
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamically modulated perfect absorbers
Suwun Suwunnarat, Dashiell Halpern, Huanan Li, Boris Shapiro, and Tsampikos Kottos

Phys. Rev. A 99, 013834 — Published 22 January 2019
DOI: 10.1103/PhysRevA.99.013834

http://dx.doi.org/10.1103/PhysRevA.99.013834


Dynamically Modulated Perfect Absorbers

Suwun Suwunnarat1, Dashiell Halpern1, Huanan Li1∗, Boris Shapiro2†, Tsampikos Kottos1‡
1Wave Transport in Complex Systems Lab, Department of Physics,

Wesleyan University, Middletown, CT-06459, USA and
2Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

(Dated: January 2, 2019)

We introduce the concept of multichannel Dynamically Modulated Perfect Absorbers (DM-
PAs) which are periodically modulated lossy interferometric traps that completely absorb incident
monochromatic waves. The proposed DMPA protocols utilize a Floquet engineering approach which
inflicts a variety of emerging phenomena and features: reconfigurability of perfect absorption (PA)
for a broad range of frequencies of the incident wave; PA for infinitesimal local losses, and PA via
critical coupling with high-Q modes by inducing back-reflection dynamical mirrors.

PACS numbers: 05.45.-a, 42.25.Bs, 11.30.Er

I. INTRODUCTION

The quest of new methods and technologies that can
lead to a perfect absorption (PA) of an incident wave-
form is an interdisciplinary research theme in classi-
cal wave physics. It spans a range of frequencies from
optics1–13 and microwaves14–17, to radio-frequencies18,19,
acoustics20–23 and electronics24–26. A successful outcome
can revolutionize a variety of wave physics applications
including energy conversion27,28 and photovoltaics29–31,
imaging techniques32–35 and medical therapies36, stealth
technologies19,37,38 and soundproofing23,39.

A desirable feature for many of the above applica-
tions is an “on-the-fly” reconfigurability of the struc-
ture i.e. the possibility to absorb on demand an incom-
ing monochromatic wave at a specific frequency, with-
out altering the fabrication characteristics of the struc-
ture itself. Another requirement, either due to cost or
design considerations, is to incorporate minimal losses
inside the structures while at the same time achieve a
perfect absorption. This second requirement has been
recently addressed, in the frame of multi-channel sys-
tems, by the so-called Coherent Perfect Absorber (CPA)
scheme. This is an interferometric protocol employing
two counter-propagating waves which destructively inter-
fere outside a weakly lossy cavity (the target)– in anal-
ogous manner to time-reversed laser - to achieve coher-
ent perfect absorption3,5. The original concept, involving
only two channels coupled to a simple cavity has been
realized in various frameworks5,13,26,40 and further ex-
tended to include multi- channel complex cavities41–43.
CPA is a “generalization” of an older scheme, applicable
only for single-channel cavities, which employs a back-
reflection mirror and critical coupling to the resonances
of the lossy cavity. Unfortunately, two (or multi) -sided
coherent wave injection in some applications might be
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Figure 1: (Color Online) Schematics of various physical set-
ups that can be used for DMPA: (a) A single-mode fiber
coupled to a time-periodic phase modulator; (b) A network
of four oscillators (resonators) with modulated coupling con-
stants; (c) Two single-mode fibers with a time- modulated
coupler; and (d) an acoustic cavity with two cantilevers where
the in-between air domain is periodically modulated in time.
Weakly lossy elements are indicated with green.

challenging to implement, while back-reflection mirrors
are often either lossy (e.g. metallic mirrors) or require
additional fabrication effort (e.g. distributed Bragg re-
flectors). To make things worst, none of the above pro-
posals addresses the “on-the-fly” reconfigurability issue.
Along these lines, the recent work44 stands out, since it
is the first one that proposes to use parametric amplifica-
tion for the implementation of reconfigurable CPAs. This
approach requires periodic modulation of the refractive
index at frequencies which are twice the frequency of the
incident signal – thus imposing some limitations, specif-
ically in the optical domain. Obviously, a more flexible
scheme is extremely desirable.

In this paper we introduce PA in a completely differ-
ent framework associated with Floquet time-modulated
systems. The latter has gain in recent years a lot
of momentum– specifically in connection with non-
reciprocal transport45–48 Here, using a Floquet scattering
formalism we show that the proposed Dynamically Mod-
ulated Perfect Absorber (DMPA) protocols are “on-the-
fly” reconfigurable and can PA any specified frequency of
the incoming waves by altering the external driving char-
acteristics – a feature that is absent from any static PA
scheme whose properties are fixed during the fabrication
process. Importantly, we show that the implementation
of Floquet engineering methods provide powerful means
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for the implementation of PA protocols with unconven-
tional characteristics. For example, we demonstrate per-
fect absorption via coherent multi-channel illumination
for infinitesimal local losses – a phenomenon which we
refer to as Floquet-enhanced perfect absorption – occur-
ring at appropriate values of the frequency/ amplitude
of the periodic driving scheme. Finally, we show that
our scheme can be flexible and interpolate between co-
herent DMPA and PA via critical coupling associated
with single-channel illumination. We demonstrate that
the latter scenario can occur even in the absence of phys-
ical back-reflecting mirrors. The latter is induced dy-
namically via Floquet engineering.

The structure of the paper is as follows. In the next
section II we present the theoretical model which is based
on coupled mode theory. We also derive the associated
Floquet scattering matrix and identify conditions under
which our formalism is applicable. In section III we de-
rive the necessary conditions for perfect absorption in
the case of dynamically modulated targets. Moreover, we
theoretically derive expressions for the incident frequency
and loss-strength for which perfect absorption occurs. In
section IV we discuss the case of DMPA for coherent in-
cident waves. Specific examples are analyzed in detail –
both theoretically and numerically. In section V we ana-
lyze the scenario where DMPA is induced via dynamical
mirrors imposed to the system due to the Floquet driv-
ing. Finally our conclusions are presented at the last
section VI. At the Appendix we provide some details as-
sociated with the numerical models that have been used
to demonstrate DMPA in the text.

II. FLOQUET SCATTERING FORMALISM

We consider a cavity, or a network ofNs coupled single-
mode cavities. Hereafter we refer to the cavities as “sites”
with the corresponding resonant mode attached to each
site. The mode frequencies, and generally the couplings,
are periodically modulated by an electric field which is
periodic in time with period T = 2π/ω. For some phys-
ical set-ups see Fig. 1. In the context of coupled-mode
theory, the time-periodic Floquet resonator network can
be described by an effective time-periodic Hamiltonian
H (t) = H (t+ 2π/ω) which takes the form

H (t) = H0 (t)− ıΓ, Γ =
∑
µ

γµ |eµ〉 〈eµ| . (1)

Above H0 (t) is a Ns × Ns Hermitian matrix, γµ quan-
tifies the loss in the µ-th cavity and {|eµ〉} is the basis
of the mode space where H0 (t) is represented. We turn
the system of Eq. (1) to a scattering set-up by attach-
ing to it two static semi-infinite leads α = L,R, each of
which is supporting plane waves with a dispersion rela-
tion Ω(k). We shall assume, for demonstration purposes,
that the leads consist of an one-dimensional array of cou-
pled resonators. We further assume that we can iden-
tify in each of these resonators one well isolated high-Q

resonant mode. Under these assumptions the leads can
be described by an one-dimensional tight-binding disper-
sion Ω = −2C cos(kx0) where x0 represents the distance
between the resonators. The constant C represents the
coupling strength between the sites of the tight-binding
elements of the leads and controls the band-width of the
propagating channels. We emphasis that around the cen-
ter of the band i.e. kx0 ≈ π/2 the tight-binding disper-
sion will be reduce to the free-space like dispersion un-
der the wide-band approximation49. Specifically, we will
have that Ω ≈ 2Cx0k . In this case, and for relatively
small driving frequency compared with the band-width,
our discussion below will be also applicable to the study
of DMPA in the free space. Below we will adopt a natural
unit system by setting C = x0 = 1. The loss strength of
the lossy resonator(s) are assumed to be the same γµ = γ.

When an incident wave with frequency Ω0 = Ω(k0) ∈
[−ω/2, ω/2] is engaged with the periodically-modulated
target, it is scattered to an infinite number of outgo-
ing channels (including evanescent ones) supporting fre-
quencies Ωn = Ω0 + nω = −2 cos kn (n is an integer).
The evanescent channels (that are supported in the semi-
infinite leads) with Ωn /∈ (−2, 2) , Imkn > 0 do not carry
flux. We, therefore, consider the scattering matrix S
which connects only the Np incoming with the outgo-
ing propagating channels Ωn ∈ (−2, 2) , kn ∈ (0, π) at
each of the α = L,R leads. Following Ref.48 we write the
flux-normalized scattering matrix S as

S = −I2Np + ıWGsW
T , Gs ≡

1

Ω0 −HQ +WT
c KWc

(2)

where I2Np is the 2Np × 2Np identity matrix. The
quasi-energy operator HQ is defined in the Floquet-

Hilbert space and has elements (HQ)ns,n′s′ = H
(n−n′)
ss′ −

δnn′nω where the Fourier components are H
(n)
ss′ ≡

1
T

´ T
0
dtHss′ (t) exp (ınωt) and n, n′ are integers while s

labels the sites (resonators) of the system. W is the
coupling matrix that describes the coupling between the
propagating-channels (at the leads) and the system. Its
matrix elements are (W )nPα,n′s =

√
vnP cαδnPn′δα↔s

where vnP ≡ ∂Ω/∂k|knP = 2 sin knP and the sub-index

nP labels only the propagating channels. The matrix
(Wc)nα,n′s = cαδnn′δα↔s and cα describes the bare cou-
pling between the lead α and the Floquet system where
we define δα↔s = 1 when lead α is coupled with the site
s directly or δα↔s = 0 otherwise. Finally the matrix K
takes the form (K)nα,n′α′ = δnn′δαα′ exp (ıkn).

We point out that our analysis involves scenarios for
which strong non-Hermitian effects (like EPs etc) asso-
ciated with the driving44,50 are secondary as opposed to
non-Hermiticity associated with material losses. More-
over, we assume that the material-related (non-radiative)
losses are relatively weak and can be considered a small
perturbation to the Hamiltonian of the isolated system.
In such cases it is a standard practice to incorporate such
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effects to the diagonal part of H(t) which in Eq. (1) is
indicated as Γ. In this case the diagonal elements γµ can
be obtained by estimating the shift of the imaginary part
of the eigenfrequencies with respect to the lossless case,
see Refs.51,52.

III. NECESSARY CONDITIONS FOR
DYNAMICALLY MODULATED PERFECT

ABSORPTION

The scattering matrix S(Ω0, γ, ω), Eq. (2), relates
the incoming wave (in the propagating channel repre-
sentation) |I〉 to an outgoing wave |O〉 emerging af-
ter the scattering with the periodically time-modulated
target. In other words we have that S(Ω0, γ, ω) |I〉 =
|O〉 . The condition for perfect absorption follows by re-
quiring that the outgoing wave is the null vector, i.e.
|O〉 = 0. The latter is satisfied for a set of real val-

ued scattering parameters (ΩDMPA, γDMPA, ωDMPA) for
which det [S (ΩDMPA, γDMPA, ωDMPA)] = 0. While the
reality of the driving frequency ω and the loss-strength
parameter γ are dictated by the formulation of the prob-
lem itself, the requirement for real incident frequencies
Ω0 = ΩDMPA is based on physical considerations; namely
the fact that the incoming wave has to be a propagating
wave. Using Eq. (2) we are able to recast the above con-
dition for DMPA to the following form

det
(
ΩDMPA −HQ +WT

CKWc − ıWTW
)

= 0 (3)

which resembles a generalized eigenvalue problem as-
sociated with an effective non-Hermitian Hamiltonian
Heff = HQ −WT

CKWc + ıWTW .

In the small coupling limit cα → 0, a first-order per-
turbation approach allows us to evaluate theoretically
(ΩDMPA, γDMPA) from Eq. (3)53. We have,

ΩDMPA ≈ Ω(0) −
∑
nE ,α

c2α

∣∣∣ψ(0)
nEsα

∣∣∣2 eık(0)nE −∑
nP ,α

c2α

∣∣∣ψ(0)
nP sα

∣∣∣2 cos k(0)
nP ; γDMPA ≈

∑
nPα

c2α

∣∣∣ψ(0)
nP ,sα

∣∣∣2 sin k(0)
nP /

∑
n,µ

∣∣∣ψ(0)
n,µ

∣∣∣2
(4)

where ψ
(0)
ns = 〈ens

∣∣ψ(0)
〉
, |ens〉 is the unit vector

in the Floquet-Hilbert space with the entry being
(|enµ〉)n′s = δnn′δµs and

{
Ω(0),

∣∣ψ(0)
〉}

is an eigenpair

of the Hermitian matrix HQ (γ = 0) = H†Q (γ = 0), i.e.,

HQ (γ = 0)
∣∣ψ(0)

〉
= Ω(0)

∣∣ψ(0)
〉

and
〈
ψ(0)

∣∣ψ(0)
〉

= 1.
The index µ indicates the lossy resonators, nE indicates
the evanescent channels and nP the propagating chan-
nels. Finally sα labels the resonators which are coupled

with the lead α directly, and k
(0)
n is obtained from the

dispersion Ω
(0)
n = Ω(0) + nω = −2 cos k

(0)
n .

IV. COHERENT DMPA SCHEME

Equation (3), and its perturbative variant Eq. (4),
are necessary conditions for PA. In case of multi-channel
targets, however, one needs to impose an additional con-
straint; the incident waveform |I〉 must be a linear com-
bination of channel modes with amplitudes given by the
components of the eigenvector |IDMPA〉 of the scatter-
ing matrix Eq. (2) associated with a zero eigenvalue
sDMPA(ΩDMPA, γDMPA, ωDMPA) = 0. Such coherent in-
cident waveform induces interference that trap the wave
inside the structure, thus leading to a complete absorp-
tion. We refer to this scenario as Coherent DMPA.

As a useful illustration, we solve the DMPA prob-
lem explicitly in the case of one driven lossy resonator,
i.e., H0 (t) = h (t) , h (t) ∈ R, see Fig. 1a. Gener-

ally the eigenvectors
∣∣∣ψ(0)
n

〉
of the quasi-energy operator

HQ (γ = 0) are related to the Floquet mode associated
with the Hamiltonian H0 (t). In the case of one driven

resonator, we can write the eigenvalues Ω
(0)
n and the cor-

responding eigenvectors
∣∣∣ψ(0)
n

〉
of HQ (γ = 0) explicitly

using the driving h (t). Specifically, we have

Ω(0)
n = Ω(0) + nω, Ω(0) =

ω

2π

ˆ 2π/ω

0

dth (t)

〈n′
∣∣∣ψ(0)
n

〉
=

ω

2π

ˆ 2π/ω

0

dteı(n
′+n)ωtu (t) (5)

where u (t) = exp
(
−ı
´ t

0
dt′h (t′) + ıΩ(0)t

)
u (0) is the

Floquet state of the time- periodic Hamiltonian h (t) with
the initial condition being u (0).

In order to make further progress, we now consider a
specific example where h (t) = β cosωt. Using Eq. (5),

we obtain Ω
(0)
n = nω and 〈n′

∣∣∣ψ(0)
n

〉
= Jn′+n (β/ω)u (0),

where Jn′+n denotes the Bessel function of first kind of
the integer order n′+n. Under the assumption that there
exists only one propagating channel Ω in each lead, we
get from Eq. (4)

ΩDMPA ≈ 0, γDMPA ≈
(
c2L + c2R

)
J2

0 (β/ω) (6)

From Eq. (6), we see that due to the factor J2
0 , the lossy

strength γDMPA required for the realization of DMPA
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Figure 2: (Color Online) Parametric evolution of the zeros
of the S-matrix as the loss γ at one resonator of a network
of four coupled resonators, increases (see Appendix A for the
corresponding Hamiltonian and Fig. 1b for a mechanical ana-
logue). The driving frequency is ω = 1 and the amplitude is
β = 0.9. The position of the zeroes for γ = 0 are indicated
with filled circles. The two set of trajectories correspond to
strong c ≈ −1 (red-dashed lines) and weak c ≈ −0.2 (black-
solid lines) coupling of the resonators with the leads. The
crosses indicate the predictions of perturbation theory Eq.
(4). Right inset: The DMPA can be reconfigured to occur
for an extremely small value of γDMPA ≈ 2.76 × 10−6 when
the driving frequency is ω = 1, and the driving amplitude is
β = 0.01 (c = −0.5). Left inset: The Floquet network (with
fixed topology and loss γ = 0.0322) can be reconfigured by
changing the driving frequency ω and amplitude β in order to
perfectly absorb an incident wave with a dense set of frequen-
cies Ω0. We show the numerically evaluated ΩDMPA versus
ωDMPA.

can be dramatically reduced. We refer to this phe-
nomenon as Floquet-enhanced PA.

More complicated systems can be also used for the im-
plementation of the coherent DMPA scheme. Take for
example a network of coupled resonators or oscillators
like the one shown schematically in Fig. 1b. This sys-
tem consists of four coupled resonant modes with the
central one having losses γ. For the numerical demon-
stration we have assumed that the coupling strength be-
tween the resonators can be modulated in a sinusoidal
manner (the Hamiltonian H(t) that describes the iso-
lated driven system is given in the Appendix A). In Fig.
2 we report the parametric evolution of the complex ze-
roes of the scattering matrix found from Eq. (3) for two
different sets of coupling constants. For γ = 0, the com-
plex zeroes Ω are lying on the upper complex frequency
semi-plane as a consequence of causality. When, how-
ever, γ 6= 0 these eigenvalues can, in principle, situated
in both positive and negative half-planes of the complex
frequency plane. The ones that have crossed the real axis
at frequency ΩDMPA are relevant to our study, since for

the corresponding loss-strength and/or driving frequency
γDMPA, ωDMPA (and driving amplitude β) an incident
traveling waveform can be perfectly absorbed. In Fig.
2 we also mark with crosses (in the real Ω-axis) the theo-
retical predictions Eq. (4) associated to the case of weak
coupling between the system and the leads. Furthermore,
at the right inset of Fig. 2 we show the parametric evo-
lution of the zeros in case that a Floquet-enhanced PA
is engineered via a choice of appropriate frequency and
amplitude of the modulated target. Specifically, for mod-
ulation frequency ω = 1 and amplitude β = 0.01 we have
observed a crossing of the zeros with the real axis which
occurs for loss-strength as low as γ = 2.7601 × 10−6 (in
coupling units).

An important element of our Dynamically Modulated
Perfect Absorption protocol is the possibility to induce
PA at different incident frequencies Ω0 = ΩDMPA with-
out changing the fabrication characteristics of the cavity.
Numerical evaluation of the secular Eq. (3) for an ex-
ample case of a network of four coupled resonators (see
Appendix A), indicates that these Floquet cavities can
be reconfigured to act as PAs for a dense set of incident
frequencies Ω0 by simply changing the driving frequency
ω = ωDMPA (and driving amplitude β) of the coupling
modulation, see left inset of Fig. 2. In fact, the re-
duced losses γDMPA ≈ 0.032 (used in the left inset of
Fig. 2) together with the relatively small driving ampli-
tudes β ≈ 0.2 and driving frequency ωDMPA ∼ 0.3 (more
than one order smaller than the band-width), opens up
the possibility of achieving PA via the proposed DMPA
scheme in the optical domain where one has to work with
relatively slow modulation rates and amplitudes.

Let us finally comment on an alternative formulation
that allows us to evaluate the coherent DMPA values
(ΩDMPA, γDMPA) together with the corresponding inci-
dent waveform |IDMPA〉. This approach involves the no-
tion of the absorption matrix A(Ω, γ, ω) ≡ I2Np −S†S =

A†. The eigenvalues α(Ω, γ, ω) of the absorption oper-
ator indicate the amount of absorption that a coherent
incident waveform, with channel amplitudes dictated by
the components of the associated eigenvector, will expe-
rience once it encounter the modulated target. Obviously
the eigenvalues of the absorption operator are 0 ≤ α ≤ 1;
when α(Ω, γ) = 0 the incident waveform is not absorbed,
while α(Ω = ΩDMPA, γ = γDMPA) = 1 indicates com-
plete absorption. Using Eq. (2), we can re-write the
absorption matrix A in a simpler form

A = 2γ
∑
n

∑
µ

|unµ〉 〈unµ| , |unµ〉 ≡WG†s |enµ〉 . (7)

In the weak-coupling limit and Ω0 = ΩDMPA, γ =
γDMPA, we have Gs ≈

〈
ψ(0)

∣∣Gs ∣∣ψ(0)
〉 ∣∣ψ(0)

〉 〈
ψ(0)

∣∣ and

thus |IDMPA〉 ∝W
∣∣ψ(0)

〉
. Therefore, the study of coher-

ent DMPA in the weak-coupling limit boils down to the
eigenvalue problem of the operator HQ (γ = 0).
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V. DMPA BASED ON DYNAMICAL MIRRORS
AND CRITICAL COUPLING

The implementation of PA protocols that do not need
a coherent multi-sided illumination or a back-reflection
mirror, is highly attractive for many applications and
could open up many engineering possibilities. One way
to achieve this goal is by utilizing the presence of acciden-
tal degeneracies of critically coupled modes with opposite
symmetries54 – a quite demanding scheme in terms of
organizing appropriately resonant modes and their qual-
ity factors. Below we propose an altogether different
approach which utilizes critical coupling to resonances.
In this case, the physical back-reflection mirrors are ab-
sent and instead, we utilize appropriate Floquet driving
schemes that generate dynamical mirrors.

The basic idea can be demonstrated using the simple
system of Fig. 1c, described by the effective Hamiltonian
Eq. (1) with

H0 (t) =

(
εL −eıωt
−e−ıωt εR

)
and Γ =

(
0 0
0 γ

)
(8)

due to a “right” lossy resonator. In the equation above
εL/R is the frequency of the left/right resonator respec-
tively. To this end, we consider that an incident wave
with frequency Ω0, impinges the driven target from the
left lead. The driving will couple the propagating channel
Ω0 only with the Ω1 = Ω0 +ω channel in the right lead55.
To realize an DMPA in this framework, we consider Ω and
ω values such that Ω1 > 2 (band edges) corresponding
to an evanescent channel carrying zero flux. Essentially
in this scenario, the Floquet scheme generates an impen-
etrable wall (dynamical mirror) at the right lead which
enforces total reflection of the impinging wave. Conse-
quently, the reflected wave exits the scattering domain
at the same frequency Ω0, as the incident wave. Using
Eq. (2), we obtain the reflection amplitude (in case of
perfect coupling c = −1)

r0 = −
1−

(
εL + eık0

) (
εR − ıγ + e−ık1

)
1− (εL + e−ık0) (εR − ıγ + e−ık1)

. (9)

Using Eq. (9) together with the DMPA condi-
tion r0 = 0 we can evaluate the DMPA points
(ΩDMPA, γDMPA, ωDMPA).

For example, for an incident wave at frequency E0 =
EDMPA = 0 (middle of the band) we find that an DMPA
occurs at loss strength γDMPA ≈ 1/ε2

L and driving fre-
quency ωDMPA ≈ 2

(
εR −

√
γDMPA

)
56. These DMPA

points have a simple physical interpretation: In the limit
of small losses γDMPA, the on-site potential εL ∼ (1/

√
γ)

at the left site has to take large values. At the same time
the Floquet driving creates a dynamical wall that forbids
the incident wave to escape from the right lead. In other
words, the scattering system turns to a high-Q cavity.
When the incoming wave is at resonant with the modes
of the cavity (i.e. perfect impedance matching) then it
can be trapped for large times and eventually absorbed

Figure 3: (Color Online) Parametric evolution (versus in-
creasing driving amplitude β) of the zeros of the S matrix
associated with a network of four fully connected resonators,
two of which are coupled to leads (see Appendix B). The other
two resonators have losses characterized by a loss-strength
γ = 0.4749 (fixed in these simulations). The driving frequency
of the coupling is ω = 5 and the amplitude is increased from
β = 0.15 (indicated with filled circle) to β = 0.3. The DMPA
occurs for β ≈ 2.3. This Floquet driving induces a dynamical
mirror which can be used for PA via critical coupling.

completely – even if the absorption strength γ is infinites-
imally small. The above scenario is nothing else than the
so-called impedance matching condition, which, once ex-
pressed in terms of losses, indeed states that radiative
and material losses must be equal57.

The Floquet-induced critical coupling scenario of PA
can be realized for more complicated cavities like a net-
work of four fully connected resonators (see Fig. 1b).
The model Hamiltonian that has been used in these sim-
ulations is shown in the Appendix B and assumes that
two of the resonators have local losses γ. In Fig. 3 we
show the parametric evolution of two of the complex ze-
roes of the scattering matrix S as the driving amplitude
β increases. We find that there is an DMPA value at
βDMPA for a specific driving frequency ωDMPA and loss
strength γDMPA for which the zeroes cross the real axis.
We, therefore, conclude that at this real frequency an in-
cident wave exists which is completely absorbed by the
network.

VI. CONCLUSIONS

We have introduced a class of perfect absorbers that
rely on Floquet engineering schemes. These Dynamically
Modulated Perfect Absorbers (DMPA’s) are easily recon-
figurable, and can host a variety of new phenomena, in-
cluding PA in the presence of infinitesimal local losses,
and unidirectional reconfigurable PA’s that operate with-
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out the use of physical mirrors. The latter are now substi-
tuted by dynamical (reconfigurable) mirrors realized us-
ing appropriate Floquet drivings schemes. Dynamically
modulated PA’s and other Floquet photonic systems is an
emerging field which currently is in it’s infancy. They can
be proven useful in a variety of applications ranging from
radar cloaking, sensing and photoexcitation control in
photonic nanostructures, to linear optical switches, mod-
ulators, and coherence filtering of optical signals (for a
review on potential applications see for example, Ref.58).
Along these lines, promising future directions include the
implementation of our DMPA’s proposal in existing Flo-
quet platforms (see for example59) and the implementa-
tion of DMPA protocols to realistic systems beyond the
coupled mode theory approximation and under vectorial
conditions. This will be the theme of future investiga-
tions.
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Appendix A: Network system associated with Fig. 2

A network of coupled resonators has been used for the
data shown in Figure 2. The network consists of four
coupled resonators with time-modulated couplings (for a
mechanical analog of such network see Fig. 1b). The cor-
responding isolated system is described by the following
effective time-dependent Hamiltonian H(t):

H(t) =

 0 −1 + β sin(ωt) −1 + β cos(ωt) −1 + β sin(ωt)
−1 + β sin(ωt) 0 −1 + β cos(ωt) −1 + β sin(ωt)
−1 + β cos(ωt) −1 + β cos(ωt) −iγ −1 + β cos(ωt)
−1 + β sin(ωt) −1 + β sin(ωt) −1 + β cos(ωt) 0

 (A1)

where we have assumed that there are two types of (out-
of-phase) driving couplings −1 + β sin(ωt) and −1 +
β cos(ωt).

In order to study the DMPA phenomena discussed in
the main text, we have coupled this system with one-
dimensional leads of coupled resonators. The left lead
is coupled directly with the first site (resonator) while
the right lead is directly coupled to the fourth site (res-
onator). Both (bare) couplings c are assumed to be equal.
The loss, with loss-strength γ, has been included in the
third resonator.

The data shown in the main panel of Fig. 2 correspond
to the following parameters: ω = 1, β = 0.9 for two
different couplings c = 1 (strong coupling) and c = 0.2
(weak coupling). In this case the loss-strength γ was

increasing in order to obtain the parametric evolution of
the zeros of the S matrix.

The data associated with the right inset of Fig. 2
correspond to driving parameters (β = 0.01;ω = 1)
and coupling constant c = 0.5. Finally the data as-
sociated with the left inset of Fig. 2 correspond to
γDMPA = 0.0322; c = 0.5 and driving amplitude β rang-
ing between [0.1781, 0.472] with ωDMPA and ΩDMPA vary-
ing as shown.
Appendix B: Network system associated with Fig. 3

The results for Figure 3 are obtained when considering
the time dependent Hamiltonian H(t):

H(t) =

 0 β cos(2ωt) β cos(ωt) β cos(3ωt)
β cos(2ωt) −iγ β cos(ωt) β cos(ωt)
β cos(ωt) β cos(ωt) −iγ β cos(2ωt)
β cos(3ωt) β cos(ωt) β cos(2ωt) 0

 (B1)

where γ = 0.4749, ω = 5 while the driving amplitude has
been increased from β =0.15 to 0.3. The coupling to the

leads is the same as the one used in the modeling for Fig.
2, with a coupling constant which is c = 0.25.
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Nature Reviews 2, 17064 (2017)

59 M. Chitsazi, H. Li, F. M. Ellis, T. Kottos, Physical Review
Letters 119, 093901 (2017)


