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We demonstrate that all of the salient features of the Harper-Hofstadter model can be implemented
with ultracold atoms trapped in a bichromatic ring-shaped lattice. Using realistic sinusoidal lattice
potentials rather than assume the idealized tight-binding picture, we determine the optimal condi-
tions necessary to realize the critical point where the spectrum becomes fractal, and identify the
nature and cause of the departures from the discrete model predictions. We also show that even
with a commensurate ring with a few lattice sites, the Aubry-André localization transition can be
realized. Localized states that behave like edge states with energies that reside in the band gaps
can be generated by introducing a surprisingly small local perturbation within the ring. Spectrum
oscillation arising from complex coupling can be implemented by uniform rotation of the ring, but
with certain significant differences that are explained.

I. INTRODUCTION

Consideration of electrons in a two-dimensional (2D)
lattice subject to a magnetic field led Harper [1] to his
eponymous model which has since been the subject of a
vast number of studies, that continue unabated till the
present day [2, 3]. It has been an essential part of the
physics of the quantum Hall effect [4, 5] and of recogniz-
ing the significance of topology in quantum physics [6–8],
which has been transformational for our understanding.
In recent years there has been tremendous interest in
replicating associated phenomena in designer systems of
ultracold atoms in the context of synthetic gauge fields
and topological structures for neutral atoms [9–11].
The Harper model can be famously reduced to an ef-

fective 1D Hamiltonian with nearest neighbor coupling
and a cosine modulation of the onsite energies,

J1[e
iϑψn+1 + e−iϑψn−1] + J2ψn cos(2παn+ θ) = Eψn.(1)

Here J1 and J2 represent the strengths of the coupling
and the modulation, while the phases θ and ϑ can be
related to the wavenumbers in the 2D system. When the
parameter α is irrational, the lattice index n has infinite
range [12]. But, when it is rational, α = p/q with integer
p, q, the Hamiltonian is of period q, in which case, the
system can be mapped to a 1D ring-shaped lattice.
Although this mapping with dimensional reduction has

been an intrinsic part of the Harper model, it is yet to
be utilized in a literal sense in experiments, which have
remained anchored in the 2D configuration of its genesis.
That applies to even recent studies with ultracold atoms
in optical lattices [13–15]. However, precisely in this last
realm the capability has now emerged that would en-
able experimental realization of this seminal model in its
reduced dimensional representation: Numerous experi-
ments have already been done with ultracold atoms in
ring-shaped traps [16–21], and periodic lattice structure
along the azimuth have also been demonstrated [22–26].
The ring lattice actually provides a simpler and possi-
bly better alternative to examine this model. The 2D
model is intrinsically finite with edges, and additional

potentials required for confinement can introduce inho-
mogeneity not present in the classic Harper model. In
contrast, a ring represents an infinite 2D system exactly
without the complications of edges (although they can be
easily introduced if desired), without any extra confine-
ment required along the direction of relevant dynamics.
It is to motivate and anticipate such experiments with

ultracold atoms, this study has been undertaken. The
discrete Hamiltonian above is an idealization in the tight
binding limit, and therefore well-established results that
are derived from it will certainly be modified and dis-
torted when real potentials are used. The goal of this
paper is thus threefold: (1) to establish that all the
salient features of the Harper model can indeed be im-
plemented with ultracold atoms on a continuum ring-
shaped lattice with realistic potentials that do not as-
sume a tight-binding model, (2) to determine the optimal
conditions under which the discrete model results can be
reproduced, and (3) to identify the differences from the
idealized discrete model, that emerge and linger in the
continuum model.

II. CONTINUUM MODEL AND SPECTRUM

We will translate the model represented in Eq. (1) to
a ring-shaped lattice described by a continuum Hamilto-
nian, H with a bichromatic potential involving two inde-
pendent sinusoidal modulations, given by

H = H0 + VH cos

(

2παx

a
+ θ

)

H0 = − h̄2

2m

d2

dx2
+ VL sin2

(πx

a

)

(2)

Here, x measures position along the azimuth of the ring
that will contain all relevant dynamics examined here,
with the assumption of tight confinement along the other
two degrees of freedom. The phase θ will be set to zero
until Sec. VI where we will describe some of its influence,
and we will introduce the counterpart of the phase ϑ of
the coupling coefficient in Sec. VII.
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Such a bichromatic model was utilized in an experi-
ment demonstrating a localization transition for a Bose-
Einstein condensate (BEC) in a harmonically confined
lattice with incommensurate periods [27], and was re-
cently studied to examine mobility edges and localiza-
tion properties in an open incommensurate lattice [28].
In contrast, due to the ring geometry, the two potentials
here will be chosen to be commensurate. While there
is flexibility depending on the physical configuration, for
the sake of having a concrete picture, we will assume a
torus of cylindrical cross-section with the lattice poten-
tials along its major axis. Unless otherwise specified, the
lattice constant a and ǫ0 = 2ER/π

2 will set the length
and energy units, with ER = h̄2π2/(2ma2) being the
recoil energy. We will neglect any non-linearity due to
atom-atom interaction, assuming low density or scatter-
ing length manipulation by Feshbach resonance [29].
The amplitude of the potential that creates the base

lattice structure is denoted VL, the separation between
the minima, a, corresponding to the lattice constant in
the discrete model. The parameter VH is the coefficient
of the Harper modulating potential and can be identified
with J2 in Eq. (1). However, to find the counterpart for
J1, we need to compute the overlap integral of localized
states in adjacent sites. For this purpose we will neglect
the modulating potential since it varies with α, but more
importantly, as we will see, it will be relatively much
smaller for cases of interest. Thus, we define the onsite
energy and the nearest neighbor overlap integral as

E = 〈φn|H0|φn〉 ∆ = 〈φn|H0|φn+1〉 (3)

where φn denotes the state localized at lattice n, which in
our calculations will correspond to the Wannier state for
the lowest band for the unmodulated Hamiltonian H0.
Comparison of the spectrum of the continuum Hamil-

tonian with that of the discrete Hamiltonian therefore
entails the follow transformation

H → (H − E)/∆ Ei → (Ei − E)/∆ (4)

for the Hamiltonian and its eigenenergies. In our plots,
we present the eigenenergies as transformed above.
The most well known feature of the Harper model is a

fractal spectrum known as the Hofstadter butterfly [12]
which corresponds to a special case of the Harper Hamil-
tonian, when the ratio λd = J2/J1 = 2 in the discrete
(subscript ‘d’) model. With our definition above, the
equivalent for that ratio in the continuum (subscript ‘c’)
model is λc = VH/∆, and so we computed the spectrum
of the Hamiltonian in (2) for the special value λc = 2.
With an optimal choice of lattice parameters, discussed

below, the continuum Hamiltonian Eq. (2) on a ring-
shaped lattice can reproduce the Hofstadter butterfly
spectrum, almost indistinguishable from that generated
with the discrete Hamiltonian Eq. (1), as we show in
Fig. 1. Here, as well in the rest of the paper unless other-
wise mentioned, the number of lattices sites, or potential
minima of the primary lattice used is N = 100, so the
spectrum has a domain of α = n/N, n ∈ [1, 100].
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FIG. 1: The Hofstadter butterfly spectrum is found to be al-
most identical as generated with (a) the usual discrete Hamil-
tonian in Eq. (1), and (b) with the continuum Hamiltonian
using the sinusoidal bichromatic potential in Eq. (2). The pa-
rameter α is dimensionless and the energy is scaled in units
of the nearest neighbor couplings, J1 in (a) and by ∆ in (b).

III. PARAMETRIC TRADE-OFF

Given the greater degrees of freedom available, obtain-
ing a well-defined fractal spectrum with the continuum
Hamiltonian depends significantly on the lattice param-
eters. For this purpose, we computed the onsite energy
E and the hopping energy ∆ as a function of the depth
VL of the primary lattice, using the lowest band Wannier
functions. For comparison, we also computed the same
by approximating the well-bottom of the primary lattice
by a harmonic oscillator of frequency ω = (π/a)

√
2VL,

and using its ground state φn → φHO
n in Eq. (3) to ana-

lytically evaluate counterparts EHO and ∆HO . We plot
them all in Fig. 2. It is clear that harmonic oscillator
approximation works well for the onsite energy E , but is
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FIG. 2: (a) The overlap integral and (b) the onsite energy
plotted as a function of the amplitude of the primary lattice
potential VL computed using Eq. (3). The solid blue line uses
the lowest Wannier states for φn at neighboring sites and the
dashed red line represents analytical computation using the
ground state φHO

n of the harmonic oscillator approximation
of a well-bottom of the primary lattice. Semi-log plots of the
same are shown in figures (c) and (d) respectively.

inaccurate for the more relevant overlap integral, ∆. On
the semi-log plots it is evident that for ∆, the difference
remains significant for all values of the lattice depth. We
therefore only use the Wannier functions in our calcula-
tions.

As the lattice gets deeper, the system approaches the
discrete limit, as the tight-binding picture gets increas-
ingly precise, so it may seem that deeper the base lattice,
the better it is. However, there is a trade-off, because the
nearest-neighbor coupling measured by ∆ decreases ex-
ponentially at higher lattice depths as evident from the
Fig. 2(c). Considering the criterion for the Hofstadter
spectrum, in the regime of interest, VH ∼ ∆, which
means the modulating potential VH has to decrease in
sync with ∆. At high lattice depths, this would result
in a huge difference in magnitudes of VL and VH which
could be challenging in experiments, particularly if the
mean magnitude of the latter becomes comparable to the
fluctuations of the former.

In Fig. 1 we used VL = 100 which yielded ∆ = 0.012
and VH = 2∆ = 0.024. This is already a difference
of log(VL/VH) ≃ 3.6 orders of magnitude. There, we
pushed the limits to demonstrate the reproducibility of
the discrete model, and that may not be always be a
priority. Even reducing the primary lattice depth by a
factor of 2, to VL = 50 leads to critical VH = 0.092 and
log(VL/VH) ≃ 2.4, an one-third reduction in the order
of magnitude gap. Certainly this creates more deviation
from discrete spectrum, but not markedly. But, if VL gets
too small, the tight-binding approximation is no longer
a good one and the spectrum deviates significantly from
that of the discrete model spectrum, a matter we address
in the next section. So, some intermediate value of the
primary lattice will have to be chosen, which provides
the desirable balance between these opposing factors.
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FIG. 3: (a) Distorted butterfly when the primary lattice depth
is low VL = 10. (b) When the same is plotted with the correc-
tion potential Vcorr in Eq. (6) added to the Hamiltonian H0,
the bilateral symmetry is partially restored. The uncorrected
net potential for (c) α = 1/N and (d) α = (N − 1)/N , (with
N = 100 lattice sites), are clearly different, but they acquire
the same form shown in (e) when Vcorr is added.

IV. DISTORTIONS IN SHALLOW WELLS

It is evident in Fig. 1 that even though the spectra
match quite well, there is a lingering bilateral asymmetry
in the continuum case, particularly prominent near the
right edge towards α = 1. This gets more pronounced for
lower values of VL when the primary lattice gets shallower
as evident in Fig. 3 where we use VL = 10. That is
because the discrete Hamiltonian contains a symmetry
absent in the continuum Hamiltonian: The Hamiltonian
in Eq. (1) is unchanged by α = n/N → (N − n)/N , but
that is not so in the continuum,

cos

(

2πx

a

(N − n)

N

)

= cos

(

2πx

a
− 2πx

a

n

N

)

. (5)

The continuous dependence on the position x modulates
the overall potential differently for α = n/N and α =
(N−n)/N as can be clearly seen on comparing Figs. 3(c)
and (d) where α = 1/100 and α = 99/100 respectively.
Note that for both cases, the overall modulation of the
bottom edge are the same, and that is precisely what
would be manifest as modulation of the onsite energies
in the discrete model. But the difference in their upper
edges indicates that the lattice amplitude has different
behavior among the two. There can be variation of the
lattice depth, and hence the nearest-neighbor coupling,
across the lattice, evident particularly in Fig. 3 (d), a
feature clearly absent in the discrete model, where only
the onsite energy is modulated.
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FIG. 4: The Hofstadter butterfly spectrum generated with the continuum Hamiltonian in Eq. (2). As predicted for the discrete
model, the fractal structure is most pronounced for the critical ratio (b) λc = VH/∆ = 2 in the center panel and deteriorates
for values (a) lower and (c) higher.

Notably, the spectrum in Fig. 3(a) shows that the fea-
tures on the right side of the spectrum are more degraded
compared to the left side. The reason why becomes ap-
parent on comparing Figs. 3(c) and (d). For lower values
of α there is little modulation of the lattice depth since
the top and the bottom edges rise and fall in sync, and
the nearest-neighbor coupling remains uniform across the
lattice. On the other hand the lattice depth clearly varies
significantly for the higher values of α. The underlying
reason resides in the fact that in the Harper modulation
cos(2παx/a), for low values of α its period α−1a is much
longer than the period 2a of the primary lattice, whereas
for higher values of α the two periods become compara-
ble, leading to a beating effect which modulates the net
lattice depth, and hence the coupling strength, across the
lattice. This suggests that using low values of α would
be preferable for studies that are not α-specific.
When VL ≫ VH the distortion is minimal, but is pro-

nounced when VL is smaller due to the greater relative
impact of the cosine term, for instance, in Fig. 3, VL = 10
and VH = 0.70 and log(VL/VH) ≃ 0.85. To underscore
the points made above, we partially compensate for the
asymmetry with a correction term added to the potential:

Vcorr = −VH cos

(

2παx

a

)

sin2
(πx

a

)

(6)

This amounts to subtracting the Harper modulation, but
further modulated by the periodicity of the primary lat-
tice. It levels out the upper edge of the net lattice po-
tential as shown in Figs. 3 (e) and substantially reduces
the asymmetry in the vertical spread of the eigenvalues
between the left and the right sides of the butterfly. On
the other hand, this extra potential also reduces the clar-
ity and resolution of the fractal pattern on the left side
by causing lattice depth modulation there as well. As
such, such a term may not offer any practical advantage.
But, it serves to demonstrate how some of the unwanted
features could be selectively neutralized, as well as illus-
trating some of the limitations and differences and their
causes, that mark the continuum implementation.

V. CRITICALITY AND LOCALIZATION

The fractal pattern of the Hofstadter butterfly is spe-
cific to the critical case of the Harper Hamiltonian,
when the ratio λd = 2 and deteriorates away from the
value. Utilizing the continuum counterpart of the ra-
tio λc = VH/∆, we find that this critical behavior can be
faithfully replicated on the bichromatic ring lattice. This
is shown in Fig. 4 where we plot the spectra for the cases
λc = 1, 2 and 4, and we can confirm that the most well-
defined fractal pattern results when the λc = 2 and the
pattern gets smudged for values both lesser and greater.
In the Harper Hamiltonian, the value λd = 2 has a

significance beyond the nature of the spectrum. It has
been proven by Aubry and André [30] that in the infi-
nite lattice limit, when α is irrational, this value marks
a localization transition, all eigenstates being localized
for λd > 2 and extended for λd < 2. But, rigorous
proof is lacking for commensurate finite lattice periods.
Here we show that the transition does exist even for a
ring-lattice of few sites with intrinsically commensurate
periods. Infinite range lattice corresponds to irrational
values of α and strictly irrational values are unfeasible
in practice. A common choice for a rational alternative
has been to pick a ratio of a pair of adjacent Fibonacci
numbers α = Fn/Fn+1 because the limit of the sequence

as n→ ∞ is a well-known irrational number, (
√
5−1)/2,

the inverse of the golden mean.
Thus, we considered a discrete Hamiltonian of period 8

and choose α = 5/8, where the numerator and denomina-
tor are belong to the Fibonacci sequence, and computed
the inverse participation ratio, given by

IPR =

∑

n |φn|4
(
∑

n |φn|2)2
(7)

the sum being over the lattice sites of the discrete Hamil-
tonian. Higher values of the IPR indicate localization
and lower values correspond to the extended state. We
plot the the IPR for the ground state of the system as
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FIG. 5: The inverse participation ratio (IPR) of the ground
state is plotted for α = 5/8 and N = 8 lattice sites, for (a) the
discrete Hamiltonian, Eq. (1) as a function of strengths of the
coupling J1 and the modulation J2, and (b) for the continuum
Hamiltonian, Eq. (2) as a function of the primary lattice am-
plitude VL and the continuum equivalent VH/∆ of the ratio
J2/J1. Subplots (c) and (d) show a top view of the same. The
localization transition is clearly visible in the change in the
IPR, with higher values corresponding to greater localization.

a function of J1 and J2 in Fig. 5(a) and (c). There is
clearly a localization transition along a line representing
the ratio λ = J2/J1 = 2. We found that the transition
becomes sharper as the lattice size is increased. Although
not reproduced here, we also computed the IPR averaged
over all the states in the band, and it showed a similar
localization behavior, albeit a bit more gradual.
We next did the same for our continuum model, where

we pick a bichromatic lattice with 8 minima for the pri-
mary lattice and α = 5/8, so that the periods are com-
mensurate, a necessity in a continuum ring configuration.
Likewise we compute the IPR, where now the sums are
replaced by integrals, and plot it for the ground state in
Fig. 5(b) and (d). Differently from the discrete case, we
plot versus the ratio λc = VH/∆ and the primary lattice
depth, VL. The localization transition is manifest along
the line λc = 2. At very low values of VL, as is to be
expected, the localization is lost.

VI. PERTURBATION AND EDGE STATES

Edge states with energies that exist in the band gaps
have been of particular relevance in the physics associ-
ated with the Harper model, particularly in the context
of the quantum Hall effect [6, 31] and in recent years have
been intrinsic to exciting developments associated with
topological insulators [32, 33]. Counterparts of such edge
states in the Aubry-André model in an open lattice have
been discussed in the literature [34, 35] and the localiza-
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FIG. 6: The left panels show spectra with a Gaussian per-
turbation, Eq. (8), localized at the bottom of one of 99 wells
of the primary lattice in a ring configuration. The large blue
dot on each stripe marks the energy corresponding to the lo-
calized ‘edge’ state plotted in the corresponding right panel.
The right panels also show a pair of extended states (one be-
ing in dotted line) that have energies immediately adjacent to
the edge state, in the bands just above and below.

tion of the states near the edges have been noted. But, by
its very nature the 1D ring configuration corresponds to
electrons in an infinite 2D lattice with no edges. However,
edges can be mimicked in the lattice simply by ‘cutting’
the ring. Though this could be done in various ways [36],
here we assume the simple expedient of a localized repul-
sive perturbation which for large enough strengths would
amount to cutting the ring and creating an ‘edge’. Mod-
eling a barrier on a tightly-focussed blue-detuned laser
we use a narrow Gaussian barrier potential,

Vpert = VP e−(x−x0)
2/σ2

(8)

with the width σ chosen to be comparable to the lattice
period. Doing so introduces eigenvalues in the band gaps
exactly as is the case with edge states. This is demon-
strated in Fig. 6 which shows the appearance of stripes
of eigenenergies in the gaps as the phase θ of the Harper
modulation in Eq. 2 is varied. Here, we used a perturba-
tion centered at the bottom of a well, specifically x0 = 0,
and of width σ = 0.02a, narrow compared to the lattice
period and therefore well-localized within a well.
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FIG. 7: The spectrum is plotted with a Gaussian perturbation
similarly to Fig. 6 but now located at one of the crests (x0 =
0.5a) of the primary lattice. The stripe pattern shows much
greater sensitivity to the strength of the perturbation as it
is changed from (a) Vp = 1 to (b) Vp = 10 with width fixed
at σ = 0.02; as well as to the width as it is changed from
(a) σ = 0.02 to (c) σ = 0.2. However, increasing the strength
while reducing the width simultaneously appears to somewhat
mutually cancel the effects as seen by comparing (d) with (a).

Just like with edge states, the states corresponding to
those eigenvalues in the gap are sharply localized around
the position of the perturbation, as shown in the right
panels in Fig. 6. This is in stark contrast to the states
with energies just above and below in value, which are
shown to be completely delocalized in the same plots.
We have used 99 sites with α = 1/3, which allows the

modulation to be commensurate. Even for moderate per-
turbation, the spectrum from the continuum ring model,
including the stripe pattern, resembles that for an open
1D lattice for the discrete model in Ref. [35], where the
same value of α was used, but with 100 sites. But, if
we use 100 sites on a continuum ring, the two potentials
in Eq. (2) become incommensurate, and other stripe fea-
tures appear since the mismatch of the lattice around the
ring acts like an additional perturbation.
Figure 6 illustrates a surprising feature: The strength

of the perturbation can be very weak compared to the
depth of the primary lattice. Here we used VL = 100, and
even for VP /VL = 10−4, the stripes and localization are
already emergent. Furthermore, from VP /VL = 10−3 as
the perturbation strength is increased by several orders
of magnitude, those features are remarkably invariant,
with very little change even quantitatively. The small
perturbation strength required makes sense in one way;
it is of the same order of magnitude as the Harper mod-
ulation used here VH = 0.024. Yet, the strong similarity
in behavior with edge states raises questions about the
nature of the latter since, with such a weak perturbation,
the ring can hardly be considered ‘cut’ and by no means

creates the analog of an edge since that would imply the
presence of an infinite potential. It appears that certain
features like localization and intra-band energies associ-
ated with edge states can actually be induced with a very
tiny perturbation.
There is another interesting effect that emerges from

an additional freedom in the continuum model not
present in the discrete model: The position of the pertur-
bation can be varied within the span of of a single period
of the primary lattice and specifically it can be positioned
at one of its crests so that the perturbation is actually in
between two lattice sites, something not literally possi-
ble in the discrete model. We find that the stripe pattern
generated for this midway location is much more sensi-
tive to the strength of the perturbation, Fig. 7(a) and (b)
show that the pattern changes completely when the per-
turbation strength is increased from VP = 1 to VP = 10.
This is in stark contrast with Fig. 6 where the perturba-
tion is at the well bottom and the pattern hardly changes
over several orders of magnitude variation of VP .
To probe this farther, in Fig. 7(c) we kept the strength

fixed at VP = 1 and instead increased the width σ by a
factor of 10, and that led to a pattern similar to increas-
ing the strength by a factor of 10. On the other hand,
reducing σ while increasing VP seems to compensate for
each other, as seen in Fig. 7(d) which appears qualita-
tively similar to Fig. 7(a). It appears that the midway
location acts as if in the discrete limit there is a perturb-
ing potential at two adjacent sites, a fact accentuated by
strengthening or widening the perturbation.

VII. COMPLEX COUPLING AND ROTATION

So far we have neglected the phase ϑ that can lead
to a complex coupling coefficient J1e

±iϑ in the Harper
equation in Eq. (1). The phase can originate from one
of the wavenumbers k in the 2D problem, with ϑ = ka.
Assuming this dependence on the lattice parameter, a, in
the continuum limit of a→ 0, a Taylor expansion readily
establishes the correspondence,

eiϑψ(x+ a) + e−iϑψ(x− a)− 2ψ(x)

≃ −a
2

h̄2

(

p̂− h̄ϑ

a

)2

ψ(x). (9)

This suggests that in the continuum we simply need to
modify the kinetic energy by the minimal coupling that
is the standard approach for introducing gauge fields in
quantum mechanics. This amounts to the following mod-
ification in the continuum Hamiltonian Eq. (2),

− h̄2

2m

d2

dx2
→ − h̄2

2m

d2

dx2
+ iϑ

h̄2

ma

d

dx
+
h̄2ϑ2

2ma2
(10)

The second term can be written as ih̄RΩdx, with R be-
ing the radius of the ring, Ω = h̄ϑ/(maR) would be the
angular velocity of the ring rotating around its symme-
try axis through its center. Thus, the effect of this term
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FIG. 8: The complex coupling J1e
iϑ in the Harper Hamilto-

nian creates oscillations in the spectrum as shown here for the
lowest band with N=6 lattice sites and J1 = 1. The spectrum
for the discrete Hamiltonian is shown (a) with no modula-
tion J2 = 0 and (d) with modulation at the critical strength
J2 = 2 with α = 1/2. This behavior is reproduced in the con-
tinuum lattice by modifying the momentum operator with a
minimal coupling gauge potential term as done in Eqs. (9)
and (10) and plotted here in (b) and (e). The oscillations in
the spectrum can be generated by rotating the lattice as seen
in (c) and (f), but with a curvature arising from leaving out
the square term in Eq. (10). The colors and alternating solid
and dotted lines differentiate the different energy levels.

can be simulated by simply rotating the ring. This is to
be expected from the well-known analogy of rotation and
magnetic vector potential [10]. The square term has the
form of a centripetal contribution, mR2Ω2, but has no
clear counterpart in the 1D dynamics. For constant an-
gular momentum it would simply provide an energy shift
but it has a more significant effect when the angular mo-
mentum is varied, as we will see.

In Fig. 8 we show that with the introduction of these
extra terms, the effect of the complex coupling can be
reproduced faithfully. In these particular plots, we have
further scaled all lengths by R. When the Harper mod-
ulation is absent, the results for the discrete plot in
Fig. 8(a) and the continuum plot with the two added
terms in Fig. 8(b) are practically identical. The differ-

ent colors mark the six different energy levels in the first
band, due to using N = 6 cells here, and that is also re-
flected in the periodicity of the oscillation of the energies
as a function of the phase ϑ and the angular velocity Ω
respectively in plots Fig. 8(a) and (b). However, when
the Ω2 term is left out in Fig. 8(c), the spectrum ac-
quires an overall curvature proportional to Ω2, although
other features of the spectrum are preserved. This would
be the form of the spectrum if the ring shaped lattice is
simply rotated, without any mechanism to simulate the
square term.
With the phase and its continuum counterparts in

place, if we now include the Harper modulation, the first
band breaks into sub-bands, two of them in this case
since we use α = 1/2. The result for the discrete model
is shown in Fig. 8(d) and the continuum model with and
without the square terms are shown in Fig. 8(e) and (f),
both of which show qualitatively similar structure. Apart
from the emergence of the sub-bands the behavior is sim-
ilar to when the modulation is absent, just as discussed
above. Notably, there is a difference in the widths of the
two sub-bands in the continuum plots, which arises from
the fact that we have used a low value of lattice depth
here VL = 10, and that difference diminishes at higher
lattice depths.

VIII. CONCLUSIONS AND OUTLOOK

We have examined the continuum version of the Harper
model as mapped to a 1D ring-shaped lattice with two
commensurate sinusoidal potentials. We have demon-
strated that all the salient features of the model can in-
deed be realized just as well as in the 2D lattice systems,
that have had primacy in experiments. By not assum-
ing a tight-binding model, we have identified departures
from the idealizations intrinsic in the standard from of
the Harper model. Specifically, we observed deviations
from bilateral symmetry and general distortions of the
signature Hofstadter butterfly spectrum, and found the
conditions necessary to approach the idealized picture.
We demonstrated that the localization transition pre-

dicted by Aubry and André, proven for incommensu-
rate lattice periods, can also be realized on a ring even
though the lattice periods are commensurate with ratio-
nal α = p/q and even when the integers p, q have single
digit values. By introducing even a small perturbation,
we also found that analogs of localized edge states can be
created with much flexibility, possessing the features of
the edge states in open systems. Rotating the lattice al-
lows modeling the complex nearest neighbor couplings in
the general Harper model, but with a curved spectrum.
Introducing nonlinearity due to atom-atom interaction

for bosons in this model will certainly lead to additional
features. Some aspects can be surmised from generaliza-
tion of the discrete 2D model to include a two body in-
teraction term in a Hofstadter-Hubbard model [37]. Ex-
tending such considerations to a continuum ring system
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as examined here, can be a fruitful line of future research.
The technology for realizing the physics discussed here

already exists. Ring-shaped lattices have been demon-
strated with interfering Laguerre-Gaussian (LG) beams
that carry opposite angular momentum (OAM). Using
beams with two different OAM can create the bichro-
matic azimuthal lattice structure necessary. Trapping
ultracold atoms in LG beams has also been successfully
demonstrated in experiments. Therefore, it is primarily a
matter of bringing the relevant capabilities together, and
we hope this paper can provide some motivation towards
that. Considering how significant the Harper model has
been and continues to be in physics, the ability to exam-

ine it experimentally in a feasible alternate configuration
with some decided advantages, will certainly be a valu-
able addition to the arsenal of ultracold atomic systems
for probing fundamental physics.
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