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A theory of coherent transients is developed in which a sequence of optical pulses is incident
on a sample of trapped atoms and gives rise to phase-matched emission from the sample. The
trapping potential for the atoms can be state-dependent, necessitating a quantum treatment of the
center-of-mass motion. A source-field approach is followed, modified to account for the quantized
motion of the atoms. The theory is illustrated with two examples, one involving the creation of
ground-Rydberg level coherence in an optical lattice and the second Raman coherence between two,
ground state sublevels of atoms in a dipole trap. For state-independent potentials, a comparison is
made with a theory in which the center-of-mass motion is treated classically.

PACS numbers: 42.50.Md, 37.10.Jk, 32.80.Ee, 37.10.Vz

I. INTRODUCTION

Coherent transients provide an important probe of
atomic and molecular systems. Historically, the field of
coherent transients was developed within the context of
nuclear magnetic resonance (NMR). In NMR a series of
radio frequency pulses is applied to a spin system [1]. In
response to the applied pulses, the sample emits a coher-
ent signal that can be used to measure spin relaxation
rates. With the development of laser sources, the co-
herent transient technique was extended to the optical
domain [2]. A series of optical pulses is applied to an
atomic or molecular sample, resulting in phase-matched,
coherent emission from the sample. Such coherent optical
transients (COT) can be used to measure the relaxation
rates of the various atomic coherences that are produced
by the incident pulses. In both NMR and COT, inho-
mogeneous variations in the transition frequencies of the
spins or atoms can result in significant damping of the
generated signals. In NMR, stray magnetic fields mod-
ify the separation between spin magnetic sublevels while
in COT the Doppler shift associated with atomic mo-
tion leads to the inhomogeneities. Spin echoes and pho-
ton echoes represent coherent transient techniques that
can be used to suppress the effects of magnetic field or
Doppler dephasing.

A somewhat more direct way of eliminating Doppler
dephasing is to cool atoms. However, even at temper-
atures of tens of microKelvins that can be achieved us-
ing standard laser cooling techniques, Doppler dephasing
can still be the dominant factor that limits the lifetimes
of long-lived atomic coherences. To further reduce any
effects of motional or Doppler dephasing, atoms can be
trapped in optical potentials that confine the atoms to
distances that are much smaller than the relevant op-
tical wavelengths [3]. This is akin to Dicke narrowing
[4], where collisions of atoms with a background buffer
gas effectively restrict the atoms to a small volume for
the duration of a given experiment. To observe Dicke
narrowing, there is a subtle effect that enters. If the col-
lision interaction between the buffer gas and the atoms is
state-dependent, that is, if the collision interaction differs

for the two atomic states of an optical transition, then
the mechanism responsible for Dicke narrowing can be
totally suppressed [5]. In such cases, the atomic center-
of-mass motion must be quantized to properly model the
system. The same can be said for trapping by optical
potentials. If phase-matched emission results from co-
herence between two atomic levels for which the optical
potentials are different, the atomic motion in the trap-
ping potentials must be treated using a fully quantum
theory.

Light-matter interfaces and quantum memories based
on Raman scattering [6, 7] or excitation to Rydberg lev-
els [8, 9] in atomic ensembles are well-known applications
of COT. Such systems have been studied intensely in the
past two decades. Much of the experimental and the-
oretical work in this area was focused on situations in
which atoms are not subjected to external forces. On
the other hand, there are experiments aimed at achieving
long-term (≥ 1 s) quantum state storage that make use
of atomic confinement, typically employing far-detuned
optical fields [10–12]. The atomic state dynamics is then
governed by the periodic motion in the confining poten-
tials, with a corresponding modulation of the strength
of atom-light coupling and memory storage/retrieval ef-
ficiencies.

Although there have been numerous papers written
related to the interaction of optical fields with trapped
atoms in the context of laser cooling [13], light scatter-
ing [14], fluorescence [15], and wave packet oscillations
[16], there have been only a few articles that addressed
phase-matched emission from trapped atoms. Zhao et al.

[17] and Jenkins et al.[18] calculated the phase-matched
emission from an ensemble of trapped atoms following a
Raman excitation pulse and a readout pulse. Recently,
Lampen et al. [19] presented both theoretical and ex-
perimental results for phase-matched emission from an
ensemble of trapped atoms using pulsed, two-photon ex-
citation of a Rydberg level pulse followed by a readout
pulse. There are also related calculations carried out
within the context of atom interferometry [20]. However,
to our knowledge, a general theory of optical coherent
transients from trapped atoms based on a source-field
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approach [21] that includes the effects of quantized mo-
tion in state-dependent trapping potentials has not yet
been developed.
In this paper, we formulate a general theory of coher-

ent transient spectroscopy that incorporates a quantum
description of the atomic center-of-mass motion. In Sec.
II, we calculate the change in atomic density matrix el-
ements produced by an optical pulse acting on a generic
two-level atomic system. The transfer matrix associated
with such a process is the building-block solution from
which the more general response of the atoms to a num-
ber of pulses can be calculated. In Sec. III, source-field
theory [21], modified to include quantized center-of-mass
motion for the atoms, is used to calculate the phase-
matched coherent transient signal emitted by a sample
of atoms. In Secs. IV and V, we present two exam-
ples to illustrate the theory. The first involves the cre-
ation and probing of ground-Rydberg level coherence in
an optical lattice and the second the effect of transit-time
loss on Raman coherence between ground state sublevels.
For state-dependent optical potentials, a quantized treat-
ment of the center-of-mass motion is needed. However,
under suitable initial conditions, a classical description
of the center-of-mass motion can be used, provided the
optical potentials are identical for the relevant atomic lev-
els. In this limit, closed form expressions for the radiated
signal are obtained with and without the assumption of
classical center-of-mass motion. The results are summa-
rized in Sec. VI. The atomic density is assumed to be
sufficiently low to neglect all atom-atom interactions.

II. PULSED EXCITATION - TRANSFER

MATRIX

A. Excitation Pulses

The atoms are subjected to a series of classical opti-
cal pulses. In this section, we calculate the response of
a generic ”two-level” atom (lower level a, upper level c,
transition frequency ωca) to the n-th pulse in this series.
The incident fields are assumed to propagate in the X di-
rection and be polarized in the z direction. In a paraxial
wave approximation, the electric field of the n−th pulse
in the sample is given by

En(R, t) =
1

2
uzEn(t)fn(R)ei(knX−ωnt) + c.c., (1)

where En(t) is the pulse amplitude at the center of the
sample, fn(R) is the (real) spatial profile of the field
in the sample, uz is a unit vector in the z direction,
kn = ωn/c is a propagation constant, and “c.c.” stands
for “complex conjugate.” The pulse duration Tpn

is as-
sumed to be sufficiently large to insure that the spa-
tial extent of the pulse is much larger than the sample
length L. As a consequence the pulse amplitude En(t)
reaches its maximum at approximately the same time for
all atoms in the sample - this time is denoted by tn. In

other words, it is assumed that the spatial profile of the
pulses can be taken to be constant during the atom-field
interaction.

In addition to their interaction with the applied field
pulses, the atoms are continuously subjected to optical
trap fields that result in state-dependent optical poten-
tials. The optical potentials associated with levels a and
c are denoted by Va(R) and Vc(R), respectively. For an
atom having mass M , the eigenenergies of the Hamilto-
nian

Hα(R) = −~
2∇2

R

2M
+ Vα(R); (α = a, c), (2)

are denoted by ~ω̃αq, the eigenkets by |αq〉, and the eigen-
functions by ψαq (R), where q represents the set of quan-
tum numbers needed to label all the quantum numbers
associated with the potential Vα(R). The eigenfunctions
ψaq (R) and ψcq′ (R) are not orthogonal for q 6= q′ if the
potential is state-dependent.

In the rotating-wave approximation (RWA), the
Hamiltonian is taken as

Hn = ~ωa |a〉 〈a|+ ~ωc |c〉 〈c|
+
∑

q

(~ω̃aq |aq〉 〈aq|+ ~ω̃cq |cq〉 〈cq|)

+
~Ω

(n)
ca (t)

2

N
∑

j=1

fn(Rj)

[

eiknXje−iωntσ
(j)
ca

+e−iknXj eiωntσ
(j)
ac

]

, (3)

where Ω
(n)
ca (t) = −µcaEn(t)/ℏ (assumed real) is a Rabi

frequency associated with the a− c transition , µca is an

electric dipole transition matrix element, σ
(j)
ca

(

σ
(j)
ac

)

is

a raising (lowering) operator for atom j, and N is the
number of atoms. It is important to recognize that Xj

is an operator - it is the X−component of the position
operator of atom j. The field is taken to be resonant
with the atomic transition, ωn = ωca.

Our goal is to calculate the change in density matrix
elements of atom j resulting from the applied pulse. In
this section, we drop the j and n labels, but it is to be
understood that all quantities refer to the time evolution
of atom j during the n−th pulse [for example fn(Rj) →
f(R), kn → k, etc.] - these labels will be restored in the
Section III. In the Schrödinger representation, density
matrix elements obey the time evolution equation

ρ̇αq;α′q′ =
1

i~
[H, ρ]αq;α′q′ . (4)

Defining an interaction representation by

ραq;α′q′ = ρIαq;α′q′ exp [−iωαα′t− iωαq,α′q′t] , (5)

where

ωαα′ = ωα − ωα′ ; ωαq,α′q′ = ω̃αq − ω̃α′q′ , (6)
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we find time-evolution equations

ρ̇Iaq;cp = −iΩca(t)

2

[

∑

p′ eiωaq,cp′ tB†
aq,cp′ (k) ρIcp′;cp

−∑

q′ e
iωaq′ ,cptρIaq;aq′B

†
aq′,cp (k)

]

;

(7a)

ρ̇Icp;aq = −iΩca(t)

2

[ ∑

q′ e
iωcp,aq′ tBcp,aq′ (k) ρ

I
aq′;aq

−∑

p′ eiωcp′,aqtρIcp;cp′Bcp′,aq (k)

]

;

(7b)

ρ̇Icp;cp′ = −iΩca(t)

2

∑

q

[

eiωcp,aqtBcp,aq (k) ρ
I
aq;cp′

−e−iωcp′,aqtρIcp;aqB
†
aq,cp′ (k)

]

;

(7c)

ρ̇Iaq;aq′ = −iΩca(t)

2

∑

p

[

eiωaq,cptB†
aq,cp (k) ρ

I
cp;aq′

−e−iωaq′,cptρIaq;cpBcp,aq′ (k)

]

,

(7d)

where k = kux and

Bcp,aq (k) =

∫

dR [ψcp (R)]
∗
f(R)eik·Rψaq (R) ; (8a)

B†
aq,cp (k) =

∫

dR [ψaq (R)]∗ f(R)e−ik·Rψcp (R) . (8b)

If we define an operator

Mca (R,k, t) = fn(R)eiHc(R)t/~eik·Re−iHa(R)t/~, (9)

then Eqs. (7) can be written in matrix form as

ρ̇Iac = −iΩca(t)

2

[

Mca (k, t)
† ρIcc − ρIaaMca (k, t)

†
]

;

(10a)

ρ̇Ica = −iΩca(t)

2

[

Mca (k, t) ρ
I
aa − ρIccMca (k, t)

]

; (10b)

ρ̇Icc = −iΩca(t)

2

[

Mca (k, t) ρ
I
ac − ρIcaMca (k, t)

†
]

; (10c)

ρ̇Iaa = −iΩca(t)

2

[

Mca (k, t)
†
ρIca − ρIacMca (k, t)

]

, (10d)

where each element ρIαα′ is now a matrix having matrix
elements 〈αq| ρIαα′ |α′q′〉 and Mca is a matrix with ele-
ments

[Mca (k, t)]αq;βq′ = 〈αq|Mca (R,k, t) |βq′〉 , (11)

for α, β equal to a or c. The pulse duration is sufficiently
short to neglect any decay during the pulse. Note that
Mca (R,k, t) is not a unitary operator owing to the factor
f(R), but that the operator

Uca (R,k, t) = eiHc(R)t/~eik·Re−iHa(R)t/~, (12)

is unitary.
In principle, Eqs. (10) could be solved numerically as

coupled equations for all the matrix elements. However
if the pulse duration Tp is sufficiently short such that

|ωaq,cpTp| ≪ 1 for all relevant q and p (this corresponds
to the atomic motion being frozen during the pulse), then
the matrixMca (k, t) can be evaluated at t = tn and Eqs.
(10) reduce to

ρ̇Iac = −iΩca(t)

2

[

Mca (k,tn)
†
ρIcc − ρIaaMca (k,tn)

†
]

;

(13a)

ρ̇Ica = −iΩca(t)

2

[

Mca (k,tn) ρ
I
aa − ρIccMca (k,tn)

]

;

(13b)

ρ̇Icc = −iΩca(t)

2

[

Mca (k,tn) ρ
I
ac − ρIcaMca (k,tn)

†
]

;

(13c)

ρ̇Iaa = −iΩca(t)

2

[

Mca (k,tn)
†
ρIca − ρIacMca (k,tn)

]

.

(13d)

Unfortunately, even though Mca (k,tn) and Mca (k,tn)
†

are time-independent in these equations, there is no sim-
ple solution owing to the fact thatMca (k, tn) is not a uni-
tary matrix. In effect, Eqs. (10) must be solved numeri-
cally to obtain the ρIαq;βq′ (t

+
n ) in terms of ρIαq,βq′ (t

−
n ).

There are two limiting cases where a relatively sim-
ple solution can be obtained. If the applied field spa-
tial profile is constant over the sample [f (R) = 1 and
Mca (k,tn) = Uca (k,tn)], then we can set

ρ̃ac (k, t, tn) = ρIac (t)Uca (k,tn) ; (14a)

ρ̃ca (k, t, tn) = Uca (k, tn)
†
ρIca (t) ; (14b)

ρ̃aa (k, t, tn) = ρIaa (t) ; (14c)

ρ̃cc (k, t, tn) = Uca (k, tn)
†
ρIcc (t)Uca (k, tn) , (14d)

which transforms Eqs. (13) into

dρ̃ac
dt

= −iΩca(t)

2
[ρ̃cc − ρ̃aa] ; (15a)

dρ̃ca
dt

= −iΩca(t)

2
[ρ̃aa − ρ̃cc] ; (15b)

dρ̃cc
dt

= −iΩca(t)

2
[ρ̃ac − ρ̃ca] ; (15c)

dρ̃aa
dt

= −iΩca(t)

2
[ρ̃ca − ρ̃ac] . (15d)

The solution of these equations is straightforward [23],







ρ̃ac (t
+
n )

ρ̃ca (t
+
n )

ρ̃aa (t
+
n )

ρ̃cc (t
+
n )






=









cos2
(

A
2

)

sin2
(

A
2

)

i sinA
2 −i sinA

2

sin2
(

A
2

)

cos2
(

A
2

)

−i sinA
2 i sinA

2

i sinA
2 −i sinA

2 cos2
(

A
2

)

sin2
(

A
2

)

−i sinA
2 i sinA

2 sin2
(

A
2

)

cos2
(

A
2

)









×







ρ̃ac (t
−
n )

ρ̃ca (t
−
n )

ρ̃aa (t
−
n )

ρ̃cc (t
−
n )






, (16)

where t±n are times just before and after the application
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of the pulse and

A =

∫ t
n+

t−n

dtΩca(t) (17)

is a pulse area. Equations (16) and (14) can be used to
calculate the change in the atomic density matrix ele-
ments in the interaction representation.
The second case where a simple solution is possible

is one in which there is a lattice trap potential varying
as −V0 cos2(ktrX) superimposed on a much more slowly
varying trap potential. If the temperature is sufficiently
low to insure that all atomic motion can be neglected on
the time scale of an experiment except that associated
with motion in the lattice potential, but is still sufficiently
large to insure that motion in the slowly varying trap
potential can be treated classically, then f (R) can be
replaced by a classical function fcl (R) and the resulting
signal averaged over the classical Boltzmann distribution
associated with the slowly varying trap potential. In this
limit Eqs. (14) and (16) remain valid, provided that the
area A appearing in Eq. (16) is replaced by

A (R) = fcl (R)

∫ t+n

t−n

dtΩca(t). (18)

Although we have taken the a−c transition to be dipole
allowed, the formalism can still be used when levels a and
c have the same parity and are driven by two-photon ex-
citation. The only change that need be made is to replace
Ωca(t) by some effective two-photon Rabi frequency that
depends on the product of the amplitudes of each of the
fields involved in the transition.

B. Readout Pulse

In some cases, it is necessary to apply a readout pulse
to generate the phase-matched signal. For example, con-
sider the level schemes shown in Fig. 1. In both cases it is
assumed that some initial two-photon pulse has created a
long-lived atomic coherence between levels a and c, both
of which have the same parity. In Fig. 1 (a), the coher-
ence is between a ground and Rydberg level and, in Fig.
1 (b), it is between two-ground state sublevels. To read
out the coherence, a pulse is applied that is resonant with
the c − b transition and results in phase-matched emis-
sion on the a − b transition. We shall assume that the
Rabi frequency Ωout

bc associated with the readout pulse
is greater than the decay rate Γb = 2γb of level b. The
duration Tout of the readout pulse may be greater than
Γ−1
b ; it is assumed, however, that all motion is frozen on

a time scale of min
(

γ−1
b , Tout

)

.
The calculation proceeds in exactly the same manner

as that for the excitation pulse, except it is necessary
to use density matrix equations for a three-level lambda
scheme [24] with a single field acting on the c − b tran-
sition. We find that, for the level scheme of 1 (a) and

Excitation

Readout

Readout

Emission

Excitation

Emission

(a) (b)

FIG. 1: Level schemes.

f (R) = 1,

dρ̃ca
dt

= −iΩ
out
cb (t)

2
ρ̃ba; (19a)

dρ̃ba
dt

= −iΩ
out
cb (t)

2
ρ̃ca − γbρ̃ba, (19b)

where

ρ̃ca (kn, t, tout) = Ucb (kout, tout)
†
ρIca (t) ; (20a)

ρ̃ba (kn, t, tout) = ρIba (t) , (20b)

kout is the propagation vector of the readout pulse, and
tout is the time the readout pulse is applied.
For the level scheme of 1 (b) and f (R) = 1,

dρ̃ca
dt

= −iΩ
out
bc (t)

2
ρ̃ba; (21a)

dρ̃ba
dt

= −iΩ
out
bc (t)

2
ρ̃ca − γbρ̃ba, (21b)

where

ρ̃ca (kn, t, tout) = Ucb (kout, tout) ρ
I
ca (t) ; (22a)

ρ̃ba (kn, t, tout) = ρIba (t) . (22b)

It is a simple matter to solve Eqs. (19) or (21) numer-
ically (or analytically for a square pulse) and then use
Eqs. (20) or (22) to obtain matrix elements of ρIca (t),
matrix elements that will be needed in the evaluation of
the phase-matched signal. If, instead of taking f (R) = 1,
we consider the second limiting case discussed following
Eq. (13), then Ωout

bc (t) is replaced by Ωout
bc (t)fcl (R) in

Eqs. (19) and (21).

III. SOURCE-FIELD EXPRESSION FOR THE

SIGNAL

The signal recorded at time t at a point detector lo-
cated at position Rd is proportional to a quantity S de-
fined by

S = R2
d 〈E−(Rd, t) · E+(Rd, t)〉 , (23)

where

E+(R, t) = i
∑

k,λ

(

~ωk

2ǫ0V

)1/2

eik·Rakλ
(t)ǫ

(λ)
k
, (24)
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is the positive frequency component of the electric field

operator at position Rd, E−(Rd, t) = [E+(R, t)]
†
, ωk =

kc,

ǫ
(1)
k

= cos θk cosφkux + cos θk sinφkuy − sin θkuz ;
(25a)

ǫ
(2)
k

= − sinφkux + cosφkuy, (25b)

are the field polarization vectors labeled by the symbol λ,
and V is the quantization volume. The field operators are
written in the Heisenberg representation, but could have
equally well been written as time-independent operators
in the Schrödinger representation. We will return to this
point shortly.
In the problem under consideration a number of clas-

sical field pulses give rise to the creation of previously
unoccupied vacuum field modes. In situations such as
this, a powerful method for obtaining an expression for
E+(Rd, t) is afforded by the so-called source-field ap-
proach [21]. In that approach the creation and annihila-
tion operators are written in terms of their initial values
and their dependence on atomic operators. For example,
consider emission on transitions from level b to a having
transition frequency ωba in an ensemble of atoms whose
center-of-mass coordinates are fixed. Level b is taken
to be the m = 0 sublevel of a J = 1 angular momentum
state, while level a is taken to be a J = 0 angular momen-
tum state. In that case, for an electric dipole interaction
of the form

Vaf (R, t) = −µ̂(t) · [E+(R, t) +E−(R, t)] , (26)

where µ̂(t) is the atomic dipole moment operator, the
Hamiltonian in the RWA is given by

H = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|

+
∑

k,λ

N
∑

j=1

[

~gkλ
eik·Rje−iωktσ

(j)
ba (t)akλ

(t)

+~g∗
kλ
e−ik·Rjeiωkta†

kλ
(t)σ

(j)
ab (t)

]

, (27)

where

gkλ
= −iµba

(

ωk

2~ǫ0V

)1/2

sin θkδλ,1, (28)

σ
(j)
ab (t

′) [σ
(j)
ba (t′)] is a lowering [raising] operator for atom

j located at position Rj, µba is the z−component of the
dipole moment matrix element (assumed real) between
states b and a, and δλ,1 is a Kronecker delta. The anni-
hilation operator at time t can be expressed as

akλ
(t) = akλ

(0)e−iωkt

− ig∗
kλ

N
∑

j=1

∫ t

0

dt′e−ik·Rjσ
(j)
ab (t

′)e−iωk(t−t′). (29)

The second term in Eq. (29) is the contribution to the
field operator that can be traced to the atoms - the so-
called source-field term. Including only the source-field

contribution in Eq. (24), it is straightforward to show
that the field operator can be written in a form that mir-
rors the classical expression for the electric field produced
by an ensemble of electric dipoles. In particular, assum-
ing that the detector is located in the radiation zone of
the atomic dipoles, one finds [21]

E+(Rd, t) = −
(

ω2
ba

4πǫ0c2Rd

)

µba sin θd

×
N
∑

j=1

σ
(j)
ab (t

(j)
r )uθd , (30)

where θd is the polar angle of the detector, uθd is a unit
vector in the direction of increasing θd and

t(j)r = t− |Rd−Rj |
c

(31)

is a retarded time.
If the center-of-mass motion of the atoms can be

treated classically, it is a simple matter to extend the
source-field result to include the effects of atomic mo-
tion. Equation (30) remains valid provided that t

(j)
r is

defined as the solution of

t(j)r = t−

∣

∣

∣Rd−Rj

(

t
(j)
r

)∣

∣

∣

c
(32)

where Rj (t) is the position of atom j at time t. On the
other hand, if the center-of-mass motion of the atoms
is quantized, Rj (t) becomes a Heisenberg operator and
there is no obvious manner in which to generalize Eq.
(30).
To make some progress in the case where the center-of-

mass motion is quantized, we can still use the Heisenberg
representation, but it is necessary to delay the sum over
field modes that lead to the final source-field expression.
In other words, we use Eq. (23) and Eq. (28) with Rj

replaced by Rj(t
′) to write the source field contribution

to the signal as

S = R2
d 〈E−(Rd, t) · E+(Rd, t)〉

= R2
d

∑

k,λ,k′,λ′

(

~ωk′

2ǫ0V

)1/2 (
~ωk

2ǫ0V

)1/2

ei(k−k
′)·Rd

×
〈

a†
k′
λ′
(t)akλ

(t)
〉

ǫ
(λ′)
k′ · ǫ(λ)

k

= µ2
baR

2
d

∑

k,k′

N
∑

j,j′=1

(

~ωk′

2ǫ0V

)(

~ωk

2ǫ0V

)

× sin θk sin θk′ei(k−k
′)·Rdǫ

(1)
k′ · ǫ(1)

k

×
∫ t

0

dt′
∫ t

0

dt′′
〈

eik
′·R̂j′ (t

′′)σ
(j′)
ba (t′′)σ

(j)
ab (t

′)e−ik·R̂j(t
′)
〉

× eiωk′(t−t′)e−iωk(t−t′), (33)

where R̂j(t) is a Heisenberg operator. Note that
[

R̂j(t), σ
(j)
αβ(t)

]

= 0, but that
[

R̂j(t), σ
(j)
αβ (t

′)
]

6= 0, in

general.
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Qualitatively, there are two types of terms that en-
ter the double summation over j and j′ in Eq. (33).
Terms with j = j′ are difficult to calculate using this
approach, but such terms contribute negligibly to the
phase-matched signal. For completeness, a method for
treating the j = j′ terms is discussed in the Appendix.
The remaining terms involve products of operators cor-
responding to different atoms, implying that the average
of the product is equal to the product of the averages. In
other words, for such terms we can write Eq. (33) as

S = |G(Rd, t)|2 , (34)

where

G(Rd, t) = µbaRd

∑

k,k′

N
∑

j=1

(

~ωk

2ǫ0V

)

×
∫ t

0

dt′
〈

σ
(j)
ab (t

′)e−ik·R̂j(t
′)
〉

e−iωk(t−t′). (35)

Written in this form, the signal contains extra terms since
terms with j = j′ are not excluded; however for a large
number of atoms N in the sample, the j = j′ terms can
be neglected since they scale as N , whereas the phase-
matched signal scales as N2.

The average in Eq. (35) can be written as

Fj =
〈

σ
(j)
ab (t

′)e−ik·R̂j(t
′)
〉

= Tr
[

ρ(0)σ
(j)
ab (t

′)e−ik·R̂j(t
′)
]

= Tr
[

ρ(j)(t′) |a〉 〈b| e−ik·R̂j

]

, (36)

where ρ(j)(t) is the density matrix for atom j at time
t and the trace is over motional states. The trace is
very difficult to carry out using Heisenberg operators, but
relatively simple to evaluate using Schrödinger operators.
Explicitly we find

Fj =
∑

q,q′

ρ
(j)
bq;aq′(t

′) 〈aq′| e−ik·R̂j |bq〉

=
∑

q,q′

ρ
I(j)
bq;aq′ (t

′) 〈aq′| e−ik·R̂j |bq〉 e−iωbq;aq′ t
′

e−iωbat
′

=
∑

q,q′

∫

dR
[

ψ
(j)
aq′ (R)

]∗

e−ik·Rψ
(j)
bq (R) ρ

I(j)
bq;aq′(t

′)

×e−iωbq;aq′ t
′

e−iωbat
′

. (37)

The key point is that the R appearing in Eq. (37) is
no longer an operator. As a consequence,when this ex-
pression is substituted back into Eq. (35), the sum over
field modes can be carried out as in normal source field

theory. In this manner, we find

G(Rd, t) = −µba

(

ω2
ba sin θd
4πǫ0c2

)

∑

q,q′

N
∑

j=1

×
∫

dR
[

ψ
(j)
aq′ (R)

]∗

ρ
I(j)
bq;aq′

(

t− |Rd−R|
c

)

× exp

[

−iωbq;aq′

(

t− |Rd−R|
c

)]

× exp

[

−iωba

(

t− |Rd−R|
c

)]

ψ
(j)
bq (R) . (38)

Since Rd ≫ R we can set |Rd−R| = Rd except in the
exponential containing ωba, since ωba corresponds to an
optical frequency. In that term, we set

|Rd−R| ≈ Rd −
Rd ·R
Rd

(39)

and Eq. (38) reduces to

G(Rd, t) = −µba

(

ω2
ba sin θd
4πǫ0c2

)

eikbaRde−iωbat

×
∑

q,q′

N
∑

j=1

ρ
I(j)
bq;aq′ (tr)U

(j)
aq′,bq (kba, tr)

†
, (40)

Since Rd ≫ R we can set |Rd−R| = Rd except in the
exponential containing ωba, since ωba corresponds to an
optical frequency. In that term, we set

|Rd−R| ≈ Rd −
Rd ·R
Rd

(41)

and Eq. (38) reduces to

G(Rd, t) = −µba

(

ω2
ba sin θd
4πǫ0c2

)

eikbaRde−iωbat

×
∑

q,q′

N
∑

j=1

ρ
I(j)
bq;aq′ (tr)U

(j)
aq′,bq (kba, tr)

†
, (42)

where

U
(j)
aq′,bq (kba, tr)

†
= e−iωbq;aq′ tr

∫

dR
[

ψ
(j)
aq′ (R)

]∗

×e−ikba·Rψ
(j)
bq (R) , (43)

kba =
ωba

c

Rd

Rd
(44)

and

tr = t−Rd/c. (45)

Equation (42) can be written in the more compact form
as

G(Rd, t) = −µba

(

ω2
ba sin θd
4πǫ0c2

)

eikbaRde−iωbat

×
N
∑

j=1

Tr
[

ρ
I(j)
ba (tr)U

(j)
ba (kba, tr)

†
]

, (46)
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where both ρ
I(j)
ba (tr) and U

(j)
ba (k, tr)

†
are matrices in the

motional states. Recall that Uba (R,k, tr) is defined in
Eq. (12). The trace in Eq. (46) is over center-of-mass
states. Although we have retained the j superscripts in
Eq. (46), the final result is actually equal to N times
the single atom result since each atom in our model is
essentially the same.
In principle, the calculation is now complete. One cal-

culates ρ
I(j)
ba (tr) by piecing together the various transfer

matrices calculated using the method outlined in Sec. II
and then carries out the trace needed in Eq. (46). As
specific examples, we now calculate the signal associated
with the level schemes of Fig. 1.

IV. SPECIFIC EXAMPLE: GROUND LEVEL -

RYDBERG LEVEL COHERENCE IN AN

OPTICAL LATTICE

We consider first the level scheme of Fig. 1 (a) in which
level a is a J = 0 ground state, level c is a J = 0 Rydberg
level, and level b is a J = 1 excited state. Trap fields,
counter-propagating in the X−direction and polarized
in the y−direction, confine the atoms in the transverse
direction and provide attractive lattice potentials

Vα(X) = −Vα cos2 (ktrX) ; α = a, c (47)

in the longitudinal (X) direction for levels a and c. Any
additional contributions to the trap potentials, such as
those associated with a breakdown of the dipole approx-
imation in calculating the Rydberg potentials [25], are
ignored. The trap fields can also give rise to a repulsive
potential for level b, but we will see that the potential
for level b is unimportant for the pulse sequence under
consideration. At t = 0, a two-photon pulse resonantly

excites atomic coherences ρ
(j)
ca . As a result of atomic

motion, these coherences undergoes dephasing. At time
t = T21, a readout pulse that is resonant with the c − b
transition frequency is applied and creates the coherences

ρ
(j)
ba . The phase-matched signal emitted by the sample,

which results from the interaction of the vacuum field
with the atoms, is dependent on the value of ρ

(j)
ba created

by the excitation and readout fields.
The excitation and readout pulses are all z−polarized

and propagate in the ±X direction. The two-photon ex-
citation pulse consists of two fields having propagation
vectors k1 = k1ux and k2 = −k2ux. The excitation pulse
has an effective propagation vector ke = k12 = k12ux,
where

k12 = k1 − k2, (48)

an effective two-photon frequency ωe = (|k1|+ |k2|) c =
ωca, and an effective two-photon Rabi frequency Ωca(t),
while the readout pulse has propagation vector kout, fre-
quency ωout = ωcb, and Rabi frequency Ωcb(t). The
waists of the excitation and readout pulses are centered
at the center of the atomic cloud at times t = 0 and

t = T21, respectively. The trap fields are also centered
at the center of the atomic cloud. It is assumed that the
radial extent of the excitation field is much smaller than
that of the trap fields and that the trap field intensity
in the longitudinal direction is constant over the extent
of the atomic cloud. As a consequence, the trap fields
can be taken to be constant over the excitation volume.
Moreover, we assume that the atoms are sufficiently cold
that any transverse motion can be neglected on a time
scale equal to T21. For example, if the atoms are cooled
to 10 µK, they move a distance of order 1.8 µm in 40
µsec. For T21 of order 40 µsec, the transverse motion
can be neglected if the waist of the excitation pulse is
much greater than 1.8 µm. The pulse durations are suf-
ficiently short to neglect all motion during the pulses.
With these simplifying assumptions, the atomic density
N can taken as constant over the excitation volume and
the spatial profiles of the excitation and readout pulses
can be considered as classical functions of atomic posi-
tion.
The problem effectively reduces to a one-dimensional

problem for quantized motion in potentials

Vα(X) = −Vα cos2 (ktrX) = −Vα + Vα sin2 (ktrX) ;

α = a, c. (49)

It proves convenient to set

Vα =
1

2

Mω̃2
α

k2tr
; α = a, c, (50)

where M is the mass of the atoms - with this definition
the motion near the bottom of the wells is approximately
harmonic with frequency ω̃α. We assume that all the
atoms in the excitation volume are trapped in the lattice
wells - transitions out of the wells are not included.
The evaluation of Eq. (46) for G(Rd, t) is complicated

since it is necessary to use the quasi-bound eigenfunc-
tions of the trap potential. For a potential having Np

lobes, the ground state (and each excited quasi-bound
state) is approximately Np−fold degenerate . Of the Np

degenerate eigenfunctions, only two correspond to the pe-
riodic Mathieu functions - the remaining states are sym-
metric or antisymmetric eigenfunctions of the Np−well
potential [26]. Instead of using these eigenfunctions, we
assume atoms are trapped in individual wells of the po-
tential with no coherence between the wave functions of
the atoms in different wells. As such the motional quan-
tum numbers are simply those associated with the quasi-
bound states of a single lobe of the lattice potential. It
is now a simple matter to piece together the signal.
Using Eq. (16), we find that the excitation pulse re-

sults in a density matrix

ρ̃(j)ca

(

0+
)

= −i sin [Ae (ρ)]

2
ρ̃(j)aa

(

0−
)

, (51)

where

Ae (ρ) = fe (ρ)

∫ 0+

0−
dtΩca(t), (52)
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ρ is a vector orthogonal to the X−axis, and fe (ρ) is
the (classical) transverse spatial profile of the excitation
pulse, which is the same for all atoms in the excitation
volume. From Eqs. (14b,14c), it then follows that

ρI(j)ca

(

0+
)

= U (j)
ca (k12ux, 0)ρ̃

(j)
ca

(

0+
)

. (53)

Between t = 0 and t = T21 this coherence decays as
a result of loss of population from level c with rate Γc,
such that

ρI(j)ca

(

T−
21

)

= e−γcT21ρI(j)ca

(

0+
)

, (54)

where γc = Γc/2. At time tout = T21 the readout pulse
transforms the c − a coherence into a b − a coherence
which can be calculated using Eqs. (16) and (20) as

ρ
I(j)
ba

(

T+
21

)

= ρ̃
(j)
ba

(

T+
21

)

= −i sin [Aout (ρ)]

2
ρ̃(j)ca

(

T−
21

)

= −i sin [Aout (ρ)]

2
U

(j)
cb (−k2ux, T21)

†
ρI(j)ca

(

T−
21

)

(55)

where

Aout (ρ) = fout (ρ)

∫ T+
21

T−
21

dtΩcb(t). (56)

and fout (ρ) is the transverse spatial profile of the readout
pulse. For times t > T+

21,

ρ
I(j)
ba (t) = e−γb(t−T21)ρ

I(j)
ba

(

T+
21

)

, (57)

where γb = Γb/2 and Γb is the rate at which the level b
population decays.
The detector is located at position Rd = Rdux, which

is in the direction of phase-matched emission. As a con-
sequence, the vector kba appearing in Eq. (42) is

kba = (ωba/c)ux = k1ux. (58)

To achieve phase-matching, it is necessary that
|k2 − kout|L ≪ 1, as is assumed (L is the longitudinal
length of the sample). In calculating G(Rd, t), given in

Eq. (46), several factors of U
(j)
αβ (kux, T21) or its adjoint

appear. Using the fact that atom j is in a potential well
centered at X = Xj , it follows from Eq. (43) that

U
(j)
aq′,bq (kux, tr) = eikXjU

(j)
aq′,bq (kux, tr) , (59)

where

Uaq′,bq (kux, tr) = eiωbq;aq′ tr

∫

dX [ψaq′ (X)]
∗
eikXψbq (X)

(60)
is independent of j and the integral is carried out over a
single well centered at X = 0. The resulting exponential
factors in the expression for G(Rd, t) are equal to unity
in the phase-matched direction. As a consequence, we
can combine Eqs. (34), (46), (51)-(58) to find that the
phase-matched contribution to the signal S emitted on

the b − a transition at a time τ = t − T21 following the
readout pulse is given by

S (T21, τ) = e−ΓcT21e−ΓbτrJ2Θ(τr) |C(T21)|2 , (61)

where

J =
µbaNL

4

(

ω2
ba

4πǫ0c2

)∫

dρ sin [Ae (ρ)] sin [Aout (ρ)] ,

(62)

τr = τ − Rd

c
= t− T21 −

Rd

c
, (63)

Θ is a Heaviside function, and

C(T21) = Tr
[

Uba (k1ux, T21)
†
ρIba

(

T+
21

)

]

= Tr

[

Uba (k1ux, T21)
† Ucb (−k2ux, T21)

†

×Uca [k12ux, 0] ρaa (0)

]

= Tr
[

Uca (k12ux, T21)
†
Uca (k12ux, 0) ρaa (0)

]

=
∑

q,q′,q′′

e−iωcq′;aqT21B†
aq;cq′ (k12ux)

×Bcq′;aq′′ (k12ux) ρq′′q (0) . (64)

The matrices B and B† are defined in Eqs. (8). The ma-

trix Uba (kba, tr)
† appearing in Eq. (46) has been eval-

uated at tr = T21, based on the assumptions that the
atomic center-of-mass motion is frozen during the read-
out pulse and that |ωbq;aq′ |Rd/c ≪ 1. Note that state
b has dropped out of the calculation. Equation (64) can
be evaluated for various trap potentials.
It has been assumed that the trap potential is constant

over the excitation volume and that any transverse mo-
tion can be neglected on a time scale equal to T21. As a
consequence, a normalized signal can be defined by

S̃ (T21) =
S (T21, τ)

S (0, τ)
= e−ΓcT21 |C(T21)|2 (65)

that depends only on T21 and the nature of the lattice po-
tentials. In other words, S̃ (T21) does not depend on the
spatial profiles of the excitation and readout pulses. Thus
it is not necessary to specify the excitation and readout
fields in the graphs of |C(T21)|2 that are be presented in
this Section.

A. State-independent potentials

In general, Eq. (64) must be used to calculate C(T21),
with matrix elements given by Eqs. (8). However, for
state-independent potentials, the internal state does not
have to be specified in calculating the matrix elements.
In that case,

C(T21) =
∑

q,q′

〈q| eiHaT21/~e−ik12Xe−iHcT21/~eik12X |q′〉

×ρq′q (0) =
〈

e−ik12X̂(T21)eik12X̂(0)
〉

(66)
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where X̂(Ts) and X̂(0) are Heisenberg operators. Of
course, Eq. (66) is all but impossible to evaluate ex-
cept for free atoms or for atoms moving in a harmonic
potential. For our specific choice of potentials, we have

Va(X) = Vc(X) = V (X) = −V0 + V0 sin
2 (ktrX) , (67)

with

V0 =
1

2

Mω2

k2tr
. (68)

1. Harmonic potential

In the harmonic approximation, that is, when the level
a and c potentials are replaced by

V (X) ∼ −V0 +
1

2
Mω2X2, (69)

it is possible to evaluate Eq. (66) directly, without re-
verting to Eq. (64). For Eq. (69) to be a good approxi-
mation, a necessary condition is

V0
~ω

=
1

2

Mω2

~ωk2tr
=

1

4ζ2tr
≫ 1, (70)

where

ζtr = ktr

√

~

2Mω
(71)

is the trap field Lamb-Dicke parameter.
In the harmonic approximation

k12X̂(T21) = k12

[

X̂(0) cos (ωT21) +
P̂ (0)

Mω
sin (ωT21)

]

= ζ
[

ae−iωT21 + a†eiωT21
]

, (72)

where

ζ = k12

√

~

2Mω
(73)

is the effective Lamb-Dicke parameter for the excitation
field,

a =
ξ̂ + iν̂√

2
; (74a)

a† =
ξ̂ − iν̂√

2
, (74b)

ξ̂ =

√

Mω

~
X̂(0); (75a)

ν̂ =
1√
~Mω

P̂ (0), (75b)

such that

C(T21) =
〈

e−iζ[ae−iωT21+a†eiωT21 ]eiζ[a+a†]
〉

= e−iζ2 sin(ωT21)
〈

eσ(T21)a
†−σ(T21)

∗a
〉

. (76)

with

σ (T21) = iζ
[

1− eiωT21
]

. (77)

The evaluation of the characteristic function
〈

eσ(T21)a
†−σ(T21)

∗a
〉

for various initial states can be found in standard texts
[27].
a. Coherent state For atoms prepared in a coherent

state |α〉,

C(T21) = e−iζ2 sin(ωT21)e−|σ(T21)|
2/2eσ(T21)α

∗−σ(T21)
∗α,
(78)

and

|C(T21)| = e−|σ(T21)|
2/2, (79)

with

|σ (T21)|2 = 2ζ2 [1− cos (ωT21)] . (80)

There is minimal dephasing for a small Lamb-Dicke pa-
rameter. This dephasing is a pure quantum effect, which
vanishes in the limit that ~ → 0. In the analogous classi-
cal problem, |C(T21)| = 1, since all atoms have the same
initial conditions.
b. Density matrix diagonal in number basis If the

atoms are prepared in a state having a density matrix
that is diagonal in the number representation,

ρnn′(0) = Pnδn,n′ , (81)

then [27]

C(T21) = e−iζ2 sin(ωT21)e−|σ(T21)|
2/2

×
∞
∑

n=0

PnLn

(

|σ(T21)|2
)

, (82)

where Ln (z) is a Laguerre polynomial.
For atoms prepared in a number state, Pq = δq,n

|C(T21)| = e−|σ(T21)|
2/2Ln

(

|σ(T21)|2
)

. (83)

The value of C(T21) is identical for an initial coherent
state and an initial vacuum state since the spatial widths
of both packets are identical and do not change in time.
For a thermal state with

Pn =
(

1− e−β
)

e−nβ; β =
~ω

kBT
, (84)
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|C(T21)| = e−|σ(T21)|
2/2

(

1− e−β
)

∞
∑

n=0

e−nβLn

(

|σ(T21)|2
)

= e−
1
2
|σ(T21)|

2 coth(β/2) = e−ζ2[1−cos(ωT21)] coth(β/2). (85)

For a Poissonian distribution,

Pn = e−n̄ n̄
n

n!
, (86)

|C(T21)| = e−|σ(T21)|
2/2e−n̄

∞
∑

n=0

n̄n

n!
Ln

(

|σ(T21)|2
)

,

(87)
which must be evaluated numerically. For large n̄, the
result is similar to the result for a number state having
n = n̄.
c. Squeezed vacuum For a squeezed vacuum with

squeeze parameter z = reiθ [27],

|C(T21)| =
∣

∣

∣〈0| eg(T21)a
†−g(T21)

∗a |0〉
∣

∣

∣ = e−|g(T21)|
2/2,

(88)
where

g (T21) = σ(T21) cosh r + σ∗(T21)e
iθ sinh r (89)

For a squeezing parameter r ≫ 1, |C(T21)| ≪ 1, in gen-
eral. Of course, C(T21) = 1 at the revival times when
ωT21 is an integral multiple of 2π. However, there is an
additional time during each period when there is a com-
plete revival, occurring when ωT21 = θ± (2n+ 1)π. For
example, when θ equals zero, additional revivals occur
for values ωT21 that are odd integral multiples of π. In
this case, from Eq. (72),

k12

[

X̂(T21 = π/ω)
]

= −k12X̂(0). (90)

Since the momentum operator no longer appears, the sig-
nal can be optimized by squeezing the spatial distribu-
tion. For values ωT21 = θ ± (2n+ 1)π, it is some com-
bination of the momentum and coordinate distributions
that is squeezed.
In Fig. 2, we plot |C(T21)|2 as a function of ωT21 for

initial pure number state and Poissonian distributions,
with ζ = 0.23. It is seen that if n̄ of the Poissonian distri-
bution equals n of the number state distribution, the two
results do not differ by much. In Fig. 3, we plot |C(T21)|2
as a function of ωT21 for initial coherent state (solid red
curve) and squeezed vacuum state distributions (dashed
blue and solid black curves), with ζ = 0.23. The dashed
blue curve is for squeezing parameters r = 1.5, θ = 0
and the solid black for r = 4, θ = 0. The extra peaks at
ωT21 = (2n+ 1)π are a clear signature of the quantum
nature of the initial motional state associated with the
squeezed vacuum.
d. Classical limit We can take a classical limit of Eq.

(66) by ignoring the commutator of X̂(Ts) and X̂(0) and

FIG. 2: Plots of |C (T21)|2 as a function of ωT21 for a state-
independent, harmonic lattice potential and for initial num-
ber state and Poissonian distributions, with ζ = 0.23 The
(upper)solid red and (lower) green curves are for initial num-
ber state distributions with n = 1 and 15, respectively. The
dashed upper blue and lower black curves are for initial Pois-
sonian distributions with n̄ = 1 and 15, respectively.

FIG. 3: Plots of |C (T21)|2 as a function of ωT21 for a state-
independent, harmonic lattice potential and for initial coher-
ent state (solid upper red curve) and squeezed vacuum state
distributions (dashed blue curve - r = 1.5, solid lower black
curve - r = 4), with ζ = 0.23.

replacing the operators by their classical counterparts to
arrive at

Ccl(T21) ∼
〈

e−ik12[X(T21)−X(0)]
〉

=
〈

e−ik12[X0[cos(ωT21)−1]+(v0/ω) sin(ωT21)]
〉

,

(91)

where the average is now a classical average over the dis-
tribution of initial conditions. For a thermal distribution,

W0 (X0, v0) =
Mω

2πkBT
exp

[

−1

2

Mv20 +Mω2X2
0

kBT

]

, (92)
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FIG. 4: Plots of |C (T21)|2 and |Ccl (T21)|2 as a function of
ωT21 for a state-independent, harmonic lattice potential and
for initial thermal distributions, with ζ = 0.23. The solid
lower red and upper green curves are the quantum results
with β = 0.5 and 10, respectively. The dashed lower blue and
upper black curves are the corresponding classical results.

we find

|Ccl(T21)| = e−2ζ2[1−cos(ωT21)]/β

= exp

[

−kBT
2V0

k212
k2tr

[1− cos (ωT21)]

]

, (93)

independent of ~. The classical [Eq. (93)] and quantum
[Eq. (85)] results agree for β ≪ 1 (high temperature
limit). Somewhat remarkably, even for β = 1, the dif-
ference between the classical and quantum predictions is
small if the Lamb-Dicke parameter is less than or of order
unity. For β ≫ 1 (low temperature limit), |Ccl(T21)| ∼ 1,

whereas |C(T21)| ∼ e−
1
2
|σ(T21)|

2

. A comparison of the
classical and quantum results is shown in Fig. 4, with
ζ = 0.23. The solid curves are the quantum results and
the dashed curves the classical results. It is seen that,
even for β = 0.5, the two results practically overlap. On
the other hand, for very cold atoms, β = 10, the classi-
cal result is almost equal to unity, whereas the quantum
result still exhibits dephasing owing to the spread of mo-
mentum in the ground state wave function.

2. Anharmonic motion

If the potential is not sufficiently deep for the har-
monic approximation to be valid, it is necessary to use
the eigenfunctions and eigenenergies for a potential that
varies as V0 sin

2 (ktrX0) (the −V0 part of the potential
can be dropped since it plays no role in this calcula-
tion). The periodic eigenfunctions and eigenvalues for
a sin2 (ktrX0) potential are the so-called An and Bn+1

Mathieu functions [28]. As long as the potential is suf-
ficiently deep and the temperature sufficiently low, the
only eigenfunctions of importance are those associated
with the quasi-bound states of the potentials for which
the An and Bn+1 Mathieu functions are nearly identical,

FIG. 5: Plots of |C (T21)|2 and |Ccl (T21)|2 as a function of
ωT21 for a state-independent, anharmonic lattice potential
and for an initial thermal distribution with ζ = 0.23, ζtr =
0.16, and β = 0.41. The solid red curve is the quantum
result, the dashed blue curve is the classical result, and the
dotted black curve is the quantum result for the corresponding
harmonic potential.

FIG. 6: Same as Fig. 5, but with β = 3.

as are the eigenenergies associated with these eigenfunc-
tions. This is the only limit we will consider.

The calculation of Eq. (64) must now be carried out
numerically. For ζ = 0.23 and ζtr = 0.16, results are
shown in Figs. 5 and 6 as the solid red curves for β = 0.41
and β = 3, respectively. The integrals of the type given in
Eq. (60) are restricted to a single well using appropriately
normalized Mathieu functions. The anharmonicity leads
to a reduction of the amplitude of oscillation, as well
as a decay of the signal, owing to the continuous range
of frequencies present in the response. For comparison
the results for the corresponding harmonic potential are
shown as the dotted black curves in the figures. Even
in the case of cold atoms, β = 3, when the harmonic
approximation is expected to be good, the anharmonic
and harmonic results begin to diverge at longer times,
owing to the fact that small changes in frequency can
still lead to significant phase shifts for sufficiently long
times.

a. Classical limit The fact that the classical and
quantum results for a harmonic potential are nearly iden-
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tical for β . 1 when ζ < 1 suggests that the quan-
tum and classical results for a potential that varies as
V0 sin

2 (ktrX) might also be nearly identical. The total
energy associated with the center-of-mass motion of an
atom can be written as

E =
1

2

[

M

(

dX

dt

)2

+
Mω2

k2tr
sin2 (ktrX)

]

(94)

where ω is defined by Eq. (68), and X and dX/dt are the
position and velocity of the atom. Setting ktrX = z and
ωt = τ, and using Eqs. (73) and (84), we can rewrite the
energy as

E =
βkBT

4ζ2tr

(

ż2 + sin2 z
)

, (95)

where the dot signifies differentiation with respect to τ .
The equation of motion for an atom moving in this

potential is

z̈ = − sin z

2
. (96)

The solution of this equation can be written as

z(τ) = JacobiAmplitude

[

EllipticFunctionF
(

z0;
1
ǫ

)

+
√
ǫτ, 1ǫ

]

,

(97)
where

ǫ =
(

ż20 + sin2 z0
)

, (98)

z0 = z(0), and ż0 = ż(0), and JacobiAmplitude and El-
lipticFunctionF are built in functions in Mathematica. It
then follows that, for a thermal distribution with E given
by Eq. (95),

|Ccl (T21)|2 =

∫ π/2

−π/2 dz0
∫

√
1−sin2 z0

−
√

1−sin2 z0
dż0

×e−
β

4ζ2
tr
(ż2

0+sin2 z0)−i[z(ωT21)−z0]

∫ π/2

−π/2
dz0

∫

√
1−sin2 z0

−
√

1−sin2 z0
dż0

×e−
β

4ζ2
tr
(ż2

0+sin2 z0)

, (99)

where the integrals have been restricted to bound state
motion. The integrals can be evaluated numerically. In
Figs. 5 and 6, |Ccl (T21)|2 is plotted as the dashed blue
curves for β = 0.41 and β = 3, respectively. As can
be seen, the classical and quantum results are in good
agreement for β = 0.41, but differ somewhat for cold
atoms, β = 3, when the classical picture is expected to
fail.

B. State-dependent potentials

When the potentials are state-dependent, it is neces-
sary to revert to Eq. (64). We could consider both har-
monic and anharmonic potentials. However, both anhar-
monicity and state dependence produce dephasing that

FIG. 7: Graphs of |C(T21)|2 as a function of ω̃aT21 for a
state-dependent, harmonic lattice potential and for a thermal
initial state with ζ = 0.23, β = 3, and s = 1.05 (black, dotted
curve), s =

√
2 (blue, dashed curve) and s = 1.5 (red, solid

curve).

can be attributed to more than one frequency in the prob-
lem. By limiting the discussion to harmonic potentials,
we can isolate the contribution of the state dependence
to this dephasing. In the harmonic limit, Eq. (49) for
the potentials reduces to

Vα(R) ≈ −Vα +
1

2
Mω̃2

αX
2; α = a, c. (100)

From Eq. (64), it is seen that, for incommensurable fre-
quencies ω̃a and ω̃c of the motional states of the level
a and c potentials defined in Eq. (50), there are no
complete revivals of the signal. On the other hand, if
ω̃c = (m/n) ω̃a, where both m and n are integers and n
is the least common denominator, then revivals occur at
integral multiples of ω̃aT21 = 2nπ. In Figs. 7 and 8, we
plot |C(T21)|2 as a function of ω̃aT21 for a thermal initial
state with ζ = 0.23, β = 3 or 0.41, and several values of
s = ω̃c/ω̃a.
For cold atoms, β = 3, most of the initial population is

in the ground state and only the frequencies associated
with the lowest transitions in both wells appear in the
signal (Fig. 7). For s = 1.05, these frequencies are not
resolved and we see a slight damping of the signal. For
s = 1.5 and s =

√
2, both frequencies are evident, as

is the complete revival of the signal at ω̃aT21 = 4π for
s = 1.5. For s = 1.05 there is a complete revival (not
shown) at ω̃aT21 = 40π.
The situation changes for hotter atoms, β = 0.41, since

many transitions contribute to the signal and tend to
wash out the signal, as shown in Fig. 8. For s = 1.05,
the signal is damped - a complete revival would occur
at ω̃aT21 = 40π. For s = 1.5, the complete revival is
seen at ω̃aT21 = 4π. Somewhat surprisingly, there is a
partial revival for incommensurate frequencies, s =

√
2.

It is not difficult to understand why this occurs. If we
write s = 1 + σ and insert this into Eq. (64), we see
that, for times ω̃aT21 = 2nπ/σ, the expression reduces
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FIG. 8: Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-
dependent, harmonic lattice potential and for a thermal initial
state with ζ = 0.23, β = 0.41, and s = 1.05 (black, dotted
curve), s =

√
2 (blue, dashed curve) and s = 1.5 (red, solid

curve).

to that for a state-independent harmonic potential hav-
ing frequency ω̃a. The value of |C(T21)|2 for a state-
independent potential is calculated using Eq. (85) as
exp

{

−2ζ2 [1− cos (ω̃aT21)] coth(β/2)
}

. For β = 0.41

and ζ = 0.23, |C(T21)|2 ≥ 0.35 so a partial revival is
seen at integral multiples of ω̃aT21 = 2π/σ.
An additional effect enters the calculation that is

not present for state-independent potentials. Owing
to the difference in the values of Vα the energy lev-
els in the harmonic potentials are displaced by differ-
ent amounts. In other words, we have assumed in Eq.
(100) that both ω̃α and Vα are independent of the trans-
verse coordinate ρ. If this assumption is not valid for
Vα, C(T21) must be multiplied by an additional factor,
exp {−i [Vc(ρ)− Va(ρ)]T21/~} and included in the aver-
age over the excitation field spatial profiles. This would
result in a damping of the signal with increasing T21,
making it difficult to observe the revivals when the po-
tentials differ significantly.

V. SPECIFIC EXAMPLE: RAMAN

COHERENCE - TRANSIT-TIME EFFECTS

We now turn our attention to the level scheme of Fig.
1 (b) and assume co-propagating excitation fields with
k1 ≈ k2. In this limit we can ignore the spatial phase
factors in Eqs. (8). We still assume that the trap poten-
tial is constant over the excitation volume but no longer
neglect the transverse motion of the atoms. As such, the
only net effect that we study in this section is one of
transit-time loss and revival. The excitation fields carve
out an excitation volume, but atomic motion takes atoms
out of this volume, an effect that is monitored by the
readout pulse. In essence, this is a quantum treatment
of transit-time effects, which can be compared with the
classical results for free atoms [30] or atoms in traps.

We consider only harmonic traps and state-independent,
harmonic potentials having characteristic frequency ω.
It is not much more difficult to generalize the results to
state-dependent potentials, but they have little effect on
the transit-time effects under investigation in the sec-
tion. Their only effect would be to degrade the periodic
revivals of the emitted signal that would occur for har-
monic traps at half-integral multiples of the trap period.
The readout field and two fields comprising the excitation
field are assumed to have the same waist, we.

A. Classical Limit

We consider first the classical limit, for which the nor-
malized signal can be written as

S̃ (T21) =
S (T21, τ)

S (0, τ)
= S̃cl (T21) , (101)

where

S̃cl (T21) =

∣

∣

∣

∣

Ccl (T21)

Ccl (0)

∣

∣

∣

∣

2

, (102)

Ccl (T21)=
1

4

〈

sin
[

Aee
−2ρ(0)2/w2

e

]

× sin
[

Aoute
−ρ(T21)

2/w2
e

]〉

, (103)

ρ(0) = ρ0; (104a)

ρ(t) = ρ0 cos (ωt) +
v0

ω
sin (ωt) , (104b)

and the average is taken with the classical Maxwell-
Boltzmann distribution given in Eq. (92). We can no

longer write the normalized signal S̃ (T21) as a function
of C (T21) alone, since the transverse spatial profiles of
the excitation and readout fields no longer factor out of
the expression for the signal when the transverse mo-
tion of the atoms is included (in the calculation involving
the optical lattice, the transverse motion was neglected).
With a change of variables to dimensionless coordinates,
we can wite Eq. (103) as

Ccl (T21) =
1

16π2

∫ ∞

−∞

dy

∫ ∞

−∞

dvy

∫ ∞

−∞

dz

∫ ∞

−∞

dvz

×e−(y2+v2
y)/2e−(z2+v2

z)/2 sin
(

Aee
−κ2(y2+z2)

)

× sin



Aout exp







−κ
2

2





(

y2 + z2
)

cos2 (ωT21)
+
(

v2y + v2z
)

sin2 (ωT21)
+ (yvy + zvz) sin (2ωT21)













 ,

(105)

where

κ =

√

2kBT

Mω2w2
e

=
wth

we
, (106)
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and

wth =

√

2kBT

Mω2
(107)

is the spatial width associated with the classical Boltz-
mann distribution at temperature T .
If the sin functions are expanded, all the integrals can

be evaluated analytically and the result expressed as

Ccl (T21) =
1

4

∞
∑

n,m=0

(−1)n+mA
(2n+1)
e A

(2m+1)
out

(2n+ 1)! (2m+ 1)!

× 1

1 + κ2 (3 + 2m+ 4n)+2κ4 (2n+ 1) (2m+ 1) sin2 (ωT21)
.

(108)

In the perturbation theory limit, Ae, Aout ≪ 1,

Ccl (T21) ∼
AeAout/4

1 + 3κ2 + 2κ4 sin2 (ωT21)
(109)

and

S̃cl (T21) ∼
[

1 +
2κ4 sin2 (ωT21)

1 + 3κ2

]−2

. (110)

In Fig. 9, S̃cl (T21) is plotted as a function of ωT21 for
β = 0.1, κ = 1, 5 and (A1, A2) = (0.1, 0.1) , (π/2, π/2).
The signal decays owing to transit time effects, but even-
tually revives for ωT21 = nπ; that is, any atoms that
leave the excitation volume return to it after each half-
period of oscillation. There is not much difference in
the normalized signal for weak pulses and (optimal) π/2
pulses. The transit time regime is shown in Fig. 10 for
κ = 3, 8 and (A1, A2) = (0.1, 0.1) , (π/2, π/2).
To a good approximation the weak field result for κ2 ≫

1 and ωT21 ≪ 1 is the square of a Lorentzian,

S̃cl (T21) ∼
1

[

1 + 2κ2(ωT21)
2

3

]2 , (111)

having half width

ωT21 =

√

3
(√

2− 1
)

/2

κ
. (112)

The classical results can be given a simple interpre-
tation. In this picture involving classical center-of-mass
motion, any atom j that is in the initial excitation vol-

ume has a coherence ρ
(j)
ac created by the excitation field.

When probed by the readout field, atom j will contribute
to the phase matched signal, provided it is still in the
excitation volume at the time of the readout pulse. The
time it takes an atom to leave the excitation volume is
of order tcl = we/uth, where

uth =

√

2kBT

M
(113)

FIG. 9: Plots of S̃cl (T21) as a function of ωT21 for a state-
independent, transverse harmonic potential and for initial
thermal distributions, with β = 0.1 and κ = 1 (upper red
and blue curves) ; κ = 5 (lower black and green curves). The
solid curves are for pulse areas (A1, A2) = (0.1, 0.1) and the
dashed curves for (A1, A2) = (π/2, π/2).

FIG. 10: Plots of S̃cl (T21) illustrating transit-time decay as
a function of ωT21 for a state-independent, transverse har-
monic potential and for initial thermal distributions, with
β = 0.1 and κ = 3 (upper red and blue curves) ; κ = 8
(lower black and green curves). The solid curves are for
pulse areas (A1, A2) = (0.1, 0.1) and the dashed curves for
(A1, A2) = (π/2, π/2).

is the velocity width associated with the classical Boltz-
mann distribution at temperature T . Therefore, we
would expect a transit time width of order

ωtcl = ωwe/uth = 1/κ, (114)

which is what we found. Of course, at half-integral mul-
tiples of the trap period, any atom that was excited ini-
tially is back in the excitation volume.
The quantity wth is the width of the Boltzmann distri-

bution. For κ2 ≪ 1, the excitation field width we is much
larger than wth; as a consequence almost all the atoms
are excited by the field. The Maxwellian velocity distri-
bution results in some loss of population from the excita-
tion volume as time progresses, but this is a minimal loss
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since very few atoms move outside this large excitation
volume in a trap period, implying that S̃cl (T21) ∼ 1. For
1 < κ2 ≪ 10, about a half to a quarter of the atoms are
excited by the first pulse. The velocity distribution of
the chosen atoms is still given by the initial Maxwellian
distribution since there is no velocity selection in the ex-
citation process. Between the revival times a significant
percentage of this population migrates out of the exci-
tation region, leading to a signal loss that depends on
T21. For κ

2 ≫ 10 only a very small fraction of the atoms
are excited and they quickly migrate out of the excita-
tion volume. The signal in this case is a series of spikes
of unit amplitude at the revival times, with virtually no
signal between those times.

B. Quantum Calculation

We want to derive the corresponding results for a quan-
tum thermal distribution. We expect that a quantum
description is needed if either of two conditions are not
met. First, when β ≫ 1, most of the initial state popu-
lation is in the quantum ground state, which introduces
quantum corrections. That is, the quantum and classical
results will differ whenever β ≫ 1, even though these dif-
ferences may be small in an absolute sense if κ≪ 1. The
second condition can be inferred from Eq. (85), where,
even for β ≪ 1, there are quantum corrections of or-
der βζ2. In the transit-time calculation, ζ is replaced by
ζe =

√

~/2Mωw2
e and

βζ2 → βζ2e = β2κ2/4. (115)

Thus we can expect quantum corrections to contribute
when βκ > 1, even if β ≪ 1. This is related to the fact
that the narrow spatial distribution that is excited when
κ ≫ 1 can lead to uncertainties in the momentum dis-
tribution (owing to the uncertainty principle) that are
larger than those already present in the thermal momen-
tum distribution.
Since the normalized signal does not depend strongly

on the pulse areas, it suffices to calculate S (T21) in the
quantum case assuming pulse areas much less than unity.
The normalized signal, written using dimensionless coor-
dinates, factors into equal contributions from each of the
transverse coordinates. As a consequence, we can write

S̃ (T21) =

∣

∣

∣

∣

C (T21)

C (0)

∣

∣

∣

∣

4

(116)

where

C (T21) =

∞
∑

q,q′,q′′=0

e−iωcq′;aqT21 〈q| e−βκ2ξ2 |q′〉

× 〈q′| e−βκ2ξ2/2 |q′′〉 ρaq′′;aq (0) , (117)

ξ is a dimensionless coordinate and the q’s are quantum
numbers of a one-dimensional oscillator potential. Tran-
sit time effects enter implicitly through the exponential

FIG. 11: Plots of S̃cl (T21) and S̃cl (T21) as a function of ωT21

for a state-independent, transverse harmonic potential, per-
turbative excitation and readout pulses, and for initial ther-
mal distributions, for β = 0.1 and κ = 5 (upper solid red
curve) ; κ = 10 (middle solid brown curve), and κ = 20 (lower
solid black curve). The dashed blue curves are the classical
results for the same parameters.

time factors in Eq. (117). The needed matrix elements
can be evaluated explicitly using

〈q| e−g2ξ2 |q′〉 =
(

−2g2
)

q+q′

2 Γ
(

1+q+q′

2

)

√
πq!q′! (1 + g2)

1+q+q′

2

× 2F1

(

−q,−q′, 1− q − q′

2
,
1 + g2

2g2

)

,

(118)

where Γ is the gamma function and 2F1 is a hypergeo-
metric function.
In the initial density matrix is diagonal,

ρqq′(0) = Pqδq,q′ , (119)

then

C (T21) =

∞
∑

q,q′=0

Pqe
−i(q′−q)ωT21 〈q| e−βκ2ξ2 |q′〉

× 〈q′| e−βκ2ξ2/2 |q〉 . (120)

For a thermal state with Pq =
(

1− e−β
)

e−qβ (β =
~ω/kBT ), Eq. (120) is evaluated numerically using Eq.
(118) for different values of β and κ2.

In Fig. 11, S̃ (T21) is plotted as a function of ωT21 for
β = 0.1 and κ = 5; (βκ = 0.5), κ = 10; (βκ = 1), and

κ = 20 (βκ = 2), along with the classical result, S̃cl (T21).
With increasing values of βκ, the classical and quantum
results begin to deviate. In Fig. 12, S̃ (T21) is plotted
as a function of ωT21 for κ = 1 and β = 1, 5, 10, along
with the classical result, S̃cl (T21). With increasing β, the
signal deviates significantly from the classical result.
We can estimate the signal for β ≫ 1. In the limit

of large β, Pq ≈ δq,0 and the sum in Eq. (120) can be
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FIG. 12: Plots of S̃cl (T21) and S̃cl (T21) as a function of ωT21

for a state-independent, transverse harmonic potential, per-
turbative excitation and readout pulses, and for initial ther-
mal distributions for κ = 1 and β = 1 (upper solid blue
curve) ; β = 5 (middle brown curve), and β = 10 (lower black
curve). The dashed red curve is the classical result which is
the same for all β if κ is held fixed.

carried out analytically. Using Eqs. (116)-(120), we find

S̃ (T21) ∼
1

1 + 4 sin2(ωT21)(β4κ8+3β3κ6+2β2κ4)

(2+3βκ2)2

. (121)

The result depends only on powers of βκ2, whereas the
classical result, Eq. (116), depends only on powers of κ.
If κ ≥ 1, β ≫ 1 and ωT21 ≪ 1,

S̃ (T21) ∼
1

1 + 4(ωT21)
2β2κ4

9

(122)

which is a Lorentzian having half-width 3/
(

2βκ2
)

.

VI. SUMMARY

We have presented a theory of coherent transients in
which a sequence of optical pulses is incident on a sam-
ple of trapped atoms and gives rise to phase-matched
emission from the sample. The trapping potential for
the atoms is state-dependent, in general, necessitating
a quantum treatment of the center-of-mass motion. To
carry out the calculation we used a source-field approach,
modified to account for the quantized motion of the
atoms. In the simplest version of the theory, all atomic
motion is frozen during the excitation pulses and dur-
ing the time in which the signal is emitted. For state-
independent potentials, a comparison was made with a
theory in which the motion is treated classically.
Coherent transients from trapped atoms differ in a fun-

damental way from those for free atoms. In the case of
free atoms, the Doppler phase accumulated by the var-
ious coherences in the problem are linear functions of
time. As a result it is possible to use echo techniques

to effectively eliminate effects related to inhomogeneous
broadening. With trapped atoms, no such methods can
be used since the motional phases are not linear in time.
As such, the general use of coherent transients in trapped
atoms is to establish a long-lived coherence between two
atomic levels that is only marginally affected by the mo-
tion in the trapping potentials. In this manner, quantum
coherence can be stored in the sample and read out at a
later time. Any deterioration of the signal resulting from
motional effects can be calculated using the techniques
developed in this paper.

Two examples were given. In the first, a long-lived co-
herence was established between a ground and Rydberg
level for atoms trapped in a lattice potential. Phase-
matched emission is produced with the use of a readout
pulse. The coherence loss produced by harmonic, anhar-
monic, and state-dependent potentials was investigated.
In the second example, a long-lived coherence was estab-
lished between two, ground state sublevels for atoms in
a dipole trap, and also probed by a readout pulse. The
dynamics of transit-time loss was probed in this example.

This work was supported by the ARL Center for Dis-
tributed Quantum Information, AFOSR, and the Na-
tional Science Foundation.

Appendix

We would like to return to the non-phase matched con-
tribution to the signal given by Eq. (33) with j = j′.
This term can be written as

Snpm = R2
d 〈E−(Rd, t) ·E+(Rd, t)〉

= Nµ2
baR

2
d

∑

k,k′

(

~ωk′

2ǫ0V

)(

~ωk

2ǫ0V

)

× sin θk sin θk′ei(k−k
′)·Rdǫ

(1)
k′ · ǫ(1)

k

×
∫ t

0

dt′
∫ t

0

dt′′
〈

eik
′·R̂(t′′)σba(t

′′)σab(t
′)e−ik·R̂(t′)

〉

×eiωk′(t−t′)e−iωk(t−t′), (123)

where N is the number of atoms. We have dropped the
label j since all atoms contribute equally to the signal -
R̂(t′′) and σba(t

′′) and Heisenberg operators of a given
atom. It is not simple to evaluate this expression in the
Heisenberg representation if quantized motion must be
taken into account. In fact, the best method for evaluat-
ing this term is to use a Schrödinger equation approach
[29].

Going back one step in the calculation, we write

Snpm = NR2
d

∑

k,k′

(

~ωk

2ǫ0V

)1/2 (
~ωk′

2ǫ0V

)1/2

× ǫ
(1)
k

· ǫ(1)
k′

〈

a†
k
ak′

〉

e−i(k−k
′)·Rd . (124)
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We have anticipated the fact that only the λ = 1 polar-
ization enters the calculation for the z−polarized excita-
tion and readout pulses we are using. Only states that
are diagonal in the atomic quantum numbers contribute

to the average value of
〈

a†
k
ak′

〉

; moreover, in the RWA,

the only non-vanishing terms involve the ground internal
states,

〈

a†
k
ak′

〉

=
∑

q

ρaq,k;aq,k′(t)e−iωkk′ t

=
∑

q

ρIaq,k;aq,k′(t)e−iωkk′ t, (125)

where ωkk′ = ωk − ωk′ .
The Hamiltonian is

H = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|
+
∑

q

[~ωaq |aq〉 〈aq|+ ~ωbq |bq〉 〈bq|]

+
∑

k

[

~fke
ik·Re−iωktσbaak + ~f∗

ke
−ik·Reiωkta†

k
σab

]

,

(126)

where

fk = −iµba

(

ωk

2~ǫ0V

)1/2

sin θk. (127)

From Schrödinger’s equation, it then follows that[29]

ρ̇Iaq,k;aq,k′ = ifk′

∑

p

Ubp;aq (k
′) ei(ω0−ωk′)teiωbp;aqtρIaq,k;bp,0

− if∗
k

∑

p

U †
aq,bp (k) e

−i(ω0−ωk)teiωaq;bptρIbp,0;aq,k′ ;

(128a)

ρ̇Ibp,0;aq,k′ = −γbρIbp,0;aq,k′ + ifk′

∑

p′

Ubp′,aq (k
′)

× ei(ω0−ωk′)teiωbp′;aqtρIbp,0;bp′,0, (128b)

along with the complex conjugates of these equations. In
these equations, the zero subscript stands for the vacuum
state of the field, ω0 is the b−a transition frequency, and

Ubp,aq (k) =

∫

dR [ψbp (R)]
∗
eik·Rψaq (R) ; (129a)

U †
aq,bp (k) =

∫

dR [ψaq (R)]
∗
e−ik·Rψbp (R) , (129b)

such that
∑

q

Ubp,aq (k)U
†
aq,bp′ (k)

=
∑

q

U †
bp,aq (k)Uaq,bp′ (k) = δp,p′ . (130)

Equations (128) are in a form that is identical to the
equations in Ref. [29] and can be solved iteratively and
substituted back into Eq. (124) as in that paper. The

only difference is that the matrix elements of U must be
left in the form of Eqs. (129). In this manner, we obtain
[see Eqs. (22), (23a), and (25) of Ref. [29]],

Snpm = N

(

µbaω
2
0 sin θ

4πǫ0c2

)2

Θ(τ)
∑

q,p,p′

×
∫

dR

∫

dR′ [ψbp′ (R)]∗ ψaq (R)

× [ψaq (R
′)]

∗
ψbp (R

′) e−γb(tR′−tR)

× eiω0tReiωbp′;aqtRρIbp,0;bp′,0 (tR) e
−iω0tR′ eiωaq;bptR′

+ c.c., (131)

where

tR = t− tout −
|Rd−R|

c
≈ τ +

Rd·R
Rdc

; (132)

tR′ = t− tout −
∣

∣Rd−R
′
∣

∣

c
≈ τ +

Rd·R′

Rdc
; (133)

τ = t− tout −
Rd

c
(134)

When these equations are substituted into Eq. (131) and
the terms involving the dot products are retained only in
the exponential terms containing ω0, we obtain

Snpm = 2N

(

µbaω
2
0 sin θ

4πǫ0c2

)2

Θ(τ)
∑

q,p,p′

×Ubp′;aq (kd, τ)U
†
aq;bp (kd, τ) e

i(ωbp′−ωbp)τρIbp,0;bp′,0 (τ) ,

(135)

where

kd = ω0Rd/c (136)

and

Ubp′;aq (kd, τ) = 〈bp′| eiHb(R)τ/~eikd·Re−iHa(R)τ/~ |aq〉 ;
(137)

U †
aq;bp (kd, τ) = 〈aq| eiHa(R)τ/~e−ikd·Re−iHb(R)τ/~ |bp〉 .

(138)

Finally, using Eq. (130), we arrive at

Snpm = 2N

(

µbaω
2
0 sin θ

4πǫ0c2

)2

ρbb (τ) Θ (τ) , (139)

where ρbb (τ) is the total population of level b at the re-
tarded time. Equation (139) is a somewhat intuitive re-
sult - since the atomic motion is constrained to distances
that are much less than Rd, any retardation effects re-
lated to different motional states are not important and
the non-phased matched signal arises only from the total
population in level b at time τ . Although this result is
intuitive, we have not found a way to derive it using the
Heisenberg representation.
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