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Small weakly-bound droplets determine a number of properties of ultracold Bose and Fermi gases.
For example, Efimov trimers near the atom-atom-atom and atom-dimer thresholds lead to enhanced
losses from bosonic clouds. Generalizations to four- and higher-body systems have also been con-
sidered. Moreover, Efimov trimers have been predicted to play a role in the Bose polaron with large
boson-impurity scattering length. Motivated by these considerations, the present work provides a
detailed theoretical analysis of weakly-bound N-body clusters consisting of N − 1 identical bosons
(denoted by “B”) of mass m that interact with a single distinguishable impurity particle (denoted
by “X”) of mass M . The system properties are analyzed as a function of the mass ratio κ (values
from κ = 1 to 50 are considered), where κ is equal to m/M , and the two-body s-wave scattering
length aBX between the bosons and the impurity. To reach the universal Efimov regime in which
the size of the BBX trimer as well as those of larger clusters is much larger than the length scales
of the underlying interaction model, three different approaches are considered: resonance states are
determined in the absence of BB and BBX interactions, bound states are determined in the presence
of repulsive three-body boson-boson-impurity interactions, and bound states are determined in the
presence of repulsive two-body boson-boson interactions. The universal regime, in which the details
of the underlying interaction model become irrelevant, is identified.

PACS numbers:

I. INTRODUCTION

Ultracold single- and dual-species atomic gases can
nowadays be prepared and manipulated with exquisite
precision. This has paved the way for the study of
various phenomena, including the Mott-insulator transi-
tion [1], topological defects such as vortices [2, 3], as well
as fermionic and bosonic polarons [4–8]. Polarons, which
have been studied extensively in the context of electronic
systems, are quasi-particles with an effective mass that,
typically, differs from the mass of the underlying con-
stituents [9, 10]. It has recently been proposed that
the energy of the ground state Bose polaron at unitarity
is governed by Efimov physics in the low- to medium-
density regime [11, 12], i.e., the polaron energy is in these
regimes predicted to be given by −η~2/(m|a−|2), where
η is a dimensionless universal number and a− the boson-
impurity scattering length at which the BBX trimer hits
the three-atom threshold on the negative boson-impurity
scattering length side.

More specifically, the equal-mass Bose polaron at uni-
tarity was considered within a variational framework [12].
Treating the Bose polaron using up to two Bogoliubov
excitations, it was shown that the low-density equation
of state is governed by the energy of the BBX Efimov
trimer. Using a more flexible wave function, which allows
for up to three Bogoliubov excitations, the low-density
energy is, instead, governed by the BBBX tetramer that
is attached to the BBX trimer. These findings raise two
important questions: Does the inclusion of more Bogoli-
ubov excitations change the equation of state of the Bose
polaron in the low- and medium-density regimes? Does,

and if so how, the picture change if one considers mass-
imbalanced systems? This paper focuses on the determi-
nation of weakly-bound few-boson systems with a single
impurity. A good understanding of the hierarchy of few-
body states is a prerequisite for answering the questions
raised above.

For single-component bosons, the properties of the
four-body system have been mapped out in detail [13–16].
At unitarity, i.e., for an infinitely large s-wave scatter-
ing length (there exists only one scattering length in this
case), two four-body states are universally tied to each
Efimov trimer. In general, the four-body states are reso-
nance states with finite lifetimes [15–17]; encouragingly,
the lifetimes are sufficiently long for tetramers to be ob-
served in ultracold gas experiments [18–20]. The proper-
ties of these resonance states, including their convergence
to the universal limit, were studied using a momentum
space based formalism [15, 16]. The universal limit has
also been reached—at least in an approximate fashion—
by increasing the size of the lowest Efimov trimer via
a repulsive three-body potential [21–23]. This approach
provides approximate values for the universal energy ra-
tios but not, in general, about lifetimes.

For two-component systems, comparatively little is
known about N -body states tied to Efimov trimers [11,
12, 24–32]. Assuming that the impurity and the bosons
have the same mass but are distinguishable, the four-
body system has been found to display characteristics
that are similar to the single-component case [12]. Specif-
ically, two tetramer states have been predicted to be tied
to each Efimov trimer on the negative scattering length
side. A key difference, though, exists in the scaling pa-
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rameter λ2, which determines the energy spacing between
consecutive Efimov trimers at unitarity. This scaling
parameter is λ2 = 22.72 for the BBB system (identi-
cal particles) and 1986.12 for the BBX system (assuming
equal masses but vanishing BB interactions) [33–36]. For
κ = 8− 50, the energies of the BBBX system, as well as
those of five- and selected six-body systems, were deter-
mined in Ref. [25]. The present work extends this earlier
Bose-environment-impurity study in several directions:
(i) The mass ratio “gap” between 1 and 8 is filled. (ii)
Three different classes of few-body model Hamiltonian
are considered and their performance with respect to pro-
viding universal descriptions is compared. (iii) Selected
results for the lifetime of four-body resonance states are
reported. (iv) Selected five- and six-particle results are
presented.

The remainder of this paper is organized as follows.
Section IIA introduces the few-body Hamiltonian models
considered while Secs. II B and IIC review the numerical
techniques employed to solve the non-relativistic time-
independent few-particle Schrödinger equation. Results
for infinite and negative interspecies scattering lengths
aBX are presented in Secs. III and IV. Finally, summa-
rizing remarks are presented in Sec. V.

II. SYSTEM UNDER STUDY AND

NUMERICAL APPROACHES

A. System Hamiltonian

We consider N − 1 identical bosons of mass m with
position vectors ~rj (j = 1, · · · , N − 1) interacting with a
single impurity of massM with position vector ~rN . Since
we consider a single impurity, its statistics, i.e., whether
it is a boson or fermion, does not play a role. The mass
ratio κ,

κ =
m

M
, (1)

is varied from 1 to 50. The κ ≪ 1 regime was recently
investigated in Refs. [31, 32]. Our goal is to describe
four- and higher-body states that are universally linked
to BBX Efimov trimers. This implies that we are con-
sidering few-particle Hamiltonian H , for which the mag-
nitude of the s-wave scattering length aBX is large com-
pared to the ranges of the underlying interaction model.
Moreover, the size of the Efimov trimer should be much
larger than the ranges of the underlying interactions.

The few-particle Hamiltonian H accounts for the ki-
netic energy of each of the particles, a two-body inter-
action potential VBX(rjN ) for the BX pairs, a two-body
interaction potential VBB(rjk) for the BB pairs, and a
three-body potential VBBX(rjk, rjN , rkN ) for the BBX

triples,

H = − ~
2

2m

N−1
∑

j=1

∇2
~rj

− ~
2

2M
∇2

~rN
+

N−1
∑

j=1

VBX(rjN ) +

N−2
∑

j=1

N−1
∑

k>j

VBB(rjk) +

N−2
∑

j=1

N−1
∑

k>j

VBBX(rjk , rjN , rkN ). (2)

The distances rjk are defined through rjk = |~rj − ~rk|.
Throughout we treat the two-body s-wave scattering
length aBX of the BX pairs as a tunable parameter. This
is accomplished by changing the depth dBX of a purely
attractive two-body Gaussian potential while keeping the
range rBX constant,

VBX(rjN ) = dBX exp

[

− (rjN )2

2(rBX)2

]

. (3)

The depth dBX (dBX < 0) is restricted to values for which
VBX(rjN ) supports at most a single two-body s-wave
bound state in free space. This implies that we elimi-
nate a large set of “high-energy channels” from the out-
set. As will become clear below, our model Hamiltonian
also excludes weakly- and deeply-bound BB molecules.
The unitary point, where aBX diverges (i.e., where aBX

is infinitely large), is of particular interest in this work.
At unitarity, the two-body binding energy vanishes and
the two-body interaction is, in the rBX → 0 limit, not
characterized by a length scale. Throughout, we con-
sider finite two-body ranges rBX. For our results to be
universal, it is necessary to work in the parameter regime
where the sizes of the dimers, trimers, and larger clusters
are much larger than the range rBX. Note that our inter-
action is single-channel in nature and that universality
refers to zero-range universality and not van der Waals
universality [37–40].

The BB interaction potential VBB(rjk) is also modeled
by a Gaussian potential,

VBB(rjk) = dBB exp

[

− (rjk)
2

2(rBB)2

]

. (4)

In contrast to the BX potential, which is purely at-
tractive, the BB potential is chosen to vanish or to be
purely repulsive with a positive BB s-wave scattering
length aBB. Even though the use of a purely repul-
sive interaction potential is unphysical (typical van der
Waals potentials relevant to cold alkali gases have, re-
gardless of the sign of the s-wave scattering length, an
attractive pocket), the model should yield reasonable re-
sults provided the BB scattering length is much smaller
than the magnitude of the BX scattering length, i.e., for
aBB ≪ |aBX|.
Lastly, the three-body interaction VBBX is

parametrized via a purely repulsive Gaussian po-
tential with barrier dBBX (dBBX ≥ 0) and range
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rBBX,

VBBX(rjk , rjN , rkN ) =

dBBX exp

[

− (rjk)
2 + (rjN )2 + (rkN )2

2(rBBX)2

]

. (5)

The use of a repulsive three-body potential facilitates
reaching the regime where the bound states of the three-
and higher-body clusters are large compared to the
length scales of the underlying interaction potentials [21–
23, 25]. Specifically, a non-zero dBBX can lead to a large
BBX ground state trimer, which mimicks the behavior
of large, universal excited Efimov trimer states. If we
consider the case where dBX < 0 and dBB = 0, then the
three-body potential VBBX can be interpreted as setting
the value of the three-body parameter. It was shown in
Ref. [25] for κ = 8− 50 that the BBBX ground state en-
ergies are, if expressed in units of the BBX ground state
energies, to a good approximation independent of the
value of dBBX provided dBBX is, for constant rBBX, suffi-
ciently large. For small dBBX, in contrast, the three-body
potential serves as a perturbation that modifies the, in
general, non-universal ground states of the Hamiltonian
with dBX < 0 and dBB = 0.
The model HamiltonianH , Eq. (2), has a large number

of parameters: the mass ratio κ; the ranges rBX, rBB, and
rBBX; the BX and BB scattering lengths aBX and aBB

(or, alternatively, the parameters dBX and dBB); and the
strength dBBX of the three-body potential. Given the
large number of parameters, we cannot exhaustively ex-
plore the complete parameter space. Our non-exhaustive
study considers three different sub-classes of the Hamil-
tonian H , referred to as Model I–Model III:

• Model I: dBX < 0, dBB = 0, and dBBX = 0.

• Model II: dBX < 0, dBB = 0, and dBBX > 0.

• Model III: dBX < 0, dBB > 0, and dBBX = 0.

The ground states and likely also a subset of the excited
eigen states supported by Model I are expected to be
“contaminated” by, possibly significant, finite-range or
non-universal corrections. Sufficiently high in the en-
ergy spectrum, however, the three-body bound states
supported by Model I exhibit Efimov characteristics and
the associated four-body resonance states should exhibit
model-independent properties. For Models II–III, we
calculate bound states but not resonance states. The
premise is that the repulsive BBX and BB potentials
serve to push the particles out, leading—for certain pa-
rameter combinations—to ground states that are large
compared to the length scales of the underlying interac-
tion potentials. The BBX energies depend on the pa-
rameters of the Hamiltonian model. However, universal-
ity implies that the BN−1X energies for N ≥ 3, if mea-
sured in units of one of the BBX Efimov trimer energies,
are independent of the details of the underlying model
Hamiltonian.

A key goal of this work is to determine universal en-
ergy ratios for few-body systems as a function of the mass
ratio and to illustrate convergence toward these univer-
sal energy ratios for the different models. Model I was
employed in Ref. [26] for large mass ratios, Model II in
Ref. [25] for κ = 8−50, and a model similar to Model III
in Ref. [27, 41] for systems with equal masses and rela-
tively small mass imbalance, with the BX and BB Gaus-
sian potentials replaced by square well potentials.
Throughout, we set rBX = rBB = rBBX/

√
8 and vary

dBX, dBB, and dBBX. We use rBX to define the short-
range energy scale Esr,

Esr =
~
2

2µr2BX

, (6)

where the two-body reduced mass µ is defined as µ =
mM/(m+M).

B. Determination of bound states

The few-body bound states considered in this work
have vanishing total relative orbital angular momentum
L and positive relative parity Π. To determine the LΠ =
0+ bound state energies, we separate off the three cen-
ter of mass degrees of freedom (the relative Hamiltonian
is denoted by Hrel) and solve the relative Schrödinger
equation

Hrelψ = Eψ (7)

by expanding the eigen states ψ in terms of explicitly
correlated Gaussian basis functions φl [42, 43],

ψ =

Nb
∑

l=1

clS(φl( ~X)), (8)

where

φl( ~X) = exp

(

−1

2
~XTAl

~X

)

. (9)

Here, ~X collectively denotes a set of N−1 relative Jacobi
vectors, Nb the number of unsymmetrized basis func-
tions, and Al a (N − 1) × (N − 1) parameter matrix.
The linear parameters cl are obtained by diagonalizing
the generalized eigen value problem spanned by the rel-
ative Hamiltonian matrix Hrel and the overlap matrix
O, whose ll′ element is given by 〈φl|φl′ 〉. The overlap
matrix enters since the basis functions are not orthogo-
nal to each other. Importantly, all matrix elements have
compact analytical expressions. The N(N − 1)/2 non-
linear variational parameters contained in the symmet-
ric Al matrices are determined through a semi-stochastic
optimization procedure [44]. In Eq. (8), S denotes a sym-
metrizer, which ensures that the basis functions are sym-
metric under the exchange of the position vectors of any
two identical bosons.
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The explicitly correlated Gaussian basis set expansion
approach has several characteristics that make their use
advantageous in the context of Efimov studies. The non-
linear variational parameters can be chosen to describe
different “geometries” such as a “3+1 configuration”,
where one atom is very loosely bound to a more tightly
bound trimer [25]. Moreover, since the basis set is con-
structed using non-orthogonal basis functions that cover
vastly different length scales, bound states whose sizes
range from the two-body ranges rBX and rBB to several
10 or 100 times rBX and rBB can be generated [25]. An-
other useful feature is that one can construct separate
basis sets for each of the eigen states. This has the ben-
efit that the basis set can be targeted toward a specific
state and that a comparatively small basis set may pro-
vide an excellent description of a given eigen state [45].

C. Determination of resonance states

The states supported byHrel can be grouped into three
classes: (i) bound states, which are characterized by an
exponentially decaying tail at large distance scales; (ii)
scattering states, which display oscillatory behavior in
one or more distance coordinates; and (iii) resonance
states, which are characterized by exponential growth in
at least one of the distance coordinates. As discussed in
what follows, the explicitly correlated Gaussian approach
can be generalized to treat resonance states via the com-
plex scaling approach [46, 47]. The l-th basis function
given in Eq. (9) can be rewritten as [42]

φl( ~X) = exp



−
N
∑

j<k

r2jk
2(αl,jk)2



 , (10)

where the non-linear width parameters αl,jk are deter-
mined by the elements al,jk of the matrix Al. Equa-
tion (10) shows that the basis functions fall off exponen-
tially as one or more of the interparticle distances become
large. This illustrates that the basis functions cannot be
used (at least not directly) to expand resonance states,
which contain an exponentially growing piece. In gen-
eral, this holds true for nearly all basis functions that are
designed to describe bound states of hermitian Hamilto-
nian [43].
The complex scaling approach provides a means to use

basis functions such as those given in Eq. (9) to describe

resonance states [43, 46–49]. To this end, the vector ~X
is rotated into the complex plane [46, 47],

~X ′ = U ~X, (11)

where U is equal to exp(ıθ) and θ is an appropriately cho-
sen rotation angle. The transformed Schrödinger equa-
tion reads

H̃relψ̃ = Ẽψ̃, (12)

where H̃rel = U †HrelU and ψ̃ = U †ψ. To find the eigen
energies Ẽ, we expand

ψ̃ =

Nb
∑

l=1

dlS(φl( ~X)), (13)

where the φl( ~X) are defined in Eq. (9) and where the
dl are complex (linear) expansion coefficients. Since the

matrix elements (H̃rel)ll′ are complex, the generalized
eigen value problem is spanned by the complex Hamil-
tonian matrix H̃rel and the real overlap matrix Õ. The

Hamiltonian matrix H̃rel depends on the rotation angle

θ but Õ does not (in fact, we have Õ = O). The kinetic
energy contribution to the matrix elements contains an
overall factor of exp(2ıθ), which can be calculated up-
front for each θ considered [46, 47]. The calculation of
the potential energy contribution, in contrast, is more
involved [43]. Since the rotation introduces a θ depen-
dence in the exponent of the Gaussian interaction poten-
tials, the potential energy contribution to the Hamilto-
nian matrix element has to be calculated separately for
each rotation angle and matrix element. While this is
technically straightforward, it does increase the compu-
tational effort compared to the bound state calculations,
especially if a fine resolution in the rotation angle is de-
sired.
For the basis functions considered here (and more gen-

erally, for all square integrable basis functions), it can
be shown, assuming one has a complete basis set, that
(i) the energies of bound states are independent of the

rotation angle, i.e., Ẽ = E for true bound states; (ii)
the energies of scattering states rotate with the rotation
angle, i.e., Ẽ = exp(iθ)E for scattering states; and (iii)
the energies of resonance states live in the complex plane
and are independent of the rotation angle [46, 47]. In
practice, there tends to exist a limited range of angles for
which the energy Ẽ does not move in the complex energy
plane (is stationary). The challenge is thus to generate

a basis set for which the energy Ẽ is, for a range of rota-
tion angles, stationary (or stationary within some toler-
ance). To the best of our knowledge, a unique approach
that accomplishes this does not exist. The reason is that
the variational principle, which provides the backbone
for most basis set construction schemes that are aimed
at describing bound states, does not apply to resonance
states.
Following the strategy that has been used to describe

three-particle systems [48, 49], our calculations consist
of two steps. First, we generate a basis set by minimiz-
ing the energy of a “target state” by diagonalizing the
generalized eigen value problem spanned by Hrel and O.
Specifically, the basis set is increased one basis function
at a time, with the newly added basis function chosen
such that the energy of the state whose energy is higher
than but closest to a preset “target energy” Etarget is
minimized. The target energy is chosen based on the real
part of the energy of the resonance state. If the real part
is expected to be Er (this expectation may derive from
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previous calculations or physics arguments), we choose
Etarget to be comparable to but above Er. The calcu-
lations are repeated for different Etarget to eliminate a
possible bias due to the choice of the actual value of the
target energy. Second, we rotate the basis functions of
the basis set constructed in the first step and solve the
generalized eigen value problem spanned by H̃rel and Õ
for various angles θ (typically of order 50-75), where θ
ranges from 0 to 0.48radians (θ has to be smaller than
π/2). Importantly, the rotation approach results in the
energy Er of the resonance state as well as its lifetime τ ,

τ =
~

2|Ei|
; (14)

throughout, we write the resonance energy as E = Er +
ıEi, where Ei is negative. The complex scaling approach
is illustrated in Appendix A.

III. RESULTS: UNITARITY

This section presents few-body energies for Models I-
III with infinitely large s-wave scattering length aBX.

A. Model I

Table I reports selected bound state energies for
Model I, which is characterized by a vanishing BB in-
teraction potential, for N = 3− 6. In the limit that the
trimer size is much larger than the (effective) range of the
BX interaction potential, the N = 3 energies for Model I
should approach Efimov’s zero-range results. The second
column of Table I shows that the energy ratio |Egr

3 |/Esr

increases with increasing mass ratio κ. This suggests that
the three-body ground state energies of Model I are con-
taminated the most by non-universal corrections for large
mass ratios κ. Consistent with the literature, the energy
ratio between two consecutive three-body energies ap-
proaches the universal zero-range value λ2 (see Table II)
for sufficiently high excitations. For κ = 50, e.g., the

energy ratio Eexc,1
3 /Eexc,2

3 deviates by about 7.6 % from

the universal value while the energy ratio Eexc,2
3 /Eexc,3

3

deviates by only about 0.4 % from the universal value.

Table I reveals three trends for N ≥ 4: (i) The energy
ratios Egr

N /E
gr
3 for N = 4−6 decrease monotonically with

increasing κ. (ii) The number of four-body bound states
increases with increasing κ. While we cannot rule out the
existence of extremely weakly-bound four-body states be-
yond those reported in Table I (our approach yields varia-
tional upper bounds and it is possible that weakly-bound
states are not captured by the basis sets considered), the
trend that N ≥ 4 systems with larger κ, described by
Model I, support more bound states than systems with
smaller κ is evident. (iii) The ratio Eexc,1

4 /Egr
3 changes,

as also illustrated in Fig. 1, non-monotonically with in-
creasing κ. The energy ratio takes a minimum at κ ≈ 2

1 2 3 4
κ

1

1.01

1.02

1.03

E
4ex

c,
1
 /

 E
3g

r

FIG. 1: (color online) Energy of the four-body excited state
supported by Model I at unitarity. Circles show the energy
ratio Eexc,1

4 /Egr
3 as a function of the mass ratio κ.

and increases for both smaller and larger mass ratios (we
explored the regime 1 ≤ κ ≤ 50). We note that the non-

monotonic change of the energy ratio Eexc,1
4 /Egr

3 with κ
may be sensitive to the specifics of the two-body interac-
tion considered.

Analysis of the four-body resonance states that are tied
to Eexc,j

3 shows, as we will discuss now, that the four-
body spectra reported in Table I, especially for large
κ, are not universal; this is, of course, not surprising
given the discussion presented in Sec. II. Table III sum-
marizes the real and imaginary parts Er and Ei of the
four-body resonance energies for κ = 4 − 50. In Ta-
ble III, Er and Ei are reported in terms of the excited

three-body bound state energies Eexc,j
3 . As mentioned

in Appendix A, a precise and unambiguous identification
of resonance states becomes numerically more challeng-
ing as |Er|/Esr and/or |Ei|/Esr decrease. Consequently,
Table III reports results for resonances tied to three dif-
ferent three-body states for κ = 50 but only one three-
body state for κ = 4. For κ ≤ 4, the complex scaling
approach, as implemented by us, did not yield reliable
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TABLE I: Bound state energies for the BN−1X system, N = 3 − 6, with infinitely large s-wave scattering length aBX and
dBB = dBBX = 0 (Model I) for various mass ratios κ. Since |Egr

3 |/Esr (see column 2) increases with increasing κ, the results
are expected to be less universal for larger κ than for smaller κ (see text for details). The “missing entries” correspond to
parameter combinations where either the calculation was not attempted or no bound state was found. The energy ratios in
columns 3-11 have uncertainties in the last digit reported.

κ |Egr
3 |/Esr Egr

3 /Eexc,1
3 Eexc,1

3 /Eexc,2
3 Eexc,2

3 /Eexc,3
3 Egr

4 /Egr
3 Eexc,1

4 /Egr
3 Eexc,2

4 /Egr
3 Eexc,3

4 /Egr
3 Egr

5 /Egr
3 Egr

6 /Egr
3

1 2.354 × 10−4 12.21 1.026 43.60 97.92

2 3.470 × 10−3 23860. 6.956 1.008 18.64 35.20

3 9.660 × 10−3 3398. 5.646 1.011 13.69 24.35

4 1.694 × 10−2 1140. 5.046 1.021 11.61 20.03

8 4.437 × 10−2 151.8 4.184 1.130 8.840 14.51

12 6.512 × 10−2 58.52 66.09 3.892 1.310 7.964 12.83

16 8.082 × 10−2 30.98 39.35 3.740 1.489 7.519 11.99

133/6 9.881 × 10−2 15.47 23.49 23.67 3.606 1.711 7.134 11.27

26 1.075 × 10−1 11.22 18.70 18.90 3.552 1.819 1.013 6.981 10.98

30 1.152 × 10−1 8.575 15.41 15.64 3.508 1.911 1.059 6.859 10.76

35 1.232 × 10−1 6.587 12.62 12.91 3.467 2.005 1.134 6.742 10.54

40 1.300 × 10−1 5.371 10.66 11.04 3.434 2.082 1.214 6.651 10.37

45 1.358 × 10−1 4.572 9.182 9.680 3.408 2.145 1.290 6.578 10.24

50 1.409 × 10−1 4.016 8.021 8.648 3.386 2.199 1.362 1.003 6.518 10.13

TABLE II: Column 2 shows the scaling parameter λ2 pre-
dicted by the zero-range theory for the three-body system for
various κ.

κ λ2

1 (1986.1)2 = 3.9447 × 106

2 (153.84)2 = 23666.

3 (57.876)2 = 3349.6

4 (33.491)2 = 1121.6

8 (12.488)2 = 155.94

12 (8.1305)2 = 66.105

16 (6.2804)2 = 39.443

133/6 (4.8651)2 = 23.670

26 (4.3477)2 = 18.902

30 (3.9553)2 = 15.644

35 (3.5944)2 = 12.920

40 (3.3249)2 = 11.055

45 (3.1152)2 = 9.7047

50 (2.9470)2 = 8.6847

four-body results.

We first discuss our results for κ = 4−16. For these κ,
the ratio Er/E

exc,1
3 deviates notably from both the en-

ergy ratios Egr
4 /E

gr
3 and Eexc,1

4 /Egr
3 , indicating that the

four-body results reported in Table I are not universal.
For κ = 16, we were able to reliably determine Er for
a four-body resonance tied to the second excited trimer
state, yielding Er/E

exc,2
3 = 2.22. Since this value is close

to the ratio of 2.19 obtained for the resonance attached
to the first excited trimer, we conclude that the energy

ratios for the four-body resonances for κ = 4−16, tied to
the first excited three-body state, are close to universal.

For larger mass ratios, the four-body resonances tied to
the first excited trimer are not universal. However, closer
to universal results are obtained for the resonances that
are tied to the second or third excited trimers. For κ =
30 − 50, our complex scaling results suggest that there
are two four-body states tied to each Efimov trimer, with
the second state having a resonance position that is just a
bit below the corresponding trimer energy. For smaller κ,
“excited” four-body resonance states with real parts Er

very close to the Efimov trimer energy may also exist.
However, we were not able to describe such resonance
states by our approach. We note that the identification of
the four-body resonances for κ & 35 is challenging due to
the existence of multiple four-body resonances. For κ =
35, e.g., we find a resonance at Er ≈ 4.9Eexc,2

3 that is not
reported in Table III since we believe that this resonance
would not “survive” if we went to resonances that are
attached to more highly-excited three-body states.

Importantly, the complex scaling calculations also pro-
vide estimates of the lifetimes τ . If expressed, as in
Table III, in terms of the corresponding trimer ener-
gies, the imaginary parts Ei of the resonance energies
are comparable, in terms of the order of magnitude, to
those found for the equal-mass four-boson system. For
example, Ref. [16] found Er = 4.6108Eexc,j

3 and Ei =

0.01484Eexc,j
3 for the energetically lower-lying BBBB

state and Er = 1.00228Eexc,j
3 and Ei = 2.38×10−4Eexc,j

3

for the energetically higher-lying BBBB state in the large
j limit. This suggests that signatures of the four-body
resonance states of unequal-mass systems should be ob-
servable experimentally.
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TABLE III: Resonance energies for the BN−1X system, N = 4, interacting through a BX Gaussian potential with infinitely
large s-wave scattering length aBX and dBB = dBBX = 0 (Model I) for various mass ratios κ. Columns 2-5 report four-body
resonances tied to the first excited three-body state with energy Eexc,1

3 , columns 6-7 report four-body resonances tied to the
second excited three-body state with energy Eexc,2

3 , and column 8 reports four-body resonances tied to the third excited three-
body state with energy Eexc,3

3 . The missing entries indicate that a calculation was either not attempted or did not yield reliable
results. In some cases, we were able to determine Er approximately but not Ei; in these cases, the Ei entry is marked by “?”.

κ

(

Er

E
exc,1
3

, Ei

E
exc,1
3

) (

Er

E
exc,1
3

, Ei

E
exc,1
3

) (

Er

E
exc,1
3

, Ei

E
exc,1
3

) (

Er

E
exc,1
3

, Ei

E
exc,1
3

) (

Er

E
exc,2
3

, Ei

E
exc,2
3

) (

Er

E
exc,2
3

, Ei

E
exc,2
3

) (

Er

E
exc,3
3

, Ei

E
exc,3
3

)

4 (3.28,≈ 0.03)

8 (2.63, 0.018)

12 (2.35, 0.019)

16 (2.19, 0.011) (2.22,≈ 0.01)

133/6 (2.19, 0.009) (1.03, 0.004) (2.08, 0.020) (1.96, ?)

26 (2.45, 0.023) (1.19, 0.028) (2.05, 0.016)

30 (2.95, 0.047) (1.44, 0.047) (2.06, 0.005) (1.04, 0.003) (2.00, ?)

35 (3.46, 0.048) (1.61, 0.055) (1.93, 0.003) (1.03, 0.0006)

40 (3.73, 0.039) (1.73, 0.056) (1.02, 0.010) (≈ 1.94, ?) (≈ 1.03, ?) (≈ 2.01, ?)

45 (3.85, 0.030) (1.83, 0.051) (1.20, 0.0009) (1.04, 0.015) (1.86, 0.078) (1.04, ?) (2.07, ?)

50 (3.90, 0.026) (1.94, 0.049) (1.46, ?) (1.10, 0.021) (1.85, ?) (1.03, ?) (2.40,≈ 0.036)

B. Model II

Since resonance states are, in general, more challenging
to determine than bound states, it is desirable to employ
an interaction model for which the ground state of the
trimer behaves close to universal. This section summa-
rizes our energies at unitarity for Model II, for which the
repulsive BBX potential leads to a significant reduction of
the binding energy of the ground state trimer. Table IV
summarizes three-, four-, and five-body energies, which
are obtained for such a large dBBX that the difference
to the infinity limit is rather small (see also Ref. [25]).
In general, the resulting energy ratios could depend on
the details of the underlying potential model. For the
three-body sector, we believe that the results reported
in Table IV are, to a very good approximation, universal
since Egr

3 /E
exc,1
3 is close to the zero-range prediction for

λ2.
As discussed in Ref. [25], the four-body systems with

κ ≥ 16 support two four-body states. One four-body
state is roughly twice as strongly bound as the trimer
while the other is extremely weakly bound. As the mass
ratio decreases, the weakly-bound state disappears (or at
least our calculations were not able to describe it) while
the deeper-lying four-body state becomes more strongly
bound. For κ = 1, e.g., the binding energy of the ground
state tetramer is roughly 10 times larger than that of the
ground state trimer. In terms of size, this suggests that

the ground state tetramer is smaller by about a factor
of

√
10 than the ground state trimer. Since |Egr

4 |/Esr is
still much smaller than 1, we believe that the tetramer
energy is close to universal. This is confirmed by the
fact that Refs. [12, 27] found similar ratios for Egr

4 /E
gr
3 ,

namely 9.35− 9.7, using different models. We note that
the energy ratio Egr

4 /E
gr
3 of 9.74 (see Table IV) for the

κ = 1 system with large repulsive three-body force is
about 20 % smaller than the energy ratio Egr

4 /E
gr
3 of

12.21 obtained in the absence of the three-body force (see
Table I). This indicates that the κ = 1 results reported
in Table I are not universal despite the fact that the ratio
|Egr

3 |/Esr is rather small.

Interestingly, Ref. [12] reported the existence of an ex-
tremely weakly-bound excited four-body state for κ = 1
(see Table I of Ref. [12]). For our Model II, we were not
able to find such a state. Looking ahead, we note that
our calculations for Model III with large dBX suggest, in
agreement with Table IV, that the κ = 1 and 12 systems
do not support an excited four-body state at unitarity.
While we cannot rule out that this is due to the varia-
tional character of our calculations (i.e., an excited state
is supported by Model II but we missed it), we speculate
that the disagreement between our results and Ref. [12]
points toward a sensitive dependence of the energy ratios
on the underlying model interaction.

Table IV also reports five-body energies. These will be
discussed in more detail in the next section.

C. Model III

Reference [27] investigated the equal-mass polaron
problem by modeling the boson-boson interaction by a re-

pulsive two-body step potential. It was later argued [12]
that the results for the interaction model used in Ref. [27]
(basically, our Model III with repulsive and attractive
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TABLE IV: Energies of the BN−1X system, N = 3 − 4, interacting through a BX Gaussian potential with infinitely large
s-wave scattering length aBX, repulsive three-body Gaussian potential, and vanishing BB potential (dBB = 0) for various mass
ratios (Model II). The κ = 1, 2, and 4 energies are obtained for dBBX = 4.8Esr; the reported energies should be close to the
dBBX → ∞ limit. We find |Egr

3 |/Esr = 2.4× 10−8, 3.1× 10−6, and 4.6× 10−5 for κ = 1, 2, and 4, respectively. The entry “−”
indicates that a bound state was not found. The energies for κ = 8− 50 are taken from Ref. [25].

κ Egr
3 /Eexc,1

3 Egr
4 /Egr

3 Eexc,1
4 /Egr

3 Egr
5 /Egr

3

1 9.51 − 25.1

2 4.85 − 9.74

4 3.36 − 5.71

8 (12.510)2 ≈ 156.5 (1.647)2 ≈ 2.713 − (2.06)2 ≈ 4.244

12 (8.158)2 ≈ 66.55 (1.58)2 ≈ 2.496 − (1.94)2 ≈ 3.764

16 (6.313)2 ≈ 39.85 (1.544)2 ≈ 2.384 (1.002)2 ≈ 1.004 (1.88)2 ≈ 3.534

133/6 (4.904)2 ≈ 24.05 (1.510)2 ≈ 2.280 (1.010)2 ≈ 1.020 (1.82)2 ≈ 3.312

30 (3.998)2 ≈ 15.98 (1.488)2 ≈ 2.214 (1.026)2 ≈ 1.053 (1.78)2 ≈ 3.168

40 (3.372)2 ≈ 11.37 (1.471)2 ≈ 2.164 (1.046)2 ≈ 1.094 (1.75)2 ≈ 3.063

50 (2.996)2 ≈ 8.714 (1.461)2 ≈ 2.135 (1.067)2 ≈ 1.138 (1.73)2 ≈ 2.993

two-body step potentials instead of repulsive and attrac-
tive two-body Gaussian potentials) should be universal,
provided the energies are scaled by the trimer ground
state energy. Interestingly, Ref. [27] found four- and five-
body bound states but no six-body bound state. It was
suggested [12] that this may be due to the fact that a
single impurity can bind one s- and three p-wave bosons
and that shell closure prevents the binding of additional
bosons. In the following, the question of universality and
the existence of six-body bound states is investigated us-
ing Model III.
Circles in Figs. 2(a) and 2(b) show the energy ratio

Egr
3 /E

exc,1
3 as a function of aBB/rBB for κ = 12 and

κ = 133/6, respectively. For comparison, the horizontal
dashed lines show the scaling parameter λ2 from the zero-
range theory, which assumes vanishing BB interactions.
The energy ratios for Model III plateau as aBB/rBB in-
creases at a value somewhat larger than that predicted by
the zero-range theory. The deviation between Egr

3 /E
exc,1
3

for the largest aBB considered and the zero-range scaling
parameter is 0.19 % and 1.4 % for κ = 12 and κ = 133/6,
respectively. This shows that the actual value of the aBB

scattering length plays a secondary role, provided aBB is
much smaller than the size of the ground state trimer.
A sufficiently large positive value of aBB leads to the ex-
clusion of a portion of the configuration space, thereby
bringing the results closer to the universal regime. We
were unfortunately not able to reliably determine Eexc,1

3

for κ = 1 due to the extremely large scaling parame-
ter. We expect that Egr

3 /E
exc,1
3 would reach a plateau for

smaller aBB/rBB than for κ = 12 and that the percentage
deviation between the plateau value and the zero-range
scaling parameter would be smaller than the percentage
deviation for κ = 12.
Figures 3(a)-3(c) summarize our N = 4− 6 results for

κ = 1, κ = 12, and κ = 133/6, respectively. For all
three mass ratios, the change of Egr

N /E
gr
3 decreases with

increasing aBB/rBB. For fixed mass ratio κ, the energy
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FIG. 2: (color online) Characteristics of Model III at unitar-
ity. Circles show the energy ratio Egr

3 /Eexc,1
3 as a function of

aBB/rBB for (a) κ = 12 and (b) κ = 133/6. For comparison,
dashed horizontal lines show the zero-range scaling parameter
λ2 from Table II.

ratio Egr
4 /E

gr
3 (circles) reaches a plateau quicker than the

energy ratios Egr
5 /E

gr
3 (squares) and Egr

6 /E
gr
3 (triangles).

Also, the “flattening” with increasing aBB/rBB is faster
for κ = 1 than for κ = 12 and 133/6. For comparison,
the dashed horizontal lines on the right edge of Figs. 3(a)-
3(c) show the energy ratios for Model II (see Table IV
and Ref. [25]). For N = 4, the energy ratios for Model III
(circles) for the largest aBB/rBB considered and Model II
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(lowest dashed line) differ by about 2.4 %, 7.1 %, and
3.9 % for κ = 1, 12, and 133/6, respectively. The calcu-
lations underline that it is challenging to reach the fully
universal regime for large mass ratios by adding purely
repulsive two- or three-body potentials. The deviations
for N = 5 are 0 %, 19 %, and 13 % for κ = 1, 12, and
133/6, respectively. Generally speaking, we expect that
the discrepancy between the two sets of results would in-
crease with increasing N . For κ = 133/6, this is indeed
the case [see Fig. 3(c)]. For N = 6 and κ = 1, Fig. 3(a)
shows converged energy ratios up to aBB/rBB ≈ 0.285;
for larger aBB/rBB, our energy ratios (not shown) are
not fully converged. For aBB/rBB ≈ 0.6, e.g., we find
Egr

6 /E
gr
3 = 35.2, which should be considered as a lower

bound since our calculations are variational and Egr
3 is

highly accurate. We conclude that Model III suports a
six-body bound state in the large dBBX limit. Such a
bound state was not found in Ref. [27] for the square-
well model. This suggests that the shell-closure argu-
ment put forward in Ref. [12] does not hold, in general,
for bosonic systems with an impurity. The discussion
surrounding Fig. 3 can be summarized as follows: While
Models II and III predict somewhat different energy ra-
tios for N ≥ 5, we believe that these models provide a
realistic description of the hierarchy of few-body states
of small bosonic systems with a single impurity.

Reference [25] (see also Table IV) found that Model II
at unitarity supports an excited four-body state for κ =
16−50. For κ = 12, in contrast, no such state was found.
The corresponding results for Model III are summarized
in Fig. 4. The change of the energy ratio Eexc,1

4 /Egr
3

decreases as aBB/rBB increases. For the largest aBB/rBB

considered, the energy ratio Eexc,1
4 /Egr

3 for κ = 133/6
takes a value of around 1.011, which is somewhat smaller,
accounting for error bars, than the corresponding value
of 1.020 for Model 2 (according to Ref. [25], the errorbar
is 0.005 on the square root of the energy ratio).

In agreement with the Model II results, we find that
the excited four-body state for κ = 12 disappears as
aBB/rBB goes beyond a critical value [aBB/rBB & 1.42;
see Fig. 4(a)], which is smaller than the value for which
we would expect, based on the ground state results shown
in Fig. 3, the energy ratio to be independent of aBB/rBB.
Figure 4 indicates that the predictions of Models II and
III for the energy ratio Eexc,1

4 /Egr
3 are reasonably consis-

tent.

For κ = 1, we find that the excited four-body state
supported by Model I disappears when the boson-boson
scattering length is sufficiently repulsive (Model III). The
absense of an excited four-body state at unitarity for
κ = 1, as predicted by Models II and III, is in disagree-
ment with the predictions of the “r0 and Λ models” of
Ref. [12]. In those models, an energy for the excited four-
body state, expressed in terms of the three-body ground
state energy, of 1.0030(3) and 1.0036(1) was reported for
the r0 and Λ models, respectively. Since the binding en-
ergy is extremely small, it might be that a small change in
the interaction model moves the critical scattering length
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FIG. 3: (color online) Comparison of ground state energies for
Models II and III at unitarity. Circles, squares, and triangles
show the energy ratios Egr

4 /Egr
3 , Egr

5 /Egr
3 , and Egr

6 /Egr
3 , re-

spectively, as a function of aBB/rBB for (a) κ = 1, (b) κ = 12,
and (c) κ = 133/6 for Model III; the lines connecting the
symbols serve as a guide to the eye. The dashed horizontal
lines show the energy ratios for Model II (see Table IV). The
N = 6 energy ratio for Model II is only shown for κ = 133/6.

of the excited four-body state from the positive to the
negative scattering length side, thereby explaining the
discrepancy. Alternatively, it could be that our model
supports an excited four-body bound state at unitarity
but that our numerical approach missed the state.

IV. RESULTS: NEGATIVE SCATTERING

LENGTH SIDE

This section discusses the behavior of the BBBX sys-
tem with κ = 133/6 as a function of the interspecies s-
wave scattering length aBX (aBX < 0). For Model II, the

critical BX scattering lengths agr4,− and aexc,14,− , at which
the ground and first excited tetramer energies are reso-
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FIG. 4: (color online) Energies of the excited four-body states
at unitarity. Circles show the energy ratio Eexc,1

4 /Egr
3 for

Model III as a function of aBB/rBB for (a) κ = 12 and (b)
κ = 133/6; the lines connecting the symbols serve as a guide
to the eye. The horizontal dashed line in panel (b) shows the
corresponding energy ratio for Model II.

nant with the four-atom threshold, were predicted to be
agr4,− ≈ 0.55a3,− and aexc4,− ≈ 0.91a3,−, respectively [25].
Here, a3,− is the critical BX scattering length at which
the trimer that the four-body states are tied to becomes
unbound on the negative scattering length side.
To obtain a sense for the dependence of these results on

the underlying model, we additionally performed calcula-
tions for the negative aBX regime using Model I. Specif-
ically, we determine the energy of the four-body reso-
nances tied to the first excited BBX trimer. The results
are summarized in Fig. 5. The solid line shows the en-
ergy Eexc,1

3 of the first excited trimer while the circles
and squares show the real part Er of the energetically
lower- and higher-lying four-body resonances. The abso-
lute value |Ei| of the imaginary part is shown by error-
bars. For example, the magnitude of the imaginary part
Ei of the resonance energy of the energetically lower-lying
four-body state changes from 9× 10−3Eexc,1

3 at unitarity

to around 10−4Eexc,1
3 for the point closest to threshold

in Fig. 5. The magnitude of the imaginary part Ei of the
resonance energy of the energetically higher-lying four-
body state changes from 4 × 10−3Eexc,1

3 at unitarity to

around 2×10−4Eexc,1
3 for the point closest to threshold in

Fig. 5. Extrapolating the four-body resonance energies
Er to zero, we estimate the following critical scattering
lengths for the two four-body states: agr4,− ≈ 0.66a3,−

and aexc,14,− ≈ 0.94a3,−. The agreement with the results
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FIG. 5: (color online) Generalized Efimov spectrum, obtained
using Model I, for κ = 133/6 as a function of the inverse of
the BX s-wave scattering length aBX (only the negative aBX

regime is shown). The energies and scattering lengths are
scaled by the short-range quantities Esr and rBX, respectively
(the energy is shown on a square-root scale). The solid line
shows the energy Eexc,1

3 of the BBX system. The circles and
squares show the real part Er of the resonance energies of the
BBBX system (to guide the eye, the dotted line connects con-
secutive points for the energetically lower-lying resonance).
The error bars indicate the absolute value of the imaginary
part Ei of the resonance energy (again, using the square-root
scaling); a smaller |Ei|/Esr corresponds to a larger scaled life-
time.

for Model II is quite good, especially considering that the
critical scattering lengths have a few percent uncertainty
due to numerical inaccuracies and that the determination
of the critical scattering lengths requires an extrapolation
to the threshold.

V. SUMMARIZING REMARKS

This work determined the bound state energies of an
impurity that interacts with N−1 bosonic atoms through
short-range interactions that are characterized by the s-
wave scattering length aBX. For the cases considered, the
impurity mass was the same as or smaller than that of
the bosons. Impurity problems are ubiquitous in physics,
ranging from impurities in condensed matter systems to
impurities in quantum liquid droplets, such as helium
and molecular hydrogen clusters, to impurities in cold
fermionic and bosonic atomic gases. A key objective of
the present work was to investigate, using two-body inter-
actions that mimick zero-range interactions in the limit
that the trimer size is large compared to the range of
the two-body potential, universal four- and higher-body
states that are linked to three-body Efimov trimers con-
sisting of two bosonic atoms and the impurity. To address
this objective, the results for different interaction models
were compared. While the present work considered two-
body single-channel models, Ref. [12] treated the N = 4
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system with κ = 1 using a two-body coupled-channel
model.
The impurity problem studied in this work is unique

due to its close connection to three-body Efimov states.
In the large |aBX| limit, the weakly-bound BBX states
follow Efimov’s radial scaling law, which implies that the
three-body states are governed by the s-wave scatter-
ing length and a three-body parameter. If the four-body
states are fully governed by these parameters, then dif-
ferent interaction models should, in the limit that the ef-
fective range corrections can be neglected, yield the same
value for the four-body energies, provided the four-body
energies are expressed in terms of the three-body energy
and provided the s-wave scattering lengths are the same.
This work shows that this is the case for N = 4 and
κ = 1. As the mass ratio κ increases, model dependen-
cies at the few percent level develop. For the five-body
system, the energy ratio Egr

5 /E
gr
3 displays, for κ = 12

and 133/6, a stronger model dependence than the en-
ergy ratio Egr

4 /E
gr
3 . In general, the “universality win-

dow” decreases with increasing number of particles since
the binding energy increases (i.e., the system size shrinks
with increasing N). This is particularly prominent when
κ is notably larger than 1. It would be interesting to ex-
tend the very recent effective field theory study for identi-
cal bosons [50] to the bosonic system with impurity con-
sidered in this work. Specifically, it would be interesting
to explore at which order the four-body parameter enters.
It should be kept in mind that the numerical calculations
become more challenging as N increases, implying that
it is harder to exhaustively explore the parameter space
of the model interactions with high accuracy for N = 5
and N = 6. Model III suggests, in contrast to what was
found in Ref. [27] for a slightly different model, that the
system for κ = 1 supports a six-body bound state. It will
be interesting to explore the implications of this bound
state on the physics of the Bose polaron.
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Appendix A: Illustration of complex scaling

approach

This appendix illustrates the complex scaling ap-
proach, using a basis set constructed from explicitly
correlated Gaussian basis functions, for the BBBX sys-
tem with mass ratio κ = 8 for infinitely large BX
scattering length, dBB = dBBX = 0 (Model I), and
Etarget = −2.52 × 10−4Esr. This target energy is about
three times less negative than the resonance energy of
Er = −7.69× 10−4Esr reported in Table III.
To illustrate the construction of the basis set, Fig. 6

shows the eigen values as a function of the inverse of the

number Nb of basis functions. For the example at hand,
the first 100 basis functions were chosen such that the
two bound four-body states (see Table I) are reasonably
well described. For Nb = 250 (right edge of the figure),
the state with energy larger than and closest to the tar-
get energy corresponds to the 8-th eigen value. As more
basis functions are added, the energy of the 8-th state
drops below Etarget (this occurs around 1/Nb = 0.0035
in Fig. 6) and the next higher-lying state is being opti-
mized. This “dropping down” is repeated several times
during the optimization procedure. The reason that the
energy “drops” during the optimization is that there ex-
ists a continuum of “trimer-plus-atom states” above the
three-body ground state. Since the basis functions have
a finite as opposed to an infinite spatial extend and since
the basis set is finite, the continuum is discretized. The
roughly flat portion (plateau at E4 ≈ −7.7× 10−4Esr) of
the eigen values is, as confirmed by the results presented
in Fig. 7, associated with a resonance state.
To extract quantitative information, we solve the eigen

value problem spanned by H̃rel and O for various θ. The
resulting eigen values are categorized as corresponding
to bound states, scattering states, and resonance states
according to the behavior of the trajectories in the com-
plex plane. To locate the resonance states, we plot the
trajectories, which span several orders of magnitude in
Er and Ei, in different energy windows. Squares, cir-
cles, triangles, and diamonds in Fig. 7 show trajecto-
ries corresponding to a resonance state using basis sets
with Nb = 1600, 2000, 2500, and 3000 (the same ba-
sis functions as used in Fig. 6). The “beginning point”
(θ = 0) of the trajectories can be identified by the con-
dition that the imaginary part of the energy is zero for
θ = 0. For each trajectory, the symbols are obtained
for equally spaced θ. It can be seen that the trajectories
for the different basis set sizes all go, roughly, through
the point (Er , Ei) ≈ (−7.69× 10−4Esr,−5.3× 10−6Esr).
Moreover, at or near this point in the complex energy
plane, the trajectories for Nb = 2000, 2500, and 3000
slow down; this can be seen from the decreased spacing
of the symbols. For the example shown, the calculations
for Nb = 1600 do not allow us to extract the resonance
energy and lifetime. It is ensuring, though, that the re-
sults for Nb = 2000 − 3000 agree with each other. Re-
peating the calculations for different Etarget to ensure in-
dependence of Etarget, we extract the resonance position
and its lifetime. The resonance energy moves somewhat
for different Etarget and different basis sets. The results
reported in Table III are, in most cases, averages from
multiple runs.
In general, we find that the resonance position (i.e., the

real part Er) is numerically more stable than the lifetime
τ [which is proportional to the inverse of the imaginary
part, τ = h/(2|Ei|)]. Also, as a rule of thumb, the closer
the real part Er is to zero, the harder it is to reliably
extract the lifetime from our calculations. Because of
this, our complex scaling calculations (see Table III) are
restricted to mass ratios κ ≥ 4).
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FIG. 6: (color online) Basis set generation for BBBX system
with infinitely large interspecies s-wave scattering length and
κ = 8 (Model I). The target energy Etarget is set to −2.52 ×
10−4Esr. The symbols show the four-body energies E4 as a
function of the inverse of the number Nb of basis functions.
The displayed energies correspond to the 8-th through 14-
th eigen value of the generalized eigen value problem. The
“plateau” at E4 ≈ −7.8×10−4Esr is indicative of a four-body
resonance (see also Fig. 7). The data suggest that there may
exist another resonance at Er ≈ −2× 10−4Esr. However, the
complex scaling did not reveal such a resonance. This is likely
due to the fact that the energetically higher-lying plateau is
not a signature of a resonance but related to a BBX bound
state.
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FIG. 7: (color online) Complex scaling results for the BBBX
system with infinitely large interspecies s-wave scattering
length and κ = 8 (Model I). Red squares, blue circles,
green triangles, and black diamonds show trajectories, gen-
erated by scanning the rotation angle θ, in the complex
energy plane for Nb = 1600, 2000, 2500, and 3000, re-
spectively (θ is increased linearly in steps of approximately
6.957 × 10−3radians for Nb = 1600, 8.276 × 10−3radians
for Nb = 2000, 6.667 × 10−3radians for Nb = 2500, and
8.421 × 10−3radians for Nb = 3000). For vanishing rotation
angle, the imaginary part of the energy is zero. This figure
and Fig. 6 are obtained using the same basis set.
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