of Bessel
functions [35]. The sum with respect to n can then be
performed leading us to

E`(ρ, ϕ; z) = C`

∞∑
p=−∞

(−1)|p|(−i)|pN−`|e−i(pN−`)ϕ

×
∫ π/N

−π/N
dφ′eipNφ

′
∫ ρm(φ′)

0

dρ′ρ′|`|+1

× e
−
(
ρ′2
wwo

)
e−iθ

J|pN−`| (κρ
′) . (15)

A careful inspection of this expression shows that Bessel
function of order zero occurs in this series only when
|pN − `| = 0 for some p, i.e., when the OAM index ` is
an integer multiple of N . This, in turn, means that the
center (ρ = 0) of the diffraction pattern will be bright if `
is a multiple of N and dark for all other values of ` since
Bessel function of order other than zero vanish at the ori-
gin, Jm(0) = 0 (m 6= 0). By utilizing the small argument
expansion of Bessel functions near the axis (ρ → 0), we
can see that even when ` is a multiple of N , the intensity
at the center decreases as 1/N2 so that in the limit of
a circular aperture (N → ∞) the center is always dark
[25].

For numerical evaluation of the diffraction patterns,
the radial integral in Eq. (12), can be expressed in terms
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of incomplete Gamma function [36], which is a built-in
function in many computer programs. In practice, it is
more efficient to evaluate the diffraction integral directly
as a two-dimensional fast Fourier transform (FFT) using
MATLAB or Mathematica using the results derived here
as checks to ensure the accuracy against any numerical
artifacts.

Figure 2 shows the diffraction patterns computed by
evaluating the diffraction integral (3) using the FFT in
MATLAB for N = 3, 4, 5 and different ` when the aper-
ture is at beam waist where the incident beam phase
fronts are planar with θ(0) = 0, w(0) = wo. These cal-
culations were carried out by choosing the radius of irra-
diance maximum to be equal to the radius of the circle
circumscribing the polygon. This is similar to the condi-
tion under which the experiments described later in the
paper were carried.

1 2 3

4 5 6

1 2 3 4

5 6 7 8

1 2 3 4 5

6 7 8 9 10

FIG. 2. Irradiance patterns in the diffraction of LGV beams
by equilateral triangle (N = 3), square (N = 4), and pentagon
(N = 5) placed at beam waist for ` values as indicated in
the image frames. The lower left corner of the image frames
labeled 1 shows the orientation of the apertures.

First we note that the diffraction patterns from an N -
sided polygonal has N -fold rotational symmetry, reflect-
ing the symmetry of the aperture. Thus the patterns for
N = 3, 4, 5 have, respectively, three, four and five-fold
rotational symmetry. Second, for polygons with odd-

number of sides (N = 3 and 5 in Fig. 2), the diffraction
pattern lacks a center of inversion, whereas for polygons
with even-number of sides (N = 4 in Fig. 2), it has a
center of inversion. This is in contrast to the diffraction
of a plane wave, where the diffraction pattern always has
a center of inversion even if the aperture does not [5].

Examining the evolution of the diffraction pattern with
OAM index ` for fixed N , we find that the diffraction
pattern has a null at the center for all values of ` except
when ` is a multiple of N . For example, for N = 3, the
patterns have a bright center for ` = 0, 3, 6, · · · and dark
center for ` = 1, 2, 4, 5. Similarly, for N = 4, the center
is bright for ` = 0, 4, 8 · · · , dark for ` = 1, 2, 3, 5, 6, 7 and
for N = 5 the center is bright for ` = 5, 10, 15 · · · and
dark in all other cases.

Focusing now on the diffraction pattern in the central
region, where most of the diffracted light is concentrated,
we observe that the patterns have a nested structure –
the central feature of the pattern for ` > N is the pattern
for ` − N . This is most clearly seen in the patterns for
N = 3, where the central feature of the pattern for ` = 4
is the pattern for ` = 1(= 4− 3) and the central feature
of the pattern for ` = 5 is the pattern for ` = 2(= 5− 3).
Likewise, the central feature for ` = 7 is the pattern for
` = 4(= 7 − 3), which in turn encloses the pattern for
` = 1(= 4 − 3). This nesting pattern is present in the
diffraction by polygons with N > 3 as well, though it is
not as well resolved as in the case of small N . Certain
broad features of the diffraction pattern can be under-
stood by considering the diffraction to be an interference
of waves diffracted by the edges of the polygon. This has
been discussed for a triangular N = 3 aperture yielding
a triangular lattice of bright spots [22, 23, 37]. A similar
approach for a square aperture can be seen to lead to the
square lattice like structure seen for N = 4 patterns. Suc-
cessively larger values of ` reveal correspondingly larger
portions of triangular, square and other types of lattices
formed by the interference of edge diffracted waves.

For aperture positions away from the waist, the in-
cident phase front in the aperture plane has a radially
varying phase and a z-dependent Guoy’s phase, result-
ing in a significantly altered diffraction pattern. This is
shown in Fig. 3, which compares the diffraction patterns
for a triangle (N = 3) aperture at the waist (z = 0) and
one Rayleigh range away (±z

R
) from the waist. The pat-

terns have N -fold rotational symmetry for all aperture
positions, but only at waist are the patterns for −` and `
related by a rotation of 180o. Away from the waist, the
pattern for ` at z is related to the pattern for −` at −z by
a rotation of 180o, in agreement with Eq. (4). In going
from z = 0 to z

R
, the patterns rotate and outer portions

of the pattern acquire a shear. The sense of rotations for
positive negative ` are opposite and, the shear, evident
in the outer portions of the pattern, depends on the sign
of z reflecting its origin in Guoy’s phase.



5

-zR 0 zR
1

–1

FIG. 3. Evolution of the diffraction of ` = 1 LGV beam by
a triangular aperture as aperture position is varied from one
side of the waist (z = −zR) to the other (z = zR).

III. EXPERIMENT

These features of the LGV diffraction from polygonal
apertures are readily observed by illuminating polygonal
apertures with LGV beams. The LGV beams were cre-
ated by diffracting a collimated fundamental Gaussian
beam from a spatial light modulator (SLM) controlled
by a computer [see Fig. 4]. The computer could be
programmed to write the phase grating of any desired
LGV mode on the sensitive surface of the SLM. The
LGV beams with different OAM index were produced
in reflected light. An appropriately placed aperture after
the SLM selected an LGV beam of desired OAM index
and blocked the unwanted beams. The LGV beams with
OAM index up to ` = 10 were produced this way. Fig-
ure 4 shows an outline of the experimental setup used
for observing the diffraction of LGV beams by regular
polygonal apertures.

SLM

633 nm
Fundamental
Gaussian Beam

Collimator

L1

L2

LGV
Beam

Polygonal
Aperture Plate

f
f CCD

FIG. 4. An outline of the experimental setup.

Lens L1 forms a waist of the LGV beam. A second
lens L2 was placed, downstream from L1, such that the
aperture was in its front focal plane and a CCD cam-
era in its back focal plane. This arrangement, known as
“2f” arrangement ensures that the CCD camera records
the far-field (Fraunhofer) diffraction [3]. In the experi-
ment, the aperture-L2-CCD combination was moved as
a single unit along the beam axis, without changing the
relative distances between the three elements. This al-
lowed the aperture to be placed at any position relative
to the beam waist along the beam axis and record the
diffraction pattern.

In the experiment, it was necessary to control the lo-
cation of the beam waist and the fundamental Gaussian
beam spot radius wo. This is because, the irradiance pat-
tern of the LGV beam consists of single bright ring whose
radius wm is given by wm =

√
`+ 1wo, where ` is the

OAM index of the beam and minimum spot radius wo of
the fundamental (` = 0) Gaussian beam [38]. Thus as the
OAM index of the LGV beam increases, the radius of the
irradiance maximum also increases. This means that in
studies of `-dependence of diffraction, as ` increases the
size of the maximum irradiance ring may grow so large
that the polygon interacts essentially with the low inten-
sity core of the beam making the recording of the pattern
difficult. Furthermore, the apertures were etched on a
glass plate coated with a thin layer of chrome, and when
the radius of irradiance maximum exceeded the aperture
size, significant beam leaked through the glass plate to
overwhelm the diffraction pattern. For this reason, the
experiments were conducted with wm ≈ R, where R is
the radius of the circle circumscribing the polygon. This
also means that the spatial scales in recorded diffraction
patterns are not directly comparable but it allows record-
ing of the structure of diffraction pattern, which is our
main interest. For this purpose, several different lenses
with focal lengths ranging from 35 cm to 75 cm were
used for L1, allowing us to create beam radius wo varying
from from 150 µm to 400 µm. The LGV beams generated
were collimated, placing the beam waist after the lens L1
nominally in the back focal plane of the lens. For locat-
ing the waist plane more accurately, a CCD camera was
used, which also allowed a determination of the radius
wm of the maximum intensity ring of the LGV beam.

The experiments were carried out first by placing the
apertures at beam waist and illuminating them with LGV
beams with different values of OAM index `. Then the
aperture position was varied relative to the waist of the
beam to study the effects of LGV beam’s quadratic radial
phase profile and Gouy’s phase on diffraction.

IV. RESULTS AND DISCUSSION

Figure 5 shows the recorded irradiance patterns result-
ing from the diffraction of LGV beams of different OAM
index ` from an equilateral triangular aperture placed at
the waist of the incident beam. These experimentally
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recorded patterns agree with the corresponding theoret-
ical patterns of Fig. 2. In particular, they lack a center
of inversion, display a nested structure as a function of `,
and have a bright center for ` = ±3 and ±6, i.e., when `
is a multiple of N , and a dark center for all other values
of `.

1 -1 4 -4

2 -2

3 -3

5 -5

6 -6

FIG. 5. Recorded LGV diffraction irradiance from a regular
triangular aperture (N = 3) at beam waist for ` values as
indicated in the frames. Frames for ±` have been paired for
easy comparison.

In the experiment, LGV beams of both positive and
negative `-values were used. These are also shown in
Fig. 5. The patterns for OAM index ±` are related by
a rotation of 180o as predicted by Eq. (4) for aperture
position at beam waist (z = 0).

1 2 3 4

5 6 7 8

FIG. 6. Recorded LGV diffraction patterns from a square
aperture (N = 4) at beam waist for positive ` values as indi-
cated in the frames.

In carrying out the experiment, the intensity of the
incident beam had to be adjusted from one frame to an-
other so as not to saturate the detector. For this reason
the intensities in different frames are not directly com-
parable. In some cases, detector saturation could not be

avoided over the entire frame. In such cases, the sat-
urated regions appear as red in the grayscale images.
Slight curvature seen in diffraction images for higher `
values is not a detector artifact, but a property of the
diffraction pattern itself. As mentioned in the discussion
of the experiment in Sec. III, the experiments were car-
ried out by adjusting the radius wm = wo

√
`+ 1, where

the incident beam has maximum irradiance, to be nearly
equal to the radius R of the circle circumscribing the
polygon. This curvature effect is enhanced for wm values
smaller than R and is suppressed for wm > R. Numerical
evaluations can reproduce this effect as well. Evidence of
this can be seen in the theoretically computed diffrac-
tion patterns shown in Fig. 2 for ` > 4, in the case of
a triangular aperture, and ` > 6, in the case of a square
aperture. These theoretical patterns were computed for
wm = R.

Figure 6 shows the recorded diffraction patterns for a
square aperture illuminated by LGV beams of different
OAM indices. All diffraction patterns have a four-fold
rotational symmetry and a center of symmetry reflect-
ing the symmetries of a square aperture. The patterns
recorded for negative OAM index coincided with those
for positive `, in agreement with the implications of Eq.
(4), and are not shown here. As a function of OAM index
`, the diffraction patterns for ` = 1 to 4 are distinct and
shown in the top row. For ` > 4, the patterns have a
nested structure: the pattern for ` = 5 has ` = 1 pat-
tern as its core, ` = 6 pattern has ` = 2 pattern as its
core, and so on. Although the core evolves with ` some-
what, in general appearance, the pattern for ` > N has
the pattern for ` − N as its core. Finally, we note that
the patterns for ` = 4 and ` = 8 have a bright center in
agreement with the discussion following Eq. (15). These
profiles agree with the theoretical profiles in Fig. 2 for
N = 4.

1 –1

2 –2

3 –3

4 –4

5 –5

10

1 –1

2 –2

3 –3

4 –4

5 –5

–10

FIG. 7. Recorded LGV diffraction patterns from a regular
pentagon (N = 5) at beam waist for ` values as indicated in
the frames.
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Diffraction patterns for LGV beams with −5 ≤ ` ≤ 5
scattered from a regular pentagon (N = 5) at beam waist
are shown in Fig. 7. The patterns for ±`, paired to-
gether for ease of comparison, are centrosymmetric to
one another. The last two frames for ` = ±10 also obey
this relation. Additionally, together with ` = ±5 frames,
they illustrate that the center of the diffraction pattern
is bright when ` is a multiple of N . They also exhibit
a nested structure observed for N = 3 and N = 4 aper-
tures. Similar patterns were recorded for apertures with
N = 6 − 9 and in all cases they confirm the structures
and trends predicted in the preceding section.

So far, we have studied diffraction patterns for the
apertures placed at beam waist, where the LGV beam
phase fronts are planar and, for normally incident beams,
the phase in the plane of the aperture is constant. Away
from the waist, the phase fronts are spherical – the phase
has a quadratic radial dependence as well as a depen-
dence on z via the Guoy’s phase. Because of these two
additional phase contributions, the diffraction patterns of
LGV beams evolve as the aperture is moved away from
the waist.

Figure 8 shows experimentally recorded evolution of
diffraction patterns for triangular and square apertures
as their position is varied from −z

R
to z

R
relative to

the beam waist z = 0. Note that these patterns show a
rotation as well as a shear as the apertures move from
−z

R
to z

R
. While the rotation of the patterns continues

monotonically in the same sense (depending on the sign
of `) in crossing the waist, the sense of shear reverses in
crossing the waist. The `-dependent rotation is caused
by the Guoy’s phase dependence on the OAM index of
the beam, while the shear of the pattern is caused by
the quadratic radial dependence of the phase of the in-
cident beam [24, 26]. For all positions, the patterns for
the triangle and square have, respectively, three-fold and
four-fold rotational symmetry. For the square, they all
have a center of inversion, whereas for N = 3 they lack
a center of inversion.

We note also that for both apertures, when they are
placed at the waist (z = 0), the ` = ±1 diffraction pat-
terns are 180o rotated versions of one another. This re-
lation breaks down for aperture positions away from the
waist. This breakdown is most apparent in the sense of
shear in the outer of portions of the patterns. For ex-
ample, a comparison of the ±1 patterns for a triangle at
z = −z

R
, shows that a 180o rotation of ` = −1 pattern

may get the main bright lobs to overlap with those in
the ` = 1 pattern but the sense of shear in the outer
regions will be incorrect. On the other hand, 180o ro-
tated pattern for ` = −1 at z = −z

R
will reproduce the

pattern for ` = 1 at z = z
R

. Similar comments hold for
the diffraction patterns produced by the square aperture.
Thus when the apertures are placed one Rayleigh range
away from the waist, the diffraction patterns for ` = ±1
are not centrosymmetric to each other, rather the pat-
tern for ` = 1 produced by the aperture placed at z = z

R

is centrosymmetric to the pattern for ` = −1 produced

1

–1

1

–1

– zR 0 +zR

FIG. 8. Recorded LGV diffraction patterns from a triangle
and square apertures placed at z = −zR , 0 and zR as indi-
cated for ` = ±1.The top two rows are for a triangular aper-
ture and the bottom two for a square aperture. The lower
left corner of frames labeled 1 shows the orientation of the
apertures.

by the aperture placed at z = −z
R

. Thus the generalized
relation for LGV diffraction embodied in Eq. (4) holds
irrespective of the symmetry of the aperture as long as
the the aperture transmission function is real.

Conclusions regarding the symmetry of the diffraction
pattern for Laguerre-Gauss beams of zero radial index
(LGV), considered in this paper, will apply to Laguerre-
Gauss beam of nonzero radial index as well though the
detailed spatial structure of the corresponding diffraction
pattern will differ significantly from that for the LGV
beams. This can be seen by recalling that the field of
a nonzero radial index beam is obtained by multiplying
the field of a pure vortex beam given in Eq. (2) by an
appropriate associated Laguerre polynomial, which is a
real function of the radial variable ρ [12, 13] and this will
not affect the argument used in arriving at Eq. (4).

We also studied the diffraction of LGV beams by poly-
gons up to N = 9. As the number of sides increases,
the diffraction patterns become increasingly similar to
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FIG. 9. Recorded LGV diffraction patterns from polygonal
apertures placed at z = 0 for ` = N as indicated.

the diffraction by a circular aperture. Figure 9 shows the
diffraction patterns produced by regular polygons with
N = 6 to 9 for LGV beams of OAM index ` = N . In-
creasing circular symmetry of the pattern as N increases
is easily seen in these patterns. The bright spot in cen-
ter for ` = N pattern is still present but its intensity
decreases as N increases as noted in the discussion fol-
lowing Eq. (15). In the N →∞ limit, the aperture shape
becomes a circle and, of course, the central bright spot
disappears as the diffraction pattern becomes that of a
circular aperture [25, 39].

V. CONCLUSIONS

In conclusion, we have studied the diffraction of
Laguerre-Gauss vortex beams from regular polygons (N -
fold rotationally symmetric) analytically and experimen-
tally. The dependence of diffraction on symmetry of the
aperture, orbital angular momentum index ` and aper-
ture position relative to beam waist has been investi-
gated. For odd-N apertures, the diffraction lacks a cen-
ter of inversion, whereas for even-N , it has a center of
symmetry. Thus overall, the diffraction pattern has the
rotational as well as the inversion symmetry of the aper-
ture. For apertures located at waist, where the phase

fronts are planar, the diffraction patterns for ±` are re-
lated by a rotation of 180o. For other locations of the
aperture, this relationship no longer holds. Instead, a
more general relation represented by Eq. (4) holds.

For fixed N , the patterns are distinct for 1 ≤ ` ≤ N ,
whereas for ` > N , the central pattern displays a nested
structure in that the central pattern for ` contains the
pattern for `−N . This means that the pattern for ` > nN
(n is a positive integer > 1), contains the patterns for
`−N , which contains the pattern for `− 2N , and so on,
the innermost pattern being that of `− nN .

For aperture positions away from the waist, diffrac-
tion is affected both by the quadratic radial dependence
of phase and Guoy’s phase contribution to it. Their
effect is manifest in the overall rotation of the pattern
and shear in the outer portions of the pattern. We also
find that Eq. (4) represents an extension of Friedel’s
law for LGV beams, which itself is a special case of a
more general symmetry relation (8) for the diffraction of
paraxial beams by real apertures. It should be pointed
out that Eq. (4) is not a consequence of the symme-
try of the aperture; it is a property of paraxial vortex
beams scattered by any two-dimensional apertures with
real transmittance functions, independent of the symme-
try of the aperture. Experimentally recorded diffraction
profiles confirm analytically and numerically predicted
structure and trends of the diffraction of LGV beams
from regular polygonal apertures as functions of N and
`.
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