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We study a qubit-oscillator system, with a time-dependent coupling coe�cient, and present a fast
scheme for generating entangled Schrödinger-cat states with large mean photon numbers and also a
scheme that protects the cat states against dephasing caused by the nonlinearity in the system. We
focus on the case where the qubit frequency is small compared to the oscillator frequency. We first
present the exact quantum state evolution in the limit of infinitesimal qubit frequency. We then
analyze the first-order e↵ect of the nonzero qubit frequency. Our scheme works for a wide range of
coupling strength values, including the recently achieved deep-strong-coupling regime.

I. INTRODUCTION

The interaction of a two-level atom (qubit) with a
quantized field (oscillator) has been widely studied over
the past few decades. There have been numerous experi-
mental realizations of such systems, including supercon-
ducting circuits [1–10], and systems of atoms coupled to
superconducting microcavities [11, 12]. Mathematically,
such qubit-oscillator systems are described by the quan-
tum Rabi model. Outside the regime where the rotating-
wave approximation (RWA) can be used, previous studies
have mainly focused on systems with time-independent
coupling coe�cients [13–16].

In this work, we examine the qubit-oscillator system
with a time-dependent coupling coe�cient [17–19], where
the qubit frequency is small compared to that of the os-
cillator and RWA is not applicable. We solve the dynam-
ics of the system in the case of a general time-dependent
coupling and use this solution to demonstrate schemes for
generating large Schroedinger cat states, and for protect-
ing them from dephasing. Very-large-size Schrodinger-
cat states are useful for quantum information process-
ing [20, 21] and quantum enhanced sensing [22], for
instance. Our amplification scheme o↵ers a potentially
simple and fast alternative compared to previous meth-
ods [20, 21]. A simple estimation indicates three orders
of magnitude speedup in generating of a 100-photon cat
state, compared to Ref. [21]. See also Supplemental Ma-
terial for details. In the following, we start by presenting
the state evolution in the exact analytical form in the
limit of an infinitesimal qubit frequency, and then we
examine the first-order e↵ect of a small nonzero qubit
frequency.
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II. STATE EVOLUTION UNDER
TIME-DEPENDENT COUPLING WITH
INFINITESIMAL QUBIT FREQUENCY

The Hamiltonian of the combined system of the qubit
and the oscillator is

Ĥ(t)=�
~
2
��̂z + ~!

✓
â†â+

1

2

◆
+ ~g(t)�̂x(â† + â), (1)

where ! and � are the frequencies of the oscillator and
the qubit, respectively, and g(t) is the time-dependent
coupling constant, â and â† are, respectively, the annihi-
lation and creation operators of the oscillator, and �̂x,z
are the Pauli operator of the qubit [23]. We focus on the
situation where � is small compared to !, without as-
suming any condition on the coupling g(t). We will first
examine the zeroth order e↵ect of the small � by taking
the limit of �/!!0, which gives

Ĥ(0)(t)=~!
✓
â†â+

1

2

◆
+ ~g(t)�̂x(â† + â). (2)

The initial eigenstates of the Hamiltonian at t=0 are the
entangled states [15, 16]:

|E(0)
N±(0)i= |+ix D̂

✓
�
g(0)

!

◆
|Ni± |�ix D̂

✓
+
g(0)

!

◆
|Ni ,

(3)

ignoring a factor of 1/
p
2, and where |±ix are the two

qubit eigenstates of the Pauli matrix �̂x with eigenvalues
±1, the |Ni is the N -photon Fock state in the oscillator,

and D̂
⇣
±

g(0)
!

⌘
are displacement operators. Note that,

in the limit of �/!!0, the energy eigenstates |E(0)
N+(0)i

and |E(0)
N�(0)i are almost degenerate, with the energy

eigenvalues of E(0)
N±(0)=~!

�
N + 1/2� g2(0)/!2

�
.
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We now consider the state evolution under an arbitrary
time-dependent coe�cient g(t). The energy eigenstates

|E(0)
N±(t)i, determined by the instantaneous value of g(t),

do not reflect the evolution of quantum states. In other

words, an initial state |E(0)
N±(0)i generally does not, for a

time-dependent g(t), evolve into ei�N±(t)
|E(0)

N±(t)i, with
a phase factor �N±(t), at a later time t. On the other

hand, a quantum state in the form of |Ẽ(0)
N±(0)i evolves

into the quantum state ei�N (t)
|Ẽ(0)

N±(t)i, where

|Ẽ(0)
N±(t)i= |+ix D̂

✓
�
g̃(t)

!

◆
|Ni± |�ix D̂

✓
+
g̃(t)

!

◆
|Ni ,

(4)

and the phase factor �N (t) is given in the Supplemen-
tal Material. Here the complex variable g̃(t) obeys the
equation

˙̃g(t)= i!(g(t)� g̃(t)). (5)

Note that the initial g̃(0) can be set to any value. The
proof is given in the Supplemental Material. We re-

fer to |Ẽ(0)
N±(t)i as the dynamical evolution eigenstates,

which take the similar form with the energy eigenstates
in Eq. (3), but with g(t) replaced with g̃(t). Now the
dynamics of the system is governed by Eq. (5), which
shows that g̃(t) does not respond instantly to changes
in g(t). As the energy eigenstates provide a convenient
basis such that any initial state expressed as a superpo-
sition of eigenstates accumulate a phases factor but oth-
erwise unchanged under time-independent Hamiltonian,
the dynamical evolution states provide such a basis that
quantum evolution can be described conveniently under
time-dependent Hamiltonian. Note that, apart from a
few special cases, the dynamical evolution eigenstates are
generally not energy eigenstates.

To understand the evolution of quantum states, we give
the following three scenarios, in which we set the initial

g̃(0)=g(0) so that |Ẽ(0)
N±(0)i= |E(0)

N±(0)i.
(i) Suppose g(t) is adiabatically changed over time [red,

solid curve in Fig. 1(a)]. Any energy eigenstate has am-
ple time adjust to the adiabatically changing Ĥ(0)(t) and
also remains an energy eigenstate [red, solid curve in
Fig. 1(b)].

(ii) Suppose g(t) is constant at a certain value at
t<t0, and then set to zero instantaneously at t= t0 [blue,
dashed curve in Fig. 1(a)]. Since neither ! nor � is in-

finitely large, the states |Ẽ(0)
N±(t)i cannot adjust instan-

taneously, and they remain the same at t= t0+. However

|Ẽ(0)
N±(t0+)i are no longer the energy eigenstates, and the

states begin to evolve. Taking the ground dynamical evo-
lution eigenstate

|Ẽ(0)
0±(t)i= |+ix |�g̃(t)/!i± |�ix |+g̃(t)/!i , (6)

as an example, the amplitude of the coherent state com-
ponent of the state, |±

g̃(t0)
! i before the adjustment,

FIG. 1. (color online) Evolution of g̃(t) under time-
dependent g(t) with infinitesimal �. (a) Three di↵erent time
dependences of g(t) as a function of time t. (b) The trajecto-
ries of g̃(t) corresponding to (a), which, as seen in Eq. (4), de-
termine the evolution of the dynamical evolution eigenstates.
We set the initial condition as g̃(0)/g(0)=1. (c) The time
dependences of g(t) and |g̃(t)| as functions of time t, in the
case of sinusoidal driving force g(t)=g(0) cos!t. (d) The tra-
jectories of g(t) and g̃(t) corresponding to (c). The amplitude
of g̃(t) keeps increasing, showing cat-state amplification. The
blue and red dots in (c) and (d) indicate where the modulation
stops (t=4⇡/!) in the scheme shown in Fig. 2.

should begin to revolve around the origin after the adjust-
ment, consistent with the evolution of a regular coherent
state in a free oscillator [blue, dashed circle in Fig. 1(b)].
When g(t) is instantaneously set to a nonzero value, g̃(t)
revolves around this value in the complex plane.

(iii) Now we consider the intermediate scenario. We
assume that g(t) is adjusted over a finite period of time
to zero and then kept stabilized as shown in the green,
dotted curve in Fig. 1(a). In this scenario, g̃(t) will start
changing as g(t) starts changing. Its trajectory is less
intuitive than the extreme scenarios, but can be under-
stood from Eq. (5). After g(t) becomes constant again,
g̃(t) evolves in circular motion around the new constant
g [green, dotted curve in Fig. 1(b)].

By modulating g periodically on resonance with the
frequency !, we can amplify the absolute value of the am-
plitude of the entangled-cat-state components of Eq. (6).
As a specific example, the case of a sinusoidal modu-
lation g(t)=g(0) cos!t is shown in Figs. 1(c) and 1(d).
The magnitude |g̃(t)| will grow linearly with time. This
behavior is easy to understand from Eq. (5), whose so-
lution corresponds to a simple harmonic oscillator being
driven by an external force. Since the photon number in
the coherent state is proportional to |g̃/!|2, it will grow
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quadratically as a function of time. In this case, modulat-
ing g(t) for two oscillator periods increases the absolute
amplitude of the coherent state component by a factor of
6.4.

III. FIRST-ORDER EFFECT OF FINITE QUBIT
FREQUENCY

So far we have ignored the e↵ect of the small � by
taking the limit of �/!!0. We now examine the first-
order e↵ect in � in the full Hamiltonian in Eq. (1).
Note that, in recent experiments [6, 7], �/!⇡0.1. At
any time t we can express a general state of interest
as a superposition of dynamical evolution eigenstates:

|'(t)i=
P

N,± CN±(t)e�iN!t
|Ẽ(0)

N±(t)i. Under the full

Hamiltonian Ĥ(t), the CN±(t) generally change over
time. If we consider up to the first order in �/!,
C(t)⌘

⇥
C0+(t) C1+(t) . . . C0�(t) C1�(t) . . .

⇤
can be

expressed as: C(t)=C(0) exp
n

i
2

R t
0 �(t)[M�z (t)]dt

o
,

where M�z (t) is the matrix of the operator �̂z in the basis

e�iN!t
|Ẽ(0)

N±(t)i at time t. See the Supplemental Mate-
rial for the derivation. For generality, we have made the
parameter � time-dependent [�=�(t)].

An intuitive way to understand the e↵ect of nonzero �
is the following. If � was to be considered infinitesimal,
the quantized oscillator has equally spaced energy lev-
els. Nonzero � disrupts such equally spaced energy lev-
els, causing any general quantum state to dephase. This
type of dephasing is well known for coherent state solu-
tions to the harmonic oscillator [24], and has been seen
in experiments with single-electron Rydberg atoms [25].

We have shown above that nonzero � leads to the
change in CN±(t) and the dephasing. To minimize this

dephasing, we need to make
R t
0 �(t)[M�z (t)]dt as close to

zero as possible. Let us examine a special situation where
we can actually reduce the term

R t
0 �(t)[M�z (t)]dt com-

pletely to zero. We can take advantage of the fact that as
long as g is a constant, M�z (t) is periodic with a period
2⇡
! . Keeping g a constant, first we keep � at a certain
nonzero value for a k 2⇡

! period of time (k: integer), then
we flip � to the opposite sign for another k 2⇡

! period

of time. As a result, the two parts
R k 2⇡

!

0 �(t)[M�z (t)]dt

and
R 2k 2⇡

!

k 2⇡
!

�(t)[M�z (t)]dt cancel each other, eliminating

the first-order dephasing e↵ect of � for the duration of
(0, 2k 2⇡

! ).

IV. ⇡-PULSES AND THEIR APPLICATIONS

Above we have discussed the method of eliminating
the first-order e↵ect of finite � by flipping the sign of
�. Here we will show a scheme to manipulate g or �
indirectly. By applying ⇡-pulses to the qubit alone, which
is a commonly used technique in dynamical decoupling

FIG. 2. (color online) Cat-state amplification and rephasing
in the Wigner representation of the oscillator state projected
onto the qubit state |+ix + |�ix. The x and y axes are the
oscillator’s dimensionless field quadratures p and q. The pa-
rameters are modulated as explained in the text with�=0.1!
and g(0)=0.833!. The insets show the central parts of the
figures. (a) The initial state, which is taken to be the ground

state, reasonably resembles the cat state |� g(0)
! i + |+ g(0)

! i,
with a fidelity of 0.99986. After the initial state goes through
two oscillator periods of the sinusoidally driven cat-state-
amplification process, the resulting state is shown in (b),

which resembles the target cat state |� g̃(4⇡/!)
! i+ |+ g̃(4⇡/!)

! i
with |g̃/!|=5.3 and a fidelity of 0.989. We now let the state
in (b) freely evolve for 10 oscillator periods, and the resulting
state of the oscillator is shown in (c). The fidelity between
the state of (c) and the target cat state is only 0.933, since
the state is dephased by the nonzero �. However, if we insert
one �̂x-⇡ pulse in the middle of the 10 oscillator periods, the
evolved state, shown in (d), has a 0.989 fidelity with the target
cat state, analogous to a Hahn spin-echo rephasing e↵ect.

[26, 27], we can achieve the e↵ect of flipping the signs of
g or �. There are three basic types of ⇡-pulses, each of
which amount to applying a Pauli operator (�̂z, �̂x or �̂y)
to the qubit. Let us first examine the �̂z-⇡-pulse. Since
�̂x and �̂z anti-commute, we have Ĥ(g)�̂z= �̂zĤ(�g) in
Eq. (1). Therefore, without directly altering the qubit-
oscillator coupling coe�cient g, in the Hamiltonian the
sign of g is flipped by applying �̂z-⇡ pulses to the qubit
alone. For �̂x and �̂y pulses, similar arguments apply.
By applying �̂y-⇡ pulses to the qubit, the signs of both
g and � are simultaneously flipped. As explained below,
cat states can be amplified by applying �z-⇡ pulses on the
qubit, and dephasing due to � can be corrected by �x-⇡
pulses. Both amplifying a cat state and rephasing can be
achieved by �y-⇡ pulses. See Supplemental Material for
details.
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V. NUMERICAL SIMULATIONS

When � is nonzero but still small compared to !,
the ground state, which can be written as |E0+(0)i=

|+ix | �(0)i + |�ix | +(0)i, is very close to |E(0)
0+ (0)i=

|+ix |�
g(0)
! i+|�ix |+

g(0)
! i (Eq. (3)). Although | �(0)i+

| +(0)i is not strictly a cat state of two coherent states,

the fidelity of | �(0)i+ | +(0)i to the cat state |� g(0)
! i+

|+ g(0)
! i is very high as shown in the caption of Fig. 2(a).

Amplifying a cat state can be achieved either by di-
rectly modulating g(t), or by indirectly flipping the sign
of g(t) by applying �̂z-⇡ pulses to the qubit alone, as
shown above. Here, we show an example of the former
scheme. See Supplemental Material for the latter scheme.

We begin with the ground state |E0+(0)i with con-
stant g(0) as the initial state. The Wigner represen-
tation of its oscillator part | �(0)i + | +(0)i is shown
in Fig. 2(a). We apply a short sinusoidal driving force
by modulating g(t)=g(0) cos!t for two periods of the
oscillator (t=0⇠ 4⇡

! ) as shown in Figs. 1(c) and 1(d).
During this modulation, g̃ evolves as shown in Figs. 1(c)
and 1(d). By the end of the modulation (t= 4⇡

! ),the
amplitude of the cat state is amplified by a factor of
6.4. The Wigner representation of the resulting state
| �(4⇡/!)i+ | +(4⇡/!)i, which has a high fidelity with

|�
g̃(4⇡/!)

! i + |+ g̃(4⇡/!)
! i, is shown in Fig. 2(b). We can

repeat this process to further increase the absolute value
of amplitudes of the oscillator states, if we want. Note
that the amplified cat in Fig. 2(b) is tilted by the angle
about ⇡/2. This is due to the fact that g̃(4⇡/!) lags
g(4⇡/!) by about a quarter of a cycle, as indicated by
the dots in Fig. 1(c) and 1(d).

The size of the cat state in Fig. 2(b), quantified by
the distance between the two coherent states in the su-
perposition, is comparable to that of Ref. [21], i.e. ⇠100
photons. In the Supplemental Material we show simu-
lations for an e↵ectively 400-photon cat state. Our cat-
amplification scheme also works for weaker coupling, as
we show with an example in the Supplemental Material.

Now we let the state shown in Fig. 2(b) evolve freely for
10(2⇡/!), then the state is eventually dephased, as shown
in Fig. 2(c). To counter this, we instead in Fig. 2(d) allow
the cat state to evolve freely for five oscillator periods,
apply one �x-⇡ pulse to the qubit, and then allow free
evolution for another five periods. In Fig. 2(d), we can
see that the amplified cat state is recovered, in analogy
to the rephasing of the Hahn spin-echo method [28]. To
preserve a state for a longer time, more �̂x-⇡ pulses can
be applied in the same manner. Also we can apply �̂x-
⇡ pulses more frequently to counter the dephasing by a
larger �.

Throughout this work, we have neglected the e↵ects
of dissipations, since our protocol can be completed in
the time scale of the oscillator’s period (⇠1 ns), which is
much shorter than the decoherence time (⇠100 ns) de-
termined by the qubit and the ⇠100-photon state. Here
we assume the single photon decay time of ⇠10 µs, the

qubit decoherence time of ⇠1 µs, and 10 GHz oscillator
with parameters used in Fig. 2.

VI. CONCLUSION

We have studied the evolution of the quantum state in
a qubit-oscillator system with the time-dependent cou-
pling, in the case of the small qubit frequency compared
to the oscillator frequency. We have analytically shown
that the quantum state evolution can be simply expressed
by introducing the dynamical evolution eigenstates. Us-
ing this method, we have designed a scheme for gener-
ating large cat states that is orders of magnitude larger
than known methods [21], and a scheme to rephase the
cat states in the oscillator using ⇡ pulses on the qubit,
which is entangled with the oscillator. We point out that
our method is quite general and can be used for gen-
eral entangled-cat-state engineering with a wide range
of the system parameters in various systems. Also our
techniques of ⇡ pulses can be widely used to protect
quantum information in recently advancing cavity- and
circuit-QED systems.

ACKNOWLEDGMENTS

A part of simulations in this study was performed using
QuTip [29]. T.F., F.Y., K.S., M.S., and M.T. would like
to acknowledge support from Japan Science and Technol-
ogy Agency Core Research for Evolutionary Science and
Technology (Grant No. JPMJCR1775). Z.X and J.P.D.
would like to acknowledge AFOSR, ARO, DARPA, NSF,
and NGAS.

Appendix A: Derivation of the state evolution with
infinitesimal qubit frequency

Under the limit of �/!!0, the Hamiltonian of the
combined system of the qubit and the oscillator is

Ĥ(0)(t)=~!
✓
â†â+

1

2

◆
+ ~g(t)�̂x(â† + â). (A1)

Let us examine the evolution of an initial state in the
form of:

|�N±(0)i= |±ix D̂

✓
⌥
g̃(0)

!

◆
|Ni . (A2)

We can choose particular ± and N , but the following cal-
culation applies to all± andN . We can also see that with
various choices of N and ±, |�N±(0)i represents a com-
plete orthonormal basis regardless of the value of g̃(0).
By examining the evolution of initial state |�N±(0)i with
all choices of ± and N , we can understand the evolution
of any general initial state, which itself can be expressed
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as a superposition of |�N±(0)i with di↵erent ± and N .
Also note that we can set g̃(0) to any value.

To calculate the evolution of the initial state |�N±(0)i
to the final time tF, we divide the time period of inter-
est into K + 1 small segments, so that the entire period
is divided by time points 0, t1, t2, · · · , ti, ti+1, · · · , tK , tF.
Each segment is considered to be small enough so that,
in a single segment g(t) and Ĥ(0)(t) do not change much
and are treated as constants. Therefore the final state at
t= tF can be expressed as

|�N±(tF)i=exp[�iĤ(0)(tK)⇥ (tF � tK)/~] · · ·
⇥ exp[�iĤ(0)(tj)⇥ (tj+1 � tj)/~] · · ·
⇥ exp[�iĤ(0)(0)⇥ t1/~]

⇥ |±ix D̂

✓
⌥
g̃(0)

!

◆
|Ni .

(A3)

Now let us solve for |�N±(tF)i. At each time point

t= tj , starting with t=0, we carry out the following pro-
cedures.
(1) We make the ansatz that, at any time point t= tj ,

the evolved state is in the form of

|�N±(tj)i=ei�N (tj) |±ix D̂

✓
⌥
g̃(tj)

!

◆
|Ni , (A4)

where |±i and |Ni are the same as the initial state
|�N±(0)i. This is obviously true at t=0 and we will
show, by mathematical induction, that indeed at each
time point the state can be expressed in such a form.
The complex number g̃(tj) generally changes at di↵er-
ent time points, and a phase ei�N±(tj) can accumulate as
well.
(2) To make the expression more compact, let ⌧j=

tj+1 � tj , gj=g(tj), g̃j= g̃(tj). The state at tj+1, evolv-
ing from the state at the previous time point tj , can be
expressed as follows:

|�N±(tj+1)i=exp[�iĤ(0)(tj)(tj+1 � tj)/~] |�N±(tj)i

=exp

⇢
�i


!

✓
â†â+

1

2

◆
± gj(â

† + â)

�
⌧j

�
exp[i�N (tj)]D̂

✓
⌥
g̃j
!

◆
|±ix |Ni

=exp[i�N (tj)] exp{�i=[(g̃j � gj)gj/!
2]} exp

⇢
�i


!

✓
â†â+

1

2

◆
± gj(â

† + â)

�
⌧j

�

⇥ D̂

✓
⌥
g̃j � gj
!

◆
D̂

⇣
⌥
gj
!

⌘
|±ix |Ni

=exp[i�N (tj)] exp{�i=[(g̃j � gj)gj/!
2]} exp

⇢
�i


!

✓
â†â+

1

2

◆
± gj(â

† + â)

�
⌧j

�

⇥ exp

⇢✓
⌥
g̃j � gj
!

◆h⇣
â† ±

gj
!

⌘
⌥

gj
!

i
�

✓
⌥
g̃⇤j � gj
!

◆h⇣
â±

gj
!

⌘
⌥

gj
!

i�
D̂

⇣
⌥
gj
!

⌘
|±ix |Ni

=exp[i�N (tj)] exp{�i=[(g̃j � gj)gj/!
2]}

⇥ exp

⇢✓
⌥
g̃j � gj
!

◆h⇣
â† ±

gj
!

⌘
e�i⌧j! ⌥

gj
!

i
�

✓
⌥
g̃⇤j � gj
!

◆h⇣
â±

gj
!

⌘
e+i⌧j! ⌥

gj
!

i�

⇥ exp

⇢
�i


!

✓
â†â+

1

2

◆
± gj(â

† + â)

�
⌧j

�
D̂

⇣
⌥
gj
!

⌘
|±ix |Ni

=exp[i�N (tj)] exp{�i=[(g̃j � gj)gj/!
2]}D̂

✓
⌥
g̃j � gj
!

e�i⌧j!

◆

⇥ exp


�
(g̃j � gj)gj

!2
e�i⌧j! +

(g̃⇤j � gj)gj
!2

e+i⌧j! +
(g̃j � gj)gj

!2
�

(g̃⇤j � gj)gj
!2

�

⇥ exp

⇢
�i


!

✓
N +

1

2

◆
�

g2i
!

�
⌧j

�
D̂

⇣
⌥
gj
!

⌘
|±ix |Ni

=exp[i�N (tj)] exp

⇢
i=


(g̃j � gj)gj

!2
(1� e�i⌧j!)

��

⇥ exp

⇢
�i


!

✓
N +

1

2

◆
�

g2i
!

�
⌧j

�
D̂

✓
⌥
gj
!

⌥
g̃j � gj
!

e�i⌧j!

◆
|±ix |Ni ,

(A5)
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where the symbol = means an imaginary part. In the second to the last step of Eq. (A5), we have used


!

✓
â†â+

1

2

◆
± gj(â

† + â)

�
D̂(⌥

gj
!
) |±ix |Ni=D̂

⇣
⌥
gj
!

⌘
!
⇣
â† ⌥

gj
!

⌘⇣
â⌥

gj
!

⌘

± gj
⇣
â† ⌥

gj
!

+ â⌥
gj
!

⌘
+

1

2
!

�
|±ix |Ni

=D̂
⇣
⌥
gj
!

⌘
!

✓
â†â+

1

2

◆
�

g2i
!

�
|±ix |Ni

=D̂
⇣
⌥
gj
!

⌘
!

✓
N +

1

2

◆
�

g2i
!

�
|±ix |Ni

=


!

✓
N +

1

2

◆
�

g2i
!

�
D̂

⇣
⌥
gj
!

⌘
|±ix |Ni ,

(A6)

and in the third to the last step we have used

exp

⇢
�i⌧j


!

✓
â†â+

1

2

◆
± gj

�
â† + â

���⇣
â±

gj
!

⌘
=
⇣
â±

gj
!

⌘
ei⌧j! exp

⇢
�i⌧j


!

✓
â†â+

1

2

◆
± gj

�
â† + â

���
.

(A7)

Now recall that

|�N±(tj)i=exp[i�N (tj)] |±ix D̂

✓
⌥
g̃(tj)

!

◆
|Ni , (A8)

Therefore we have proved, by mathematical induction,
that the quantum state at t= tj+1 also has the form

|�N±(tj+1)i=exp[i�N (tj+1)] |±ix D̂

✓
⌥
g̃(tj+1)

!

◆
|Ni ,

(A9)

with

g̃(tj+1)=g(tj) + [g̃(tj)� g(tj)] exp[�i!(tj+1 � tj)]
(A10)

and

�N (tj+1)=�N (tj) +
={(g̃⇤j � gj)gj [1� exp(�i!⌧j)]}

!2

�

✓
N +

1

2

◆
!⌧j +

g2i
!
⌧j .

(A11)

Since tj+1 � tj=⌧j!0, we have

g̃(tj+1)= g̃(tj)[1� i!(tj+1 � tj)]� g(tj)[�i!(tj+1 � tj)]
(A12)

and

�N (tj+1)=�N (tj) +
=[i(g̃⇤j � gj)gj ]

!
⌧j

� (N +
1

2
)!⌧j +

g2i
!
⌧j .

(A13)

Therefore,

g̃(tj+1)� g̃(tj)

tj+1 � tj
= i![g(tj)� g̃(tj)], (A14)

which leads to

d

dt
g̃(t)= i!(g(t)� g̃(t)), (A15)

for which the solution is

g̃(t)= g̃(0)e�i!t + e�i!t

Z t

0
i!g(t0)ei!t0dt0. (A16)

As the state evolves under changing g, the phase �N (tF)
will accumulate and the final state is

|�N±(tF)i=ei�N (tF)D̂

✓
⌥
g̃(tF)

!

◆
|±ix |Ni . (A17)

where g̃= g̃(t) is given by Eq. (A16) and �N (tF)=R tF
0

⇣
=[i(g̃⇤�g)g]

! + g2

! �
�
N + 1

2

�
!
⌘
dt. Notice in the

phase �N (tF), the part of
R tF
0

⇣
=[i(g̃⇤�g)g]

! + g2

! �
!
2

⌘
dt

is the same for every N and ±, therefore we can sim-
plify it as �N (tF)=�N!tF. Combining |�N+(tF)i and
|�N�(tF)i, we arrive at Eqs. (4) and (5) in the main text.

Appendix B: Derivation of the state evolution
with non-zero qubit frequency

We now consider the case where � is not infinitesi-
mal and use the full Hamiltonian Ĥ(t)=Ĥ(0)(t)� ~

2��̂z.
As explained above, the dynamical energy eigenstates
form a complete basis. Therefore at any time t, we
can express any quantum state of interest as a su-
perposition of dynamical energy eigenstates: |'(t)i=P

N,± CN±(t) |Ẽ
(0)
N±(t)i. As the state |'(t)i evolves, so

does every dynamical energy eigenstate |Ẽ(0)
N±(t)i and its
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corresponding coe�cient CN±(t). Now we need to solve
the evolution of the coe�cients CN±(t) to completely de-
termine the evolution of state |'(t)i. Starting from initial
time zero, we divide the time period of interest (0, t) into
K + 1 segments: (0, t1, t2, ..., tK , t), with each segment

being infinitesimal. For convenience we will adopt the
matrix form, therefore the state at time t, which evolves
from the initial state |'(0)i under Hamiltonian Ĥ(t), can
be written as:

|'(t)i=
X

N,±
CN±(t)e

�iN!t
|Ẽ(0)

N±(t)i

=
⇥
C0+(t) C1+(t) . . . C0�(t) C1�(t) . . .

⇤

⇥

h
|Ẽ(0)

0+ (t)i e�i!t
|Ẽ(0)

1+ (t)i . . . |Ẽ(0)
0�(t)i e�i!t

|Ẽ(0)
1�(t)i . . .

iT

=exp[�iĤ (tK)⇥ (t� tK)/~] · · · exp[�iĤ (t1)⇥ (t2 � t1)/~] exp[�iĤ (0)⇥ t1/~]

⇥
⇥
C0+(0) C1+(0) . . . C0�(0) C1�(0) . . .

⇤
·

h
|Ẽ(0)

0+ (0)i |Ẽ(0)
1+ (0)i . . . |Ẽ(0)

0�(0)i |Ẽ(0)
1�(0)i . . .

iT
.

(B1)

From tj to tj+1, so long as tj+1 � tj!0, the state evolves in the following way:

|'(tj+1)i=exp

⇢
�i


Ĥ(0)(tj)�

~
2
��̂z

�
(tj+1 � tj)/~

�
|'(tj)i

=exp

⇢
�i


Ĥ(0)(tj)�

~
2
��̂z

�
(tj+1 � tj)/~

�X

N,±
CN±(tj)e

�iN!tj |Ẽ(0)
N±(tj)i

=
X

N,±
CN±(tj) exp


�i

✓
�
1

2
��̂z

◆
(tj+1 � tj)

�
exp[�iĤ(0)(tj)⇥ (tj+1 � tj)/~]e�iN!tj |Ẽ(0)

N±(tj)i

=
X

N,±
CN±(tj) exp


�i

✓
�
1

2
��̂z

◆
(tj+1 � tj)

�
e�iN!(tj+1�tj)e�iN!tj |Ẽ(0)

N±(tj+1)i

=
X

N,±

X

N 0,±
CN±(tj)e

�iN 0!tj+1 |Ẽ(0)
N 0±(tj+1)i

⇥ hẼ(0)
N 0±(tj+1)| e

+iN 0!tj+1 exp


�i

✓
�
1

2
��̂z

◆
(tj+1 � tj)

�
e�iN!tj+1 |Ẽ(0)

N±(tj+1)i

=
⇥
C0+(tj) C1+(tj) . . . C0�(tj) C1�(tj) . . .

⇤

⇥ exp[�i(�
1

2
�)[M�z (tj+1)](tj+1 � tj)]

⇥

h
|Ẽ(0)

0+ (tj+1)i e�i!tj+1 |Ẽ(0)
1+ (tj+1)i . . . |Ẽ(0)

0�(tj+1)i e�i!tj+1 |Ẽ(0)
1�(tj+1)i . . .

iT
,

(B2)

where we have used the relation

exp

⇢
�i


Ĥ(0)(tj)�

~
2
��̂z

�
(tj+1 � tj)/~

�
=exp


�i

✓
�
~
2
��̂z

◆
(tj+1 � tj)/~

�

⇥ exp[�iĤ(0)(tj)⇥ (tj+1 � tj)/~] exp[O(tj+1 � tj)
2]

tj+1�tj!0
�������! exp


�i

✓
�
~
2
��̂z

◆
(tj+1 � tj)/~

�
exp[�iĤ(0)(tj)⇥ (tj+1 � tj)/~].

(B3)

The term M�z (t) in Eq. (B2) is the matrix expansion of operator �̂z in the basis |Ẽ(0)
N±(t)i at time t:

M�z (t)=

"
M (+,+)

�z (t) M (�,+)
�z (t)

M (+,�)
�z (t) M (�,�)

�z (t)

#
, (B4)
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where

M (±,±)
�z

(t)=

2

4
hẼ(0)

0±(t)| �̂z |Ẽ
(0)
0±(t)i hẼ(0)

1±(t)| �̂z |Ẽ
(0)
0±(t)i e+i!t . . .

hẼ(0)
0±(t)| �̂z |Ẽ

(0)
1±(t)i e�i!t

hẼ(0)
1±(t)| �̂z |Ẽ

(0)
1±(t)i . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

5 , (B5)

and

M (±,⌥)
�z

(t)=

2

4
hẼ(0)

0±(t)| �̂z |Ẽ
(0)
0⌥(t)i hẼ(0)

1±(t)| �̂z |Ẽ
(0)
0⌥(t)i e+i!t . . .

hẼ(0)
0±(t)| �̂z |Ẽ

(0)
1⌥(t)i e�i!t

hẼ(0)
1±(t)| �̂z |Ẽ

(0)
1⌥(t)i . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

5 . (B6)

On the other hand,

|'(tj+1)i=
X

N,±
CN±(tj+1)e

�iN!tj+1 |Ẽ(0)
N±(tj+1)i

=
⇥
C0+(tj+1) C1+(tj+1) . . . C0�(tj+1) C1�(tj+1) . . .

⇤

⇥

h
|Ẽ(0)

0+ (tj+1)i e�i!tj+1 |Ẽ(0)
1+ (tj+1)i . . . |Ẽ(0)

0�(tj+1)i e�i!tj+1 |Ẽ(0)
1�(tj+1)i . . .

iT
.

(B7)

Comparing Eqs. (B2, B7) and using mathematical induction, we have:

⇥
C0+(t) C1+(t) . . . C0�(t) C1�(t) . . .

⇤
=
⇥
C0+(0) C1+(0) . . . C0�(0) C1�(0) . . .

⇤
J(0, t), (B8)

where

J(0, t)= exp


�i

✓
�
1

2
�

◆
[M�z (t1)]t1

�

⇥ exp


�i

✓
�
1

2
�

◆
[M�z (t2)](t2 � t1)

�
· · ·

⇥ exp


�i

✓
�
1

2
�

◆
[M�z (t)](t� tK)

�
.

(B9)

Note that generally at di↵erent time points t and t0, M�z (t) and M�z (t
0) do not commute, making the analytical

calculation of the evolution matrix J(0, t) very complicated. But in the case when we only consider up to the
first-order e↵ect of small �, we can ignore the second order � term, which means we consider the commutation
[� ⇥ M�z (t),� ⇥ M�z (t

0)]⇠O(�2)⇠0, and therefore � ⇥ M�z (t) and � ⇥ M�z (t
0) approximately commute. This

enables us to calculate the evolution matrix J(0, t) and state |'(t)i up to the first order:

J (1)(0, t)=exp


�i

✓
�
1

2

◆Z t

0
�(t)[M�z (t)]dt

�
, (B10)

and

|'(1)(t)i=
⇥
C0+(0) C1+(0) . . . C0�(0) C1�(0) . . .

⇤
exp

⇢
�i

✓
�
1

2

◆Z t

0
�(t)[M�z (t)]dt

�

⇥

h
|Ẽ(0)

0+ (t)i e�i!t
|Ẽ(0)

1+ (t)i . . . |Ẽ(0)
0�(t)i e�i!t

|Ẽ(0)
1�(t)i . . .

iT
,

(B11)

where for generality we can consider the parameter � to be time–dependent (�=�(t)).

Appendix C: 100- and 400-photon cat states
and the speed of amplification

In this section, we show simulations of 100- and 400-
photon cat states and estimate the time required for the

protocol. Compared to the protocol of preparing a 100-
photon cat state in Ref. [21], our protocol can be much
faster, as we describe below. Note that the size of a
quantum superposition in a cat state S= |�1 � �2|2 is
determined by its square distance in phase space between
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the two coherent states in the superposition, |�1i and |�2i
[11, 21].

To prepare a 100-photon cat state, the protocol in
Ref. [21] takes time ⇡/�qs at least, where �qs is the dis-
persive interaction rate between the qubit and the oscil-
lator and �qs/2⇡=2.4 MHz in their case. In the case
of Fig. 2 in the main text, we modulate the coupling
coe�cient as g(t)=g(0) cos!t and our protocol takes
2(2⇡/!) to reach |g̃/!|=5.3 (Fig. 2), which corresponds
to a ⇠100-photon cat state as in Ref. [21], where !/2⇡
is in the order of GHz in typical circuit-QED setups [21].
Assuming a 10 GHz oscillator, our protocol can prepare
a 100-photon cat state three orders of magnitude faster
than the setup in Ref. [21].

Furthermore, in a protocol that lasts 4 oscillator peri-
ods (4(2⇡/!)), |g̃/!| becomes 10.5 (Figs. 1(c) and 1(d)),
which corresponds to a 400-photon cat state (Fig. 3).

Finally, we emphasize that the time required for our
amplification protocol can be shortened by using larger
g/! and that g/! can be easily designed larger especially
in the circuit QED systems.

Appendix D: Rephasing during amplification
(g/!=0.1: smaller coupling case)

In the case of systems with weaker coupling strength,
cat state amplification is still achievable, but the time

required is longer, and dephasing e↵ect due to � is more
apparent. One way to reduce such e↵ect is to employ
a smaller �. Another way is to partially cancel the de-
phasing e↵ect while the cat state amplification is ongoing,
which can be done by applying ⇡ pulses to the qubit.
As mentioned in the main text, cat states can be ampli-

fied by applying �z-⇡ pulses on the qubit, and dephasing
due to � can be corrected by �x-⇡ pulses. Both ampli-
fying a cat state and rephasing can be achieved by �y-⇡
pulses.
In this section, we show a simulation of rephasing

during amplification, in the case of smaller coupling
g/!=0.1, which is about an order of magnitude smaller
than the previous simulations. The �y-⇡ pulses at every
half period of the oscillator can cancel the dephasing due
to � while amplifying the cat state as shown below.
A simulation of cat state amplification using �z-⇡ (am-

plifying) and �y-⇡ (amplifying and rephasing) pulses,
which lasts for five oscillator periods, is shown in Fig. 4.
The oscillator part of the ground state (Fig. 4(a)) is close
to the vacuum state. When �z-⇡ (amplifying without
rephasing) pulses are used, the resulting state contains
a finite number of photons but does not have the form
of the desired cat state. On the other hand, when �y-⇡
(amplifying and rephasing) pulses are used, the dephas-
ing due to � is e↵ectively canceled during amplification,
and the resulting state is very close to the desired cat
state, with a fidelity of 0.999953.
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FIG. 3. (color online) Cat-state amplification and rephasing in the Wigner representation of the oscillator state projected
onto the qubit state |+ix + |�ix. The parameters are: �=0.1!; g(0)=0.833!, and the coupling coe�cient is modulated as

g(t)=g(0) cos!t. (a) The initial state, which is taken to be the ground state, reasonably resembles the cat state |� g(0)
! i+|+ g(0)

! i,
with a fidelity of 0.99986. After the initial state goes through four oscillator periods of the sinusoidally driven cat-state-
amplification process, the resulting state is shown in (b), which is the cat state |� g̃(8⇡/!)

! i+ |+ g̃(8⇡/!)
! i, with |g̃/!|=10.5 and

a fidelity of 0.988. We now let the state in (b) freely evolve for 10 oscillator periods, and the resulting state of the oscillator is

shown in (c). The fidelity between the state of (c) and the state |� g̃(8⇡/!)
! i + |+ g̃(8⇡/!)

! i is only 0.946, since the cat state is
dephased by the nonzero �. However, if we insert one �̂x-⇡ pulse in the middle of the 10 oscillator periods, the evolved state,
shown in (d), has a 0.980 fidelity with the state in (b), analogous to a Hahn spin-echo rephasing e↵ect. Zoom-in of the central
part in (a) to (d) is shown in (a’) to (d’), respectively.
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FIG. 4. (color online) Cat-state amplification and rephasing in the Wigner representation of the oscillator state projected onto
the qubit state |+ix + |�ix. The parameters are: �=0.1!; g(0)=0.1!. (a) The initial state, which is taken to be the ground

state, reasonably resembles the cat state |� g(0)
! i + |+ g(0)

! i, with a fidelity of 1.000. (b) After the initial state goes through 5
oscillator periods of cat-state-amplification process using �z-⇡ pulses at every half of the oscillator period, the resulting state of
the oscillator is shown, which is far from the cat state, due to the e↵ect of the finite �. (c) After the initial state goes through
5 oscillator periods of cat-state-amplification process using �y-⇡ pulses at every half of the oscillator period, the resulting state

of the oscillator is shown, which is the cat state, |� g̃(10⇡/!)
! i+ |+ g̃(10⇡/!)

! i, with |g̃/!|=2.1 and a fidelity of 0.999953. In (c),
by using �y-⇡ pulses instead of �z-⇡ pulses, cat state amplification and rephasing are simultaneously realized.
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