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We theoretically investigate the rigid body dynamics of an optically levitated nanodumbbell under
parametric feedback cooling and provide a simplified model for describing the motion. Differing from
previous studies, the spin of the nanoparticle about its symmetry axis is considered non-negligable.
Simulations reveal that standard parametric feedback cooling can extract energy from two of the five
rotational degrees of freedom when the nanoparticle is levitated using a linearly polarized laser beam.
The dynamics after feedback cooling are characterized by a normal mode describing precession about
the laser polarization axis together with spin about the nanoparticle’s symmetry axis. Cooling the
remaining mode requires an asymmetry in the two librational frequencies associated with motion
about the polarization axis as well as information about the two frequencies of rotation about
the polarization axis. Introducing an asymmetric potential allows full cooling of the librational
coordinates if the frequencies of both are used in the feedback modulation and is an avenue for
entering the librational quantum regime. The asymmetry in the potential needs to be large enough
for practical cooling times as the cooling rate of the system depends non-linearly on the degree of
asymmetry, a condition that is easily achieved experimentally.

PACS numbers: 42.50.Wk,62.25.Fg

I. INTRODUCTION

Optically levitated mesoscopic particles [1] are known
to be ultrasensitive detectors of force, torque, and charge
[2–5] and provide a range of possible applications such
as detection of gravitational waves, fractional charges
in bulk matter, and the Casimir torque [6–10]. One of
the next sought-after goals in levitated optomechanics
is for a nanoparticle to reach its quantum mechanical
ground state. A nanoparticle in the quantum regime
allows exploration of fundamental physics phenomena
studying the boundary between the classical and quan-
tum worlds, both mechanically and thermodynamically
[11–17]. Other micromechanical systems in optomechan-
ics such as microchip resonators offer similar applications
[18] and have been able to attain low occupation num-
bers, even below n = 1 [19, 20] due to their GHz reso-
nance frequencies and strong coupling to light. However,
these systems often require cryogenic cooling or phononic
band gaps to suppress decoherence and improve quality
factors since they are directly coupled to their environ-
ment [21]. Optically levitated nanoparticles are isolated
from rigid structures, eliminating this source of decoher-
ence, and can achieve quality factors Q > 109 [22].

Much progress has been made in cooling the transla-
tional degrees of freedom (DOF) [23–28] with a lowest
reported occupation number n = 21 [29]. Preventing
further reduction in the occupation number is the effi-
ciency with which the position can be detected [24, 25].
Shot noise on the detector from the trapping laser hin-
ders the efficiency of position detection, and therefore
decreases the effectiveness of the feedback cooling mecha-
nism. Increasing the detection efficiency of the scattered
light from the nanoparticle would allow more accurate

position detection and is necessary to reach the quantum
realm [30, 31].

An alternative path to the ground state and a tool for
torque sensing [8, 32] is accessing control over the ro-
tational DOF [32–38]. Whereas translational mode fre-
quencies are typically in the kHz range, librational mode
frequencies can be in the MHz range, possibly offering a
more accessible ground state [3]. Cooling the nanoparti-
cle through coupling of the translational and rotational
modes has been explored both theoretically and experi-
mentally [22, 38, 39]. Cooling of the librational modes
directly has also been proposed using active feedback
schemes [33]. However, these models often assume li-
bration as the sole rotational motion. Describing the
rotational dynamics in terms of libration exclusively is a
good approximation for particle shapes such as nanorods
because of the small moment of inertia about its sym-
metry axis, but this approximation will break down for
particles like dumbbells with more nearly equal moments
of inertia.

In this paper, we seek to investigate the intrinsic cou-
pling between the rotational DOF by considering the
classical rigid body dynamics of an optically levitated
nanodumbbell with and without parametric feedback
cooling. As shown below, for symmetric top-like par-
ticles, the spin of the nanoparticle about its symmetry
axis, at an angular freqency of ω3, couples the two li-
brational coordinates. This coupling results in two pre-
cessional modes amounting to a combination of libra-
tion and precession about the polarization axis. In the
small angle limit, the equations of motion are of the
same form as a charged particle in a two-dimensional har-
monic oscillator plus a magnetic field. Previous investiga-
tions have dismissed the coupling that leads to precession
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[3, 22, 32, 33, 37, 40–43], while recently, the existence
of precession motion has been observed for anisotropic
nanoparticles [44]. For symmetric top-like particles, ω3 is
a conserved quantity, a feature which has important im-
plications when considering ground state cooling of the
librational motion. Surprisngly, due to the coupling of
the librational coordinates, parametric feedback cooling
using a linearized beam is only able to cool one of the
two precessional modes. Cooling the remaining mode
requires a strong frequency difference in the librational
coordinates.

This paper is organized as follows. Section II intro-
duces the classical kinetic and potential energy associated
with rotations and provides a simplified model describing
the motions. In Sec. III the signals of two common ex-
perimental methods to measure the orientation are calcu-
lated utilizing an incident Gaussian laser beam. Section
IV investigates the effects of parametric feedback cool-
ing with linear and elliptical polarization. Simulations
of power spectral densities of the measured orientation
before and after cooling are also presented. Section V
addresses the effects of laser shot noise and gas collisions.

II. THEORETICAL MODEL

The system under consideration is a nanodumbbell
optically trapped in a laser field. The particle’s cen-
ter of mass is fixed at the origin so that only rotations
are considered. The nanodumbbell is composed of two
spheres each with mass Ms and radius R. The spheres
are aligned along the z′′′-axis and touching at the ori-
gin, where the triple prime indicates the particle frame
coordinate system (see Fig. 1). It is a symmetric top
with principal moments of inertia Ix = Iy = 14

5 MsR
2

and Iz = 4
5MsR

2. An amorphous silica nanodumbbell

with mass 2Ms = 1.029 × 10−17 kg, radius R = 85 nm,
Ix = 1.041×10−31 kg·m2, Iz = 2.974×10−32 kg·m2, index
of refraction n = 1.458, and density ρ = 2000 kg/m3 [37]
is used for the calculations. The laser beam is linearly po-
larized along the lab frame x-direction and propagating
in the z-direction with a wavelength λ = 1550 nm � R,
power 500 mW, and is focused by a NA = 0.45 objective.
Because the size of the nanoparticle is much smaller than
the wavelength of light, the nanodumbbell is treated as a

point dipole with ~Einc = E0x̂, the electric field polarizing
the dumbbell, having no spatial dependence. Through-
out this paper, the calculations are purely classical, and
in what follows, exclude heating from gas collisions and
photon scattering. Discussions of the effects due to heat-
ing and other noise may be found in Secs. IV and V.

The rotational dynamics are governed by the classi-
cal equations of motion described by the Euler angles
(α, β, γ) [45, 46] in the z-y′-z′′ convention. To transform
from the lab (x, y, z) frame to the particle (x′′′, y′′′, z′′′)
body frame three rotation transformations are made.
First, a rotation about the lab frame z-axis through
an angle α is performed, (x, y, z) → (x′, y,′ z′ = z).

FIG. 1. (a) A nanodumbbell with center of mass confined to
the origin is allowed to rotate. The particle has the lowest
energy when its long axis (z′′′-axis) aligns with the laser’s
electric field polarized in the lab frame x-direction. (b) The
definition of the Euler angles α, β, γ shown in the z-y′-z′′

convention. For small angle rotations, the coordinate α =
0 + ξ describes rotations near the lab frame x-axis in the x-y
plane and β = π/2− η describes rotations near the lab frame
x-axis in the x-z plane. The coordinate γ describes rotations
about the z′′ = z′′′ axis with γ(t) ≈ ω3t. For visual clarity,
the x′′, y′′, x′′′, y′′′ axes have been omitted from the figure.

Then, a rotation about the y′-axis is made through an
angle β, (x′, y′, z′) → (x′′, y′′ = y′, z′′). Finally, a ro-
tation about the z′′-axis is made through an angle γ,
(x′′, y′′, z′′) → (x′′′, y′′′, z′′′ = z′′). See Appendix A for
further details of the convention used in this paper.

The kinetic and potential energy are

K =
1

2
Ix(ω2

1 + ω2
2) +

1

2
Izω

2
3 , (1)

U = −1

4
~p · ~Einc

= −1

4
(αz − αx)E2

0 cos2(α) sin2(β),

(2)

where

~p =
↔

R
†↔
α0

↔

R~Einc

= E0

 (αz − αx) cos2(α) sin2(β)
(αz − αx) sin2(β) cos(α) sin(α)
(αz − αx) cos(β) sin(β) cos(α)


≡< px, py, pz >,

(3)

is the nanodumbbell polarization vector in the lab frame

and
↔

R is the rotation matrix. The αj (j = x, y, z) [47, 48]
are the polarizabilities for an ellipse in the particle frame
(αx = αy) and are not to be confused with the coordinate
α. Constant terms in Eqs. (2) and (3) have been omitted
as they do not affect the particle’s rotational dynamics.
The ωi (i = 1, 2, 3) and the full equations of motion may
be found in Appendix A. It should be noted that as a
consequence of the nanodumbbell’s symmetry, the angu-
lar momentum about the nanoparticle’s symmetry axis,
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Izω3, is a constant of the motion. In this configuration,
each Euler angle has an intuitive definition for small am-
plitude oscillations; α defines libration in the x-y plane,
β defines libration in the x-z plane, and γ corresponds to
angles of rotation about the z′′′-axis.

The attractive potential, Eq. (2), causes the particle to
oscillate about the polarization axis in two joint motions
(see Fig. 2(a)). The two motions are most easily seen
under a small angle approximation. It is energetically
favorable for the particle’s long axis (z′′′-axis) to align
with the electric field and is therefore localized near the
lab frame x-axis. This corresponds to α nearing towards
zero or π, and β near π/2. Allowing the two coordinates
to make small oscillations about the x-axis, α → 0 + ξ ,
β → π

2 − η, with ξ, η small, the equations of motion to
first order become

ξ̈ =
[
− ω2

2
sin(2ξ)− ωcη̇ sec(η) + 2η̇ξ̇ tan(η)

]
≈ −ω2ξ − ωcη̇,

(4)

η̈ = cos(η)
[
− ω2 sin(η) cos2(ξ) + ωcξ̇ − ξ̇2 sin(η)

]
≈ −ω2η + ωcξ̇,

(5)

where ω2 = 1
2 (αz − αx)E2

0/Ix and ωc = (Iz/Ix)ω3. The
first term on the right hand side of Eqs. (4) and (5)
amounts to libration about the polarization axis due to
the trapping potential which has been seen before in
[33, 40]. The second term containing ωc couples the four
DOF and is responsible for precession about the x-axis.
The precession is a consequence of the non-zero angular
momentum about the symmetry axis, Izω3. Precession
has recently been seen for anisotropic particles in an ellip-
tically polarized beam [44], but with α precessing around
the lab frame z-axis with β roughly fixed. As in the case
for thin nanorods, the motion reduces to pure libration
in the limit Iz → 0. The equation of motion for γ is not
directly affected by the potential and largely evolves with
time as γ(t) ≈ ω3t in the small angle approximation (see
Appendix A Eq. (A12)).

The transformation of the z′′′-axis into the lab frame,

r̂z′′′ =
↔

R
†
ẑ′′′, determines the location of the tip in the

(x, y, z) coordinate system,

r̂z′′′ =

sin(β) cos(α)
sin(β) sin(α)

cos(β)

 ≈
1
ξ
η

 , (6)

where in the last step the small angle approximation was
made. It is seen that ξ and η play the role of the y
and z coordinates defining the location of the tip. By
introducing a vector that specifies the projection of the
z′′′-axis on the y-z plane, ~ρz′′′ =< 0, ξ, η >, it is possible
to combine Eqs. (4), (5),

~̈ρz′′′ = −ω2~ρz′′′ − ~̇ρz′′′ × ~ωc, (7)

where ~ωc = ωcx̂ = (Iz/Ix)ω3x̂. The last term in Eq.
(7) has the familiar form of the force on a charged par-
ticle in a magnetic field. The two joint motions now

become clear as a combination of harmonic oscillations
in a static pseudo-magnetic field. Thus, as long as ωc
is non-zero, the full dynamics of the nanoparticle must
be described as a combination of libration and preces-
sion, as opposed to just libration. For a nanodumbbell
at room temperature, T = 300 K, the average value of
ωc ∼

√
kBTIz/Ix ∼ 10 kHz, where kB is the Boltzmann

constant. While ω ∼ 100 kHz − 1 MHz � ωc, the cou-
pling that results due to the ∼10 kHz frequency is a re-
solvable feature in the power spectral density and is a
non-negligible effect when considering parametric feed-
back cooling, as will be discussed in Sec. IV.

The librational frequency ω scales with the radius as
ω2 ∼ 1/R2 suggesting that a particle of smaller size is
beneficial for ground state cooling. However, the polariz-
ability and moment of inertia scale as αj ∼ R3, Ij ∼ R5

implying that the particle will be less confined and more
unstable in the optical trap as the size decreases. In ef-
fect, a smaller radius will be more likely to escape the
trap and will produce a broader power spectral density.
Further, ωc ∼ 1/R5/2 showing that as the size of the
particle decreases the precessional phenomenon is more
pronounced.

Equations (4) and (5) admit two normal modes,

ξ(t) = A+ cos(ω+t+ δ+) +A− cos(ω−t+ δ−), (8)

η(t) = A+ sin(ω+t+ δ+)−A− sin(ω−t+ δ−), (9)

with ω± = 1
2 (Ω± ωc), Ω =

√
4ω2 + ω2

c , and the A±, δ±
determined by initial conditions. Each mode circles the
polarization axis at a particular frequency with the (+)
mode advancing clockwise and the (−) mode counter-
clockwise. The superposition of the two modes results in
the libration and precession mentioned above. Thus, as
will be discussed in Sec. IV C, the power spectral density
of ξ or η should exhibit two peaks at ω±.

Since the coordinates α and β completely describe the
location of the nanodumbbell’s tip projected on the lab
frame axes, it is possible to track the rotational evolu-
tion about the polarization axis while simulating the full
equations of motion. Figure 2(a) plots the z′′′-axis pro-
jection on the lab frame z-y plane (i.e. Z/2R = cos(β),
Y/2R = sin(β) sin(α) is plotted versus time. Note that
in the small angle limit Z/2R ≈ η, Y/2R ≈ ξ). The
particle’s tip undergoes fast oscillations enveloped in a
slower precession motion about the x-axis, qualitatively
consistent with the dynamics seen in the small angle ap-
proximation.
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FIG. 2. Trajectory of the nanoparticle’s z′′′-axis, projected on
the lab frame y-z plane found by simulating the full equations
of motion and using linear polarization. Here, Z/2R = cos(β),
Y/2R = sin(β) sin(α) define the location of the z′′′-axis; in the
small angle limit Z/2R ≈ η, Y/2R ≈ ξ. (a) The particle’s long
axis moves in two joint motions, one describing libration and
the other describing precession about the polarization axis.
(b) Final trajectory of the long axis after parametric feedback
cooling. The motion has reduced to pure precession.

III. MEASURING THE ORIENTATION

It is possible to determine the orientation of the
nanoparticle with respect to α and β through different
types of measurements. A common method of measuring
α libration [35–38] is to first send the forward scattered
light from the nanoparticle and the laser beam through
a 45◦ polarized beamsplitter (PBS). The light exits the
PBS in two different directions with orthogonal polariza-
tions. A measurement is obtained by reading the signal
of each polarization state on a photodetector and tak-
ing the difference between the two signals. To determine
what is measured in this procedure, consider a Gaussian
laser beam incident on the dumbbell,

~Einc = E0
ω0

ω(z)
e
−ρ2

ω2(z) ei(kz+
kρ2

2R(z)
−ψ(z))x̂. (10)

The Gaussian beam is defined with ω0 the beam waist,
ω(z) = ω0

√
1 + (z/zR)2 with zR = πω2

0/λ the Rayleigh
range, ρ2 = x2+y2, k = 2π/λ, R(z) = z[1+(zR/z)

2], and
ψ(z) = arctan(z/zR). The scattered light is determined
by the electric and magnetic fields for a dipole in the far
field [49]

~H =
ck2

4π
(r̂ × ~p)e

ikr

r
, (11)

~E = Z0
~H × r̂, (12)

where ~r is in the direction of observation, c the speed of
light, and Z0 the impedance of free space. After exiting
a collimating lens [50], the light is split by a 45◦ PBS.
The transverse components of the electric field exiting

the PBS are

~E+(x, y) =
1√
2

(
Ex(x, y) + Ey(x, y)

)
ê+, (13)

~E−(x, y) =
1√
2

(
Ey(x, y)− Ex(x, y)

)
ê−, (14)

where Ex,y are the x and y components of the total elec-
tric field following the collimating lens and ê± designate
the two split polarization states after the PBS. The mag-
netic field undergoes a similar transformation. A mea-
surement is performed by taking the difference between
the two signals measured at their respective detectors

P45◦ =

∫ ∞
−∞

∫ ∞
−∞

(
~S+ · ẑ − ~S− · ẑ

)
dydx, (15)

where ~S± = 1
2Re[

~E± × ~H∗±] is the Poynting vector. Per-
forming the integration gives a homodyne term that is
proportional to the y-component of the polarizability
from Eq. (3)

P45◦ ∝ py ∝ sin2(β) cos(α) sin(α). (16)

Considering that α→ 0 + ξ and β → π
2 − η,

py ∝ cos2(η) cos(ξ) sin(ξ) ≈ ξ, (17)

which is the angle describing the extent to which the
nanoparticle’s long axis has deviated from the polariza-
tion axis in the x-y plane. Following the same procedure
above, after the collimating lens a split detection mea-
surement is performed (which is often used to track the
transverse translational motion [23–28]) and the homo-
dyne term is examined

Px =

∫ ∞
0

∫ ∞
−∞

(
~S · ẑ

)
dydx−

∫ 0

−∞

∫ ∞
−∞

(
~S · ẑ

)
dydx

∝ pz ∝ cos(β) sin(β) cos(α) ≈ η,
(18)

which is the angle describing the extent to which the
nanoparticle’s long axis has deviated from the polariza-
tion axis in the x-z plane. Thus, both angles that will
be required for parametric feedback cooling in the next
section can be detected. Note that it is not possible to
measure γ directly using these methods since it is not
contained within the polarization vector in Eq. (3).

Whereas the detection of translational motion relies
on the π/2 Gouy phase shift from ψ(z) in Eq. (10) [51],
for a nanoparticle centered at the origin, the Gouy phase
shift hinders detection of rotational motion. The homo-
dyne terms in the Poynting vector evaluated far from
the nanoparticle are left purely imaginary and require
the imaginary part of the polarizability for orientational
detection. The imaginary part of the polarizability is
usually smaller than the real part [48, 52] for the types
of particles used in levitated optomechanics and is two
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orders of magnitude smaller for a R = 85 nm amorphous
silica dumbbell in a λ = 1550 nm laser field.

However, the signal may become real, and therefore
larger in magnitude, if the particle is not centered at the
origin, but pushed away from the focus by the laser beam
in the axial direction. In Appendix B the size of the dis-
placement in the z-direction is estimated by considering
the radiation pressure on a nanodumbbell in the point
dipole limit. Relative to the Rayleigh range, zR, the dis-
placement zd is

zd
zR

=
(32α

3

)(πR
λ

)3( 1

NA

)2

, (19)

where α is a unitless parameter defined in the polarizabil-
ity as α0 = 4πε0R

3α. For α = 0.59, λ = 1550 nm, NA =
0.45, R = 85 nm, zd/zR ∼ 0.14. This ratio becomes im-
portant for measurements as eizd/zR ∼ (1 + izd/zR) is
a prefactor in the polarizability matrix when considering
ψ(z) in Eq. (10), effectively reducing the measured signal
by this ratio.

IV. PARAMETRIC FEEDBACK COOLING

Parametric feedback cooling utilizes a laser beam
to trap a particle and cool its motion simultaneously
through modulation of the laser power at twice the par-
ticle’s oscillation frequency [24]. To obtain a signal at
twice the oscillation frequency, the coordinate to be
cooled is multiplied by its time derivative qq̇, for an ar-
bitrary coordinate q.

The analyses here assume perfect and instantaneous
measurements of qq̇, which cannot be achieved in prac-
tice. Shot noise heating due to photon scattering and
the effects of gas collisions are also not included to sim-
plify the analysis. While the heating mechanisms do de-
termine the lowest energy attainable for a fixed cooling
power, the dynamical effects of gas collisions do not be-
come important for pressures ∼ 10−3 Torr or lower and
photon shot noise does not become important until the
heating rate is near the cooling rate. See Sec. V for fur-
ther discussion of these effects and the inclusion of noise.
The results that follow thus provide a fundamental limit
to cooling, irrespective of the limitations set by quantum
mechanics or practical experimental parameters such as
orientation detection efficiency.

It is also worth mentioning that since the equations
of motion for γ are unaffected by the trapping potential,
with the dynamics determined largely by the conserved
ω3, parametric feedback cooling only directly affects the
α, α̇ and β, β̇ DOF. For this reason, the focus will be
on the motions associated with α and β (ξ and η), as it
is not possible to cool the nanoparticle’s spin about its
symmetry axis using parametric feedback cooling.

A. Linear Polarization

The equations of motion for the dumbbell in the small
angle approximation from Sec. II. Eqs. (4) (5) under
feedback cooling become

ξ̈ = −ω2(1 + χR2qq̇)ξ − ωcη̇, (20)

η̈ = −ω2(1 + χR2qq̇)η + ωcξ̇, (21)

where χ is the cooling strength that sets the amplitude
of the power modulation. Choosing to measure and feed-
back qq̇ = ξξ̇ into Eqs. (20), (21), the average cooling
power is calculated as

< P >ξξ̇ =<
dE

dt
>

=
(Ix

2

)
<

d

dt

[
ξ̇2 + η̇2 + ω2

(
ξ2 + η2

)]
>

= −Ixω2χR2 < ξξ̇
(
ηη̇ + ξξ̇

)
> .

(22)

Inserting Eqs. (8) and (9) into Eq. (22) gives the cool-
ing rate in terms of the normal mode amplitudes A±.
Performing the derivatives in Eq. (22) with the A± slow
compared to ω± and averaging the sinusoidal factors over
one cycle gives

< P >ξξ̇= −
1

4
Ixω

2χR2Ω2
[
A+(t)A−(t)

]2
, (23)

which implies that cooling is effective until one mode is
removed from the motion. As t → ∞ the particle will
fully precess about the polarization axis with no libration
(see Fig. 2(b)). The result of a single mode remaining
is a plateau in the energy over time as shown in Fig.
3(a). Choosing to measure and feedback the frequency
ηη̇ produces the same result while the addition of the
two, qq̇ = ηη̇ + ξξ̇, delivers the same effect at twice the
rate since η and ξ oscillate at the same frequency.

Using the conserved quantity

d

dt

[
ξη̇ − ηξ̇ − ωc

2
(ξ2 + η2)

]
= 0, (24)

together with Eqs. (8) and (9) gives the exact expression
d
dt

(
A2
−(t) − A2

+(t)
)

= 0. This condition shows that as

one mode is cooled completely, the second mode ceases
to be time dependent, facilitating the notion that there is
a limit to how much energy is removed from the motion.

To investigate the extent of possible cooling, a nan-
odumbbell is initially prepared with a thermal distribu-
tion at T = 300 K and several thousand cooling runs
are simulated using the full equations of motion. The
simulations are run using a fourth order Runge-Kutta
adaptive step algorithm [53] with random initial condi-
tions conforming to a Boltzmann distribution. The initial
frequencies of rotation are found by

ωi =

√
kBT

Ij
dW, (25)
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FIG. 3. (a) Energy of the four degrees of freedom versus time under parametric feedback cooling during a single trajectory.
The energy plateaus to a non-zero value as the nanoparticle circles the polarization axis. (b) Distribution of initial energies
used before parametric feedback cooling. The distribution follows the blue line, a Maxwell-Boltzmann distribution with four
degrees of freedom at a temperature of 300 K. (c) Distribution of energies following parametric feedback cooling with linear
polarization. The distribution has a mean of 312 K and is similar to the blue line, a Maxwell-Boltzmann distribution with two
degrees of freedom at a temperature of 300 K. The final energies are taken as the last data point in runs similar to that of
(a). (d) Final energy distribution of the nanoparticle following feedback cooling with elliptical polarization for θ = 4π

32
. Each

distribution in this figure is composed of 12,000 runs implemented with a cooling strength χ = 107 s/m2.

with (i, j) = ((1, x), (2, y), (3, z)) and dW a guassian ran-
dom number with zero mean and unit variance. The
initial coordinate values α, β are established through re-
jection sampling of the potential,

P(α, β) = e−
(
U(α,β)−U(0,π2 )

)
/kBT , (26)

and γ is initialized as a uniformly distributed random
number between 0 and 2π.

Figure 3(b)(c) shows the energy distributions before
and after cooling for a cooling strength χ = 107 s/m2

and feedback frequency pyṗy (see Eqs. (3), (16), and
(17)). In the figure, D(ε) is the probability energy
density with

∫∞
0
D(ε)dε = 1. As cooling extracts en-

ergy from the α, α̇ and β, β̇ DOF exclusively, in Fig.
3 the shifted energy ε = E − 1

2Izω
2
3 is used where

E = K + U(α, β) − U(0, π/2) is the total energy ad-
justed so that 0 K is the minimum energy. The blue
lines in Fig. 3(b)(c) are plots of the Maxwell-Boltzmann
distribution function Aεn exp(−ε/300) for four (n = 1)
and two (n = 0) DOF, respectively. As expected, the
initial energies follow a Maxwell-Boltzmann distribution
with an average energy 602 K ∼ 4

2T corresponding to
four quadratic DOF. In the final energy distribution, it is
seen that effectively two DOF have been removed due to
cooling; the final energy distribution has a mean energy
of 312 K ∼ 2

2T , corresponding to two uncooled quadratic
DOF. The two DOF remaining is consistent with the
nanoparticle’s long axis circulating around the polariza-
tion axis at a fixed non-zero angle, qualitatively seen in
both the small angle approximation and the full simula-
tion. The result that parametric feedback cooling is un-
able to cool the nanoparticle’s motion completely even
if both coordinate frequencies are known is one of the
important results of this paper. It is clear that cooling
into the quantum regime is not possible utilizing a per-
fectly linearized beam and standard parametric feedback
cooling, even if both angular DOF can be detected.

B. Elliptical Polarization

The issue with the previous section’s strategy for cool-
ing is the coupling between η and ξ due to the spin about
the symmetry axis and their similar frequencies of rota-
tion about the polarization axis. To cool further requires
breaking the symmetry between the two DOF responsible
for the precession motion. In this section this symmetry
is broken by introducing a potential that produces dif-
ferent librational frequencies for the two coordinates η
and ξ. This can be acheived through elliptical polariza-
tion, using two perpendicular laser beams incident on the
nanoparticle, or general asymmetries found in a focused
laser beam’s gradient [50]. Here, elliptical polarization is

used with ~Einc = E0 < cos θ, i sin θ, 0 >. This alters Eqs.
(4) and (5)

ξ̈ = −ω2
ξξ − ωcη̇, (27)

η̈ = −ω2
ηη + ωcξ̇, (28)

where ω2
ξ = ω2

(
cos2 θ − sin2 θ

)
, ω2

η = ω2 cos2 θ. The
normal modes and further details of this system are de-
scribed in Appendix C. Feedback cooling using either
qq̇ = ξξ̇ or qq̇ = ηη̇ gives the following average cooling
rates

< P >ξξ̇=[
A+(t)

]4
y1 −

[
A−(t)

]4
y2 −

[
A+(t)A−(t)

]2
y3,

(29)

< P >ηη̇=

−
[
A+(t)

]4
z1 +

[
A−(t)

]4
z2 −

[
A+(t)A−(t)

]2
z3,

(30)

where the yi, zi (i = 1, 2, 3) are positive and constant
for a fixed electric field strength (see Appendix C) and
reduce to Eq. (23) for θ = 0. Equations (29), (30) show
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a combination of heating and cooling with each choice of
feedback frequency having preference of cooling a partic-
ular mode. In this arrangement one mode is cooled while
the other heats, ultimately leading to heating. Simula-
tions of energy versus time while feeding back the fre-
quency ηη̇ or ξξ̇ show the energy increasing indefinitely,
sometimes following an initial period of cooling depend-
ing on the initial conditions.

However, feeding back both coordinate’s frequencies in
the form qq̇ = ηη̇+ ξξ̇ will lead to cooling of both modes.
The cooling rate < P >ξξ̇+ηη̇=< P >ξξ̇ + < P >ηη̇ is

negative for all ωη > ωξ > ωc (see AppendixC) which
are the conditions considered in this paper. Figure 3(d)
shows the final energy distribution with this choice of
feedback for a fixed cooling strength χ = 107 s/m2 and
θ = 4π

32 . The particle’s accessible DOF have been cooled
significantly compared to the case for linear polarization.

FIG. 4. Plots showing the dependence of the cooling strength,
χ, in (a) and the frequency separation of ωη and ωξ in (b) on
the cooling rate, < P >ξξ̇+ηη̇. (a) Intermittently increasing
the cooling strength χ during a single cooling process for a
fixed electric field strength (θ = 4π

32
). Each dip corresponds

to an abrupt increase in the value of χ. At t = 0, the cooling
process starts with χ = 107 s/m2. Beginning with t = 3
ms, χ is increased every 1 ms by a factor of ten, ending with
1012 s/m2. (b) Average energy after feedback cooling versus θ
showing the dependence of the frequency separation between
ωη and ωξ on the cooling rate < P >ξξ̇+ηη̇. The points are
averages of 1000 calculated energies following feedback cooling
for a fixed simulation time of 80 ms and cooling strength
χ = 107 s/m2.

Figure 3(d) shows the final energies plateauing near 5
K. This is a consequence of the simulation time used of 80
ms and not a limit to further cooling. The limit is set only
by the accuracy of the simulations. What delays further
energy reduction are the decreasing values of the A±(t)
in the cooling rate < P >ξξ̇+ηη̇. To circumvent this delay
one may intermittently increase the cooling strength χ to
achieve more rapid cooling as shown in Fig. 4(a). As an
example, for the nanoparticle considered in this paper, an
occupation number n = 1 corresponds to a temperature
on the order of T = h̄ω/kB = 16.7 µK for ω = 2.19
MHz. Setting the simulation accuracy to ∼ 10−10 K, the
particle is able to reach a temperature of ∼ 10−9 K by
employing the same method as that in Fig. 4(a). These
classical calculations thus show that parametric feedback
cooling is a suitable method for approaching the quantum

regime. The dynamics and fundamental limits at lower
temperatures will require a full quantum analysis and will
be addressed in a future report.

Also affecting the cooling rate is the frequency separa-
tion between ωξ and ωη. A slight difference in frequency
will allow cooling, but the rate is much larger when the
frequency difference is larger. In Fig. 4(b) the final av-
erage energy of 1000 randomly initialized cooling runs,
< ε >, is plotted versus θ with each run having a fixed
simulation time of 80 ms. For θ ≈ 0 (ωη ≈ ωξ) the aver-
age final energy is ∼ 300 K, similar to the final tempera-
ture when feedback cooling using linear polarization. As
θ increases (ωη > ωξ), the cooling proceeds more quickly,
as evidenced by the average final energy decreasing. The
rate plateaus near θ = 4π

32 where the competing heating
terms in Eqs. (29) and (30) become negligible.

C. Experimental Signatures

FIG. 5. Power spectral densities of a py measurement before
and after feedback cooling for (a) linear polarization and (b)
elliptical polarization. Feedback cooling using linear polar-
ization eliminates one peak, shifting the remaining peak to a
normal mode frequency and reducing the motion to pure pre-
cession. Feedback cooling under elliptical polarization reduces
both peaks in magnitude, and shifts them toward the normal
mode frequencies found in the small angle approximation.

What is actually measured in the laboratory is the
power spectral density (PSD) of the signal. Figure
5(a)(b) shows the PSD of a py measurement before and
after cooling the particle using linear and elliptical po-
larization. Before cooling, two peaks are seen identifying
the existence of two rotational motions at different fre-
quencies; the libration and precession motions discussed
in Sec. II. As the particle is cooled using linear polariza-
tion, both peaks converge to a normal mode frequency
ω± with the larger peak reducing to a non-zero value
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and the smaller peak decreasing to zero. Introducing el-
liptical polarization allows both modes to be cooled fully.
In this case, the two initial peaks each converge to a nor-
mal mode frequency with the magnitudes of both peaks
decreasing to zero.

V. DISCUSSION OF HEATING AND NOISE

The above analysis has shown that it is theoretically
possible to cool the librational motion through paramet-
ric feedback cooling within a classical approximation that
does not include sources of noise or heating. However,
real experiments will encounter unavoidable shot noise,
gas collisions, measurement uncertainty, and quantum
limits.

The effects of a non-zero measurement uncertainty has
been addressed in [33] showing that inefficient feedback
sets a lower bound on the occupation number after cool-
ing for a fixed cooling power. This noise source becomes
important for a nanoparticle in a low occupation state
n ∼ 50 (T ∼ 1 mK). The spin about the symmetry axis
of a nanodumbbell limits the energy of the particle’s ac-
cessible DOF in the 1-100 K range after parametric feed-
back cooling with linear polarization (Fig. 3(c)), leaving
imperfect feedback to be a negligable effect. For elliptical
polarization, librational cooling is expected to be affected
similarly to that found in [33] with a lower bound on the
occupation number. A full quantum treatment, to be
performed in the future, will test this hypothesis.

One may think it possible that gas collisions could
induce an asymmetry between the librational coordi-
nates which would allow further cooling. To test this
hypothesis the effects of shot noise and gas collisions
in our simulations were included for linearly polarized
light. Laser shot noise was included using the methods of
[33]. Gas collisions were considered as the Langevin type,

π̇i = −Γiπi + ζ(t), with πi = (α̇, β̇, γ̇), Γi = τi/IiΩi the
damping rate (Γα = Γβ) [37], and ζ(t) stochastic noise.
Simulations were performed for three different pressures
P =760, 10−3, and 10−7 Torr.

For P =760 Torr, the nanoparticle is unable to
be cooled. The final energies conform to a Maxwell-
Boltzmann distribution as it thermalizes with the sur-
rounding gas at 300 K. Here, increasing the cooling
strength χ, with hope to overcome energy exchange with
the gas, heats the particle as its motion is more Brownian
than periodic.

For P = 10−3, and 10−7 Torr, the main results of
Secs. II and IV A hold, with final energy distributions
and PSD’s similar to that of Fig. 3(c) and Fig. 5(a),
respectively. The simulations reveal that gas collisions
and photon scattering do not change the general conclu-
sions of this paper in the classical limit. The effects of
laser shot noise and gas collisions while cooling using el-
liptically polarized light are expected to limit the lowest
occupation number attainable for a fixed cooling rate and
will be studied in a future report.

VI. CONCLUSION

We have theoretically studied the rotational dynamics
of an optically trapped nanodumbell with and without
parametric feedback cooling. A relatively simple model
describing the motions in a small angle approximation
has also been provided. The nanoparticle oscillates about
the polarization axis as a superposition of two modes re-
sulting in a combination of libration and precession mo-
tions. The librational motion is due to the laser field’s
potential while precession arises from the non-zero spin
of the nanoparticle about its symmetry axis. The equa-
tions of motion describing the location of the tip of the
nanoparticle in the small angle approximation are seen to
have the same form as a charged particle in a harmonic
oscillator potential and a static magnetic field.

The effect of parametric feedback cooling using a lin-
early polarized beam is to remove one of the two modes,
resulting in pure precession. In this geometry, it is not
possible to extract energy from more than two degrees of
freedom and not possible to cool to the quantum regime
even when information about both librational modes is
available. Evidence of these dynamics may be found in
the power spectral density with two peaks converging
toward normal mode frequencies during the cooling pro-
cess, with the smaller of the two peaks’ magnitude re-
ducing to zero.

Using a potential energy that sets different frequen-
cies of libration allows cooling to much lower energies
when information about both librational modes are avail-
able, theoretically approaching the quantum regime in
this classical analysis. The setup for cooling may be
acheived experimentally by using elliptical polarization
or using two perpendicular laser beams incident on the
nanoparticle and feeding back both coordinate frequen-
cies. If a single librational coordinate frequency is used in
the feedback, the particle will ultimately heat. The rate
of cooling is largely determined by the cooling strength
and the separation between the two librational frequen-
cies. In this case, the power spectral density will show
two peaks converging toward the two normal mode fre-
quencies with both magnitudes decreasing to zero over
time.

After submission of this manuscript, Ref. [54] was pub-
lished proposing a method for cooling the librational mo-
tion of an ellipsoidal nanodiamond utilizing the intrinsic
magnetic dipole moment of the NV center. This method
is only useful for nanodiamonds, but may have potential
to cool into the quantum regime. However, Ref. [54]
did not include the rotation about the symmetry axis.
Therefore, it is difficult to ascertain whether the symme-
try discussed in Sec. IV would be relevant. In particular,
it is uncertain whether this method would allow cooling
of the rotation about the symmetry axis and/or cooling
of more than one librational mode.
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Appendix A: Convention and Dynamics

The Euler angles in the z-y′-z′′ convention have been
used, which, for the sake of clarity, gives the rotation

matrix
↔

R as

↔

R =
↔

Rz′′
↔

Ry′
↔

Rz, (A1)

and

↔

Rz =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (A2)

↔

Ry′ =

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 , (A3)

↔

Rz′′ =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 . (A4)

The full equations of motion for α, β, γ are found through
the Lagrangian with kinetic and potential energies

K =
1

2
Ix(ω2

1 + ω2
2) +

1

2
Izω

2
3 , (A5)

U = −1

4
~p · ~Einc, (A6)

where ~p =
↔

R
†↔
α0

↔

R~Einc is the polarization vector,
↔
α0 is

the diagonal polarizability matrix, and the body frame
angular velocities are given by

ω1 = β̇ sin(γ)− α̇ sin(β) cos(γ), (A7)

ω2 = β̇ cos(γ) + α̇ sin(β) sin(γ), (A8)

ω3 = α̇ cos(β) + γ̇ = const. (A9)

Due to the particle symmetry, ω3 is a constant of the
motion. The equations of motion for the three angles are

α̈ = −2α̇β̇ cot(β) + β̇ csc(β)
Iz
Ix
ω3 −

1

Ix sin2(β)

(∂U
∂α

)
,

(A10)

β̈ = sin(β)

(
α̇2 cos(β)− α̇ Iz

Ix
ω3

)
− 1

Ix

(∂U
∂β

)
, (A11)

γ̇ = ω3 − α̇ cos(β). (A12)

To evaluate Eq. (A6), we consider the nanodumbbell
in the dipole limit λ >> R with the center of mass
fixed at the origin so that the electric field has no spa-

tial dependence. For elliptical polarization, ~Einc = E0 <
cos θ, i sin θ, 0 >, the potential is

U = −E
2
0

4

[
αx +

(
αz − αx

)
sin2 β

×
(

cos2 θ cos2 α+ sin2 θ sin2 α
)]
,

(A13)

and the potential for linear polarization is U(θ = 0). The
analysis in the main paper excludes the constant term in
the potential energy, as it does not affect the librational
and rotational dynamics.

Appendix B: Axial Displacement in the Laser Field

To determine the approximate size of translational dis-
placement in the axial direction, consider a laser with in-

tensity I0, power P0, and wavevector ~k = 2π
λ ẑ incident on

a dumbbell of radius R and polarizability α0 = 4πε0R
3α

with ε0 the permittivity of free space. The average force
on the nanoparticle due to momentum transfer from the
beam in the axial direction is

Fz =
(I0λ
hc

)∫
Ω

dσ

dΩ

(
∆~p · ẑ

)
dΩ (B1)

=
(4

3

)(P0NA2

c

)(2πR

λ

)6

α2, (B2)

where h is Planck’s constant, c is the speed of light,

∆~p = h
λ

[(
1−cos(θ)

)
ẑ+sin(θ)ρ̂

]
is the momentum trans-

fer function with θ the angle with respect to the z-axis,
and dσ

dΩ = k4R6α2
(
1− cos2(θ) sin2(φ)

)
is the differential

scattering cross section for a particle in the point dipole
limit. The size of the displacement zd is estimated by
looking at the equations of motion to first order with the
nanoparticle in its equilibrium position

mz̈ = 0 = −mω2
zzd + Fz, (B3)

where mω2
z =

(
2α0(NA)6π3/(cε0λ

4)
)
P0 [24]. Solving for

zd in Eq. (B3) recovers the expression found in Eq. (19),

zd
zR

=
(32α

3

)(πR
λ

)3( 1

NA

)2

. (B4)

Appendix C: Parametric Feedback Cooling Under
Elliptical Polarization

The normal modes of Eqs. (27) (28) are

ξ(t) = A+ cos(ω+t+ δ+) +A− cos(ω−t+ δ−), (C1)

η(t) = A+κ2 sin(ω+t+ δ+)−A−κ1 sin(ω−t+ δ−),
(C2)
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with ω± = 1√
2

(
ω2
ξ + ω2

η + ω2
c ± Q

) 1
2

,

Q =

√
4ω2

ηω
2
c +

(
ω2
c + ω2

ξ − ω2
η

)2

, κ1 =

(2ω+ωc) /
(
Q+ ω2

c + ω2
ξ − ω2

η

)
, κ2 =

(2ω−ωc) /
(
Q− ω2

c − ω2
ξ + ω2

η

)
. The κi (i = 1, 2) have

the following relations κ2
1 ≥ 1 , κ2

2 ≤ 1, κi(θ = 0) = 1.
The relations are important when considering the cool-
ing rate when feeding back twice of both coordinate’s
frequencies. The small angle approximation equations of
motion under cooling become

ξ̈ = −ω2
ξ

(
1 + χR2(ξξ̇ + ηη̇)

)
ξ − ωcη̇, (C3)

η̈ = −ω2
η

(
1 + χR2(ξξ̇ + ηη̇)

)
η + ωcξ̇. (C4)

The cooling rate is the addition of Eqs. (29) (30) ,

< P >ξξ̇+ηη̇ =< P >ξξ̇ + < P >ηη̇

= −
[
A+(t)

]4(
z1 − y1

)
−
[
A−(t)

]4(
y2 − z2

)
−
[
A+(t)A−(t)

]2(
y3 + z3

)
.

(C5)

The coefficients in Eq. (C5) are constant for fixed electric
field strengths and are as follows,(

z1 − y1

)
=

(
Ixω

2
+χR

2

4

)(
κ2

1 − 1
)(
ω2
ηκ

2
1 − ω2

ξ

)
≥ 0,

(C6)(
y2 − z2

)
=

(
Ixω

2
−χR

2

4

)(
1− κ2

2

)(
ω2
ξ − ω2

ηκ
2
2

)
≥ 0,

(C7)(
y3 + z3

)
=

(
Ixω

2
ξχR

2

2

)(
4ω2

ξ + ω2
c

)
> 0, (C8)

which leads to complete cooling for the conditions de-
scribed in this paper , ω2

η > ω2
ξ � ω2

c . Only for very

large values of ωc (ωc/ω ∼ 105) is
(
y2 − z2

)
< 0.
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