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We show that a dynamic gain-loss modulation in an optical structure can lead to a direction-
dependent parity-time (PT ) phase transition. The phase transition can be made thresholdless in
the forward direction, and yet remains with a non-zero threshold in the backward direction. As a
result, non-reciprocal directional amplification can be realized. Such a dynamic gain-loss modulation
can be directly integrated with a semiconductor laser to provide optical isolation for the laser.

I. INTRODUCTION

There have been significant recent interests in the
fundamental quantum physics related to parity-time
(PT ) symmetry, as well as in the applications of PT
symmetry in both optical and electromagnetic struc-
tures [1–12]. In particular, the connection between
PT symmetry and non-reciprocity has been extens-
ively discussed [13–21]. Optical structures exhibiting
PT symmetry are typically described by scalar, time-
independent dielectric functions. These structures can-
not exhibit any non-reciprocity in their linear optical
properties [13, 14, 22, 23]. In order to achieve non-
reciprocal response, most existing works exploit the sig-
nificant nonlinearity-enhancement provided by the PT -
phase transition [13, 15–20]. Nevertheless, it has been
shown that nonlinear non-reciprocal devices are fun-
damentally constrained by dynamic reciprocity, which
significantly limits the practical functionalities of these
devices [24].

In this paper we propose an alternative route to achieve
non-reciprocity in PT -symmetric structures. We show
that non-reciprocal directional amplification can arise
in structures under a dynamic material gain-loss mod-
ulation. In particular, the gain-loss modulation in-
duces a direction-dependent PT phase transition that is
thresholdless in the forward direction [8, 12, 25], but with
a non-zero threshold in the backward direction. Con-
sequently, non-reciprocal directional amplification and
complete optical isolation can be achieved in the linear
regime in the PT system.

Related to our work, it has been shown that the dy-
namic modulation of the real part of the dielectric con-
stant can be used to construct optical isolators and cir-
culators [26–29]. The underlying dynamics in the sys-
tems in Ref. 26–29 however is Hermitian and is qual-
itatively different from the non-Hermitian physics that
we discuss here, which arise from the modulation of
the imaginary part of the dielectric constant. Non-
reciprocal directional amplification has been theoretically
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considered in Ref. 30–35, and experimentally implemen-
ted using Josephson junctions or optomechanical interac-
tions [33, 34, 36, 37]. None of these works however made
use of PT -symmetry concepts. Our approach points
to a previously unrecognized connection between PT -
symmetry and non-reciprocal physics. From a practical
point of view, unlike all existing approach to directional
amplification, the proposed scheme here does not rely
upon the use of resonators and is inherently broad-band.
Furthermore, the gain-loss modulation is more straight-
forwardly integrable with standard semiconductor laser
structures, and can be employed to protect laser sources
from back-propagating noises.
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Figure 1. (a) Schematic of a dielectric waveguide under
gain-loss modulation. The waveguide has a width of d. Gain-
loss modulation is applied in the region indicated between the
dashed lines. (b) Band structure of the dielectric waveguide.
The red (light gray) and blue (dark gray) curves show the even
and the odd bands. The light cone is indicated by the shaded
region. Modes |1〉 and |2〉 in the forward (k > 0) propagating
direction are coupled by the gain-loss modulation. Insets: the
electric field modal profile of modes |1〉 and |2〉, respectively.
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II. THEORY

A. Dynamic material gain-loss modulation

To illustrate the basic concept, we consider the dielec-
tric waveguide structure schematically shown in Fig. 1a.
The gain and loss in the waveguide is modulated as a
function of space and time. Mathematically, we can rep-
resent the modulation in gain and loss by a time varying
conductivity as

σ̃(x, z, t) = δσ f(x) cos(qz − Ωt+ φ) (1)

Here, δσ is the modulation strength. f(x) is the modu-
lation profile in the x direction. q is the wavevector. Ω
is the modulation frequency. φ is the modulation phase.
We assume f(x) is an odd function of x. In an laser
waveguide, gain and loss modulations can be achieved
by controlling the pumping levels at different positions.

The waveguide without modulation has a photonic
band structure as shown in Fig. 1b, which has two bands
of modes that are even or odd with respect to the center
plane of the waveguide. The field profiles of these modes
are shown in the inset of Fig. 1b. Here for simplicity we
consider only transverse-electric modes, which have the
electric field perpendicular to the xz-plane. In general,
the modulation profile in Eq. 1 can couple modes from
the two bands with opposite symmetry, with their fre-
quencies separated by Ω. Considering only two modes
involved in the coupling, the electric field in the wave-

guide can be written as

E(x, z, t) = a1 |1〉+ a2 |2〉 , |1, 2〉 = E1,2(x)ei(k1,2z−ω1,2t)

(2)
where E1,2(x) is the modal profile in x, which are nor-

malized so that |a1,2|2 are the intensity of the respective
modes. k and ω are the wavevector and the frequency
of each mode. Defining ψ(z) = (a1(z), a2(z))T , the equa-
tion of motion in the modulated waveguide can be derived
using coupled mode theory [26]:

i∂zψ(z) = H(z)ψ(z),

H(z) =

(
0 −iCei∆kz−iφ

−iCe−i∆kz+iφ 0

)
(3)

where ∆k = k2 − k1 − q is the wavevector mismatch, and
C = δσ

8

∫
f(x)E1(x)E2(x)dx is the coupling strength.

B. Direction-dependent PT phase transition

Eq. 3 is in the form of a time-periodic Schrödinger
equation with z taking the role of time. The Hamiltonian
H(z) satisfies the PT symmetry defined as [38–41]

P =

(
1 0
0 −1

)
; T H(z)T −1 = H∗(−z) (4)

The definition of P stems from the fact that mode |1〉 is
even under parity operation, while mode |2〉 is odd.

As a result of the PT symmetry, the Floquet quasi-
energies of the system must be either real or complex
conjugate pairs. A proof can be found in Appendix A.
To obtain the Floquet eigenstates and the quasi-energies,
we first solve for the evolution operator U(z, 0) defined
by ψ(z) = U(z, 0)ψ(0):

U(z, 0) =

 ei∆kz/2
(

coshC ′z − i∆k/2
C′ sinhC ′z

)
−e−iφei∆kz/2 CC′ sinhC ′z

−eiφe−i∆kz/2 CC′ sinhC ′z e−i∆kz/2
(

coshC ′z + i∆k/2
C′ sinhC ′z

)  (5)

where C ′ =
√
C2 − (∆k/2)2. Then, the quasi-energy ε

of the system can be obtained by letting e−iεζψ(0) =
U(ζ, 0)ψ(0), where ζ = 2π/∆k is the period of the
Hamiltonian along z. The obtained quasi-energies are

ε± =
∆k

2
± C

√
(

∆k

2C
)2 − 1 (mod ∆k) (6)

From Eq. 6, we observe that the system has a PT
phase transition controlled by the ratio ∆k/2C as shown
in Fig. 2a. If the wavevector mismatch dominates over
the coupling strength, i.e. ∆k > 2C, the system is in
the exact PT phase. Both quasi-energies are real, and
the Floquet eigenmodes do not experience gain or loss.

On the other hand, for small wavevector mismatch, i.e.
∆k < 2C the system is in the broken phase where the
quasi-energies of the system split into complex conjugate
pairs. Thus, one of the Floquet modes will be amplified
in the system.

We now consider a gain-loss modulation that provides
a phase-matched coupling between two modes with dif-
ferent wavefectors in the forward direction as illustrated
in Fig. 1b. Such a modulation introduces a direction-
dependent PT phase transition as is shown in Fig. 2b.
In the forward direction, ∆kf = k1 − k2 − q = 0. From
Eq. 6, the quasi-energies become ε± = ±iC. Thus the
quasi-energies split into complex conjugate pairs as soon
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Figure 2. (a) Real and imaginary parts of the Floquet quasi-
energies as a function of ∆k/2C. For large phase mismatch
(∆k/2C > 1), the system is in the exact PT phase where the
quasi-energies are real. For small phase mismatch (∆k/2C <
1), the system is in the broken phase. (b) Direction-dependent
PT phase transition for the structure shown in Fig. 1. For
the backward direction, due to strong phase-mismatch, the
system is in the exact PT phase for modulation strength C ≤
∆kb/2. For forward direction where ∆k = 0, the system is in
PT broken phase for any non-zero modulation strength.

as coupling strength C increases from 0, i.e. the system
exhibits a thresholdless PT phase transition [10, 12, 25].
For the backward direction however, ∆kb 6= 0, and the
gain-loss modulation does not provide phase-matched
coupling between any pair of modes. Thus, the system
exhibits a PT phase transition with a non-zero threshold
in the backward direction.

C. Non-recirpcoal directional gain

Such a direction-dependent PT phase transition gives
rise to the effect of non-reciprocal directional amplifica-
tion in this system. To illustrate this effect, we consider
the regime where ∆kf = 0, and ∆kb � C. Under these
conditions, the evolution operator can be simplified as

Uf =

(
coshCz −e−iφ sinhCz

−eiφ sinhCz coshCz

)
, Ub =

(
1 0
0 1

)
(7)

where f, b stand for forward and backward propagations,
respectively. In the forward direction, one of the Flo-

quet eigenmode, |1〉 − eiφ |2〉, is amplified, while the
other mode, |1〉 + eiφ |2〉, is attenuated. Thus, if |1〉 is
the input to the waveguide, then the output becomes
cosh(Cz) |1〉−eiφ sinh(Cz) |2〉, providing amplification to
the input mode. In fact, input in the forward direction
with any modal profile including |1〉, |2〉 or any of their
combination except |1〉+eiφ |2〉, will be amplified. In con-
trast, the system is in the exact PT phase in the back-
ward direction. The Floquet eigenmodes are |1〉 and |2〉,
with both quasi-energies approaching 0. Thus an input
mode in the backward direction, with any modal profile,
does not experience any gain or loss.

We notice that in general the system described by Eq. 3
is non-Hermitian, and the evolution operator U is not
unitary. Thus, in general mode propagation in the sys-
tem does not preserve mode orthogonality or the total en-
ergy flux. Instead, for any ∆k, the evolution operator U
in Eq. 5 is symplectic satisfying det(U) = 1. Hence, with
any input mode profile, the intensity difference between
modes |1〉 and |2〉 is always conserved. Such a symplectic
dynamics is qualitatively different from the previously
studied unitary dynamics in systems undergoing modu-
lations in the real part of the dielectric function [26].

III. NUMERICAL DEMONSTRATION

In the following, we numerically demonstrate the non-
reciprocal effects predicted above using finite-difference
time-domain (FDTD) simulations. We assume a wave-
guide with a permittivity of ε = 12.75, and a width of
d = 1. We select two modes of the waveguide as shown
in Fig. 1b. Mode |1〉 has a frequency of ω1 = 0.165 and
a wavevector of k1 = 0.5, while mode |2〉 has ω2 = 0.213
and k2 = 0.4. The frequencies and the wavevectors are
normalized to 2πc0/d and 2π/d, respectively. All the
lengths below are normalized to d. A section of the wave-
guide with a length of l = 20 is under gain-loss modula-
tion. The modulation has a frequency Ω = 0.048 and a
wavevector q = 0.1, chosen to match the two modes in
the forward direction. The modulation strength δσ is 1.
We input a Gaussian pulse in mode |1〉 from either left
or right with a normalized peak intensity of 1 as shown
in Fig. 3a. In the forward direction, the input mode
|1〉 evolves into a linear superposition of |1〉 and |2〉, as
is shown in Fig. 3a. The intensity in both modes |1〉
and |2〉 exceed unity, indicating the presence of ampli-
fication. The intensity difference between the modes |1〉
and |2〉 remains unity, in agreement with the conservation
law derived analytically above. In the backward direc-
tion however, the input mode |1〉 passes through without
amplification or attenuation as is shown in Fig. 3b, again
in agreement with the analytical results derived above.
The numerical simulation here thus provides a validation
of the theory presented above.

In the structure shown in Fig. 3, the direction-
dependent amplification for the even mode is accompan-
ied by the generation of amplitudes in the odd mode. To
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Figure 3. (a) and (b), transmission of an input pulse in mode
|1〉 in the forward and backward direction, respectively. The
intensity spectrum of the input pulse is shown by the blue
(dark gray) curve. The output spectra are shown by the red
(light gray) curves. Electric field distribution are shown in the
insets of (a) and (b), in which the wave propagation direction
is marked by the black arrow. The gain-loss modulated region
is indicated in the red (gray) rectangle. (c) The mode-to-mode
transmission coefficient spectrum from mode |1〉 to mode |1〉
in the forward (red or light gray) and backward (blue or dark
gray) directions, respectively.

provide a single mode response with directional amplific-
ation, one can use a passive reciprocal structure to filter
out the odd mode. An example is shown in Fig. 4, where
we have used a tapered waveguide region as a modal fil-
ter [42–45] . The tapered region has the same dielectric
constant as the waveguide. It has a length of 25, and
its width linearly changes from 1 to 0.5. As is shown
in Fig. 4a, in the forward direction, an input mode |1〉
is amplified by the gain-loss modulation region. Then,
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Figure 4. A visualization of the directional gain in a wave-
guide with gain-loss modulation (marked by the red rectangle)
and a tapered region. The electric field distribution for the
forward and backward propagation waves are shown in (a)
and (b), respectively. The width of the linearly tapered re-
gion changes from 1 to 0.5. The field is only amplified in the
forward direction in (a) but not reversed in (b).

since the generated mode |2〉 is not guided in the narrower
part of the tapered region, it leaks out of the waveguide,
leaving an amplified mode |1〉 at the output on the right
side. In contrast, in the backward direction, input mode
|1〉 propagates through the tapered region and the mod-
ulated region without any amplification, as is shown in
Fig. 4b. We note such a filter scheme is based on the
modal profile rather than the frequency and hence can
preserve the broad-band nature of the device, even in
the case where the modulation frequency is small.

IV. DEVICE APPLICATION

A. Optical isolation

With directional gain available, it is straightforward to
construct non-reciprocal optical isolation. One can con-
nect the gain-loss modulation region with an lossy wave-
guide region, so that the wave has a net unit-transmission
in one direction, while it is attenuated in the other direc-
tion. Both such lossy waveguide, as well as the tapered
waveguide region as discussed above, are reciprocal ele-
ments and are standard in integrated photonic circuits.

We emphasize here that any semiconductor laser sys-
tem, by its very construction, already has the mechanism
to introduce gain-loss modulations, since the gain or loss
of the active medium depends on the applied pumping.
Thus, an isolator based on our approach can be directly
integrated into the laser structure. This could signific-
antly simplify the integration of semiconductor lasers into
integrated photonic circuits.

It is also important to note that the performance of the
scheme here, i.e. the contrast ratio of the non-reciprocal
transmission, scales with the device length. Thus, the
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strength of the optical isolation here can be arbitrarily
set according to demand, by adjusting the device length.

B. Broadband operation

The non-reciprocal directional amplification discussed
here can operate over a broad bandwidth, provided that
modes |1〉 and |2〉 are in the parallel region of the even and
odd bands in Fig. 1b. Then, if a gain-loss modulation in-
duces a phase-matched coupling between two modes with
ω1, k1 and ω2, k2, it also induces a phase-matched coup-
ling between modes ω1 + δω, k1 + δk and ω2 + δω, k2 + δk
[26]. As a demonstration, in Fig. 3c we show the the
mode-to-mode transmission spectrum for the even mode
|1〉 in both directions. In the forward direction, the trans-
mission exceeds unity in a broad frequency range of 0.06-
0.24, while in the backward direction the transmission is
nearly constant at 1. Thus, significant non-reciprocal
directional gain can occur in a broad frequency range
with its width comparable to its center frequency. As
a result, in practical device applications, the operation
bandwidth will only be limited by the gain bandwidth of
the materials. The broadband characteristics here is in
contrast with existing schemes on directional amplifica-
tions, which are all based on resonant interactions and
hence are inherently narrow-banded.

C. Realistic device design

In the above demonstration, we have assumed a mod-
ulation frequency of Ω/ω ≈ 0.3, and a modulation
strength of δσ = 1, which corresponds to a modula-
tion strength in the imaginary part of permittivity of
δεi/ε = δσ/ωε ≈ 0.1. In today’s semiconductor laser
technology, the achievable modulation frequency is a few
tenth of gigahertz [46], corresponding to a smaller mod-
ulation frequency of Ω/ω ≈ 10−4. The gain coefficient in
these lasers typically reaches well over 5× 103 cm−1 [47],
corresponding to a large gain-loss modulation strength of
δεi/ε ≥ 0.1. Thus the assumed modulation strength in
the numerical demonstration is within the current exper-
imental capabilities.

We note that in today’s semiconductor laser techno-
logy in the telecommunication wavelength range [46],
the achievable modulation frequency can reach above
50 GHz. For a laser operating at 1.55µm, if we assume
the applied gain-loss modulation is phase-matched for
the forward direction, then the wavevector mismatch in
the backward direction is ∆kb = 72 cm−1 [26]. To ensure
the backward direction is in the PT unbroken phase, i.e.
with no gain or loss, the coupling strength must satisfy
2C ≤ ∆kb. Thus the maximal allowed C is 36 cm−1. Re-
call that ±iC are the Floquet quasi-energies in the for-
ward direction, i.e. C is the gain coefficient of the modes
in the forward direction. 36 cm−1 translates into around
15 dB/mm.

The required modulation strength δσ can be calculated
using C = δσ

8

∫
f(x)E1(x)E2(x)dx, where f(x) = 1 for

0 < x ≤ d/2 and f(x) = −1 for −d/2 < x ≤ 0. E1,2(x)
are the modal profiles. The effective modulation strength
in the imaginary part of the permittivity can then be
approximated by δεi ≈ δσ/ω, where ω is the frequency
of light at 1.55µm. This gives an modulation strength of
δεi/ε ≈ 1.0×10−3. Such a modulation strength is readily
achievable with today’s semiconductor laser technology.

In a realistic semiconductor laser waveguide, changes
in the real part of the refractive index can sometimes ac-
company the gain-loss modulations. There are a number
of experimental situations where the strength of gain-loss
modulation is significantly larger than the strength of as-
sociated index modulation [48–52]. For these situations
our discussions here focusing only on the gain-loss mod-
ulation is a good approximation. In the case where both
index and gain-loss modulations exist, the non-reciprocal
gain/loss effect still persists in the system. Additional in-
formation can be found in Appendix B.

V. CONCLUSION

In summary, we have shown that dynamic gain-loss
modulations in a dielectric waveguide structure can give
rise to a direction-dependent PT phase transition that is
thresholdless in the forward direction but with a non-zero
threshold in the backward direction. As a result, non-
reciprocal directional gain and complete optical isolation
can be achieved in the linear regime. The new mech-
anism of direction-dependent PT -phase transition is a
previously unexplored connection between PT symmetry
and non-reciprocal physics. The obtained non-reciprocal
gain effect here is broad-band, and the isolator structure
is directly integrable with standard semiconductor lasers.
The peformance of such a device scales with its length,
thus can be controlled based on needs. Further explor-
ation of this connection may offer new opportunities in
studying novel non-Hermitian topological physics in dy-
namic and non-reciprocal systems [53–57].
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Appendix A: Quasi-energy of Floquet PT -symmetric
system

We assume H(x, t) is the Hamiltonian of a non-
Hermitian Floquet system satisfying H(t + τ) = H(t).
We further assume H(x, t) satisfies the following PT
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Figure 5. Comparison of purely gain-loss modulations to
both index and gain-loss modulations. The solid curves are
the transmission spectra of mode |1〉 with gain-loss modula-
tions only, while the dashed curves are that of both index and
gain-loss modulations.

symmetry

P : x̂→ −x̂, p̂→ p̂

T : x̂→ x̂, p̂→ −p̂, i→ −i, t→ −t
(A1)

Using the Floquet theorem, we write the Floquet ei-
genstate in the following form

ψ(x, t) = e−iεtφ(x, t) (A2)

where φ(x, t) = φ(x, t+ τ), ε is the Floquet quasi-energy,
and

[H(x, t)− i∂t]φ(x, t) = εφ(x, t) (A3)

Since H satisfy the PT symmetry, we have

PT [H(x, t)− i∂t] (PT )−1PT φ(x, t) = PT εφ(x, t)

which leads to

[H(x, t)− i∂t]φ∗(−x,−t) = ε∗φ∗(−x,−t) (A4)

which means ε∗ is also an Floquet quasi-energy, with the
eigenmode e−iε

∗tφ(−x,−t).

Appendix B: A system under both index and
gain-loss modulations

Here we perform a numerical simulation of the scen-
ario that both index and gain-loss modulations exist in a
waveguide. The setup is similar to that shown in Fig. 3 of
the main text, except that we now add a modulation in

the real part of the permittivity, denoted ˜ε(x, z, t), with
the same modulation strength as the imaginary part,

ε(x, z, t) = δεf(x) sin(qz − Ωt+ φ) (B1)
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Figure 6. A waveguide with a gain-loss modulated section
(red or light gray) followed by an index modulated section
(blue or dark gray). The gain-loss modulated section has a
length of 20, and the index modulated section has a length of
8. The direction of wave propagation is marked in the black
arrow.

Here, δε = 1, f(x) is the modulation profile in the x direc-
tion, q is the wavevector. Ω is the modulation frequency,
φ is the modulaiton phase. The transmission spectrum of
the structure in both directions are plotted in Fig. 5. It
is observed that, in the presence of both index and gain-
loss modulations, the system still shows a contrast in the
transmission coefficient of mode |1〉 in the forward and
backward directions. Thus the non-reciprocal gain/loss
effect still persists in this scenario.

In a waveguide where the gain-loss modulaton and the
refractive index modulation are introduced in separate
sections, the system can exhibit other interesting effects.
For example, such a system can generate a non-reciprocal
transmission in a single mode, without producing any as-
sociated secondary modes. To demonstrate this, we ap-
ply a gain-loss modulation (red or light gray) followed
by a index modulated section (blue or dark gray) in the
setup shown in Fig. 6. The modulation strengh, fre-
quency and wavevector for the gain-loss modulated sec-
tion are the same as those in Fig. 3. The index mod-
ulated section employes the same modulation frequency
and wavevector, with a modulation depth of δε = 1. In
the forward direction, the gain-loss modulation can amp-
lify an input mode |1〉, at the same time generate mode
|2〉. Then the following index modulation section can ro-
tate the photons in mode |2〉 to mode |1〉. The net effect
is an amplified mode |1〉 only. In the backward direction
however, mode |1〉 propagates through the two sections
without invoking mode |2〉 due to wavevector mismatch.
The system thus exhibit non-reciprocal amplification in
mode |1〉 only, without any other associated modes.
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