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We uncover dramatic variations of the Wigner photoemission time delay with energy and angle in
the vicinity of a Fano resonance with the time delay taking opposite signs at different angles at the
same energy as well as at the opposite sides of the resonance at the same angle. These variations are
illustrated by choosing the Ne 2s → 3p autoionizing state as a case study. Moreover, we demonstrate
the existence of strikingly significant changes in time delay due to relativistic effects despite Ne
being a low-Z atom. This finding shows the possibility for utilizing time delay chronoscopy as a
new route towards experimental probing of relativistic interactions and the phases of individual
transition matrix elements upon atomic photoionization of low-Z atoms. Finally, we develop a
practical parameterization to model and explain the angle and energy variation of the autoionizing
resonance time delay in the non-relativistic limit.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

Bound states in the continuum (Fano resonances) are
omnipresent in nature and their studies remain at the
forefront of contemporary physics across various disci-
plines [1, 2]. With the recent development of ultrashort
laser pulses, dynamics of Fano resonances can be studied
in real time [3]. One of convenient characterization of
this dynamic is the wave packet group delay introduced
by Wigner, Eisenbud and Smith [4–6], Wigner time delay
(WTD). In laser induced photoionization, it is an impor-
tant indicator of electron motion on the attosecond time
scale. It is expressed as the energy derivative of the phase
of the transition matrix element. This phase is otherwise
difficult to access, in contrast to the magnitude of the
transition matrix which is accessible through the measur-
able cross sections and transition rates. Thus, determin-
ing the WTD is an important step towards a complete
characterization of photoemission process. Research in
this area was stimulated by two pioneering laboratory
studies dealing with photoemission of Ne [7] and Ar [8].
It has subsequently become a subject of intense exper-
imental and theoretical scrutiny. An early review can
be found in [9]. Later works are represented by [10–24].
Most of these investigations have involved nonresonant
photoemission. A few studies, however, focused on pho-
toionization in the region of Fano resonances [14, 15, 20–
23] where the phase, and thus the time delay, changes
rapidly over a small energy range.

In the present work, to understand the full extent of
this phenomenology, we look at the energy and angle de-
pendence of the WTD in detail to provide a road map for
future laboratory investigation. The case of the 2s → 3p
autoionizing resonance in Ne was chosen because: Ne is
a noble gas and easily dealt with experimentally; the res-

onance is in an energy region accessible to experimental
capabilities; cross section calculations for this resonance,
using the same methodology as the present study, have
shown excellent agreement with experiment [25], thereby
suggesting that the present results should be accurate.
Although Ne is a low-Z atom, we employ a fully rela-
tivistic formulation based on the Dirac Equation, thus
elucidating the role of the relativistic effects.

The present study highlights the following important
aspects of the resonantWTD: (i) A strong angular depen-
dence which varies dramatically with the photoemission
angle relative to the polarization of light, so strong that
it results in sign reversal of the WTD under certain con-
ditions. (ii) The sensitivity of the angular distribution to
relativistic effects, even at such a low Z so that the WTD
chronoscopy might be a sensitive probe of relativistic in-
teractions. (iii) The possibility of measuring the WTD
for individual amplitudes using spin-resolved time-delay
chronoscopy.

II. METHODOLOGY

The relativistic formalism of the angular dependent
WTD is presented in [26]. Briefly, the electric dipole
transition amplitude from an initial state a, (ljm), to the
final states ā, (l̄j̄m̄), for linearly polarized photons in the
ẑ direction is, to within an overall real multiplicative fac-
tor,
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Here p̂ is the photoelectron momentum direction, δκ̄ is
the phase of the continuum wave with κ̄ = ∓(j̄ + 1

2 ) for

j̄ = (l̄ ± 1
2 ), and the spherical spinor is defined as

Ωκm(n̂) =
∑

ν=±1/2

Cjm
l,m−ν,1/2νYlm−ν(n̂)χν . (2)

Here χν is a two-component spinor and C is a Clebsch-
Gordan coefficient. We combine the reduced electric

dipole matrix element
〈

ā‖Q(1)
1 ‖a

〉

defined in [26] with

the phase factors and introduce

Dlj→l̄j̄ = i1−l̄eiδκ̄
〈

ā‖Q(1)
1 ‖a

〉

, (3)

which absorbs all of the complex part of the amplitude
except for the spherical harmonics.
Present study deals with the photoionization from the

outer p-subshell of neon. Transition amplitudes for the
six possible transitions from the spin orbit split np states
are tabulated in [26]; the two amplitudes for the 2p1/2
initial state are:
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These expressions are invariant to the simultaneous sign
inversion of the spin and angular momentum projections.
Each amplitude is associated with its own WTD defined
as
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The subshell time delay, averaged over the initial m pro-
jections and summed of the final spin of the photoelectron
ν, is given by the weighted sum,
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While the angular and spin parts of the photoionization
amplitudes entering Eqs. (4-5) are fully factorized us-
ing Eqs. (1-2), the radial parts Eq. (3) need to be de-
termined numerically. In a nonresonant case, they are
obtained using the relativistic-random-phase approxima-
tion (RRPA) [27, 28] which accounts for inter-shell cor-
relations and relativistic effects. It also has the virtue
of being gauge-invariant. The RRPA equations are ob-
tained by linearizing the time dependent Dirac-Fock cou-
pled integro-differential equations. Major electron cor-
relations are included in this formalism via the time-
forward and time-backward ring diagrams, along with
the corresponding exchange terms. In the region of au-
toionization resonances, the RRPA is best used in con-
junction with relativistic multichannel quantum defect

theory (RMQDT) [29, 30]. The RMQDT parameters,
viz., the eigenphases or the quantum defects, the dipole
eigenamplitudes, and the transformation matrix from the
eigenchannels to the dissociation channels, vary rather
slowly and smoothly over the small energy region cover-
ing the autoionizing series. In the present method, the
RMQDT parameters are calculated using the RRPA at
a few energies below, within and above the resonance
region. Then, RRPA equations are solved for ener-
gies just below threshold where the autoionization con-
verges, employing open-channel boundary conditions for
the bound-to-bound transitions responsible for the res-
onances. The RMQDT method enables the reconstruc-
tion of the entire resonance spectrum using the proce-
dure outlined in [29] and implemented in [30]. In the
present calculation we consider 7 relativistic dipole tran-
sitions: 2s1/2 → np1/2, np3/2, 2p1/2 → ǫs1/2, ǫd3/2 and
2p3/2 → ǫs1/2, ǫd3/2, ǫd5/2. First two channels from 2s
represent excitation whereas others from 2p indicate ion-
ization. The present calculations are entirely ab initio

except that we have shifted the energies to reflect the
experimental Ne 2s binding energy, rather than the the-
oretical Dirac-Fock (DF) energy.

III. RESULTS AND DISCUSSION

The time delay for photoemission from the two
relativistically-split subshells, 2p1/2 and 2p3/2, in the re-
gion of the 2s → 3p resonance are studied separately.
Since the behaviour of the time delay in these two cases is
similar, we focus our attention on the simpler, the 2p1/2.
Note that the angular dependence results from the only
terms in the amplitudes that depend upon angle, the
spherical harmonics. Since the time delay is the energy
derivative of the phase, if the amplitude consists of but
a single term, the delay is clearly independent of angle.
Hoewever, if there is more than one term, with differing
spherical harmonics in the amplitude, then there is an
angular dependence because the phases of the individual
terms are weighted by the differing spherical harmonics.
The key features of the phase and time delay are illus-
trated in Fig. 1.
As expected, from the above discussion, the transition

to the final state with photoelectron spin in the positive
ẑ direction, denoted by the spin plus superscript, Eq. (4),
yields phases and time delays that are angle-dependent,
while the transition to the minus spin state, Eq. (5), re-
sults in an isotropic phase and time delay. More impor-
tantly, the plus phases for various angles are very sig-
nificantly different from each other, leading to dramatic
differences in the angular distribution of time delay seen
in the upper right panel of Fig. 1. The time delay at a
given photoemission angle can be positive or negative,
depending upon the energy. Furthermore, at a given en-
ergy, the time delay can be positive or negative, depend-
ing upon the angle. The excursions of the time delay are
very large, with positive delays up to 0.2 ps and negative
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FIG. 1: (Color online) Phases in radians (left) and associated time delays in ps (right) for the Ne 2p1/2 amplitudes of Eq. (4)
(top) and Eq. (5) (bottom)

delays down to -0.4 ps. This contrasts with nonresonant
time delays which are at the attosecond level. Thus, the
time delays in the resonance region are about five orders
of magnitude larger than nonresonant delays [10–13, 16–
19]; they are also considerably larger than the delays in
the vicinity of a similar resonance in Ar [23].
For the spin minus state, Eq. (5), different phe-

nomenology is evident from Fig. 1, since the phase and
time delay are isotropic. However, the phase changes
rather sharply, as a function of energy, leading to a time
delay which maximizes at about 2 ps; in the context of
attosecond time delay, this is 2,000,000 as. Since the
amplitude for this transition, Eq. (5), consists of a sin-
gle term, the phase and time delay are simply charac-
teristic of the complex 2p1/2 → ǫd3/2 matrix element.
The transition to the spin plus final state, Eq. (4), is
more complicated since it is a linear combination of the
2p1/2 → ǫd3/2 and 2p1/2 → ǫs1/2 matrix elements. Since
part of the coefficient of the 2p1/2 → ǫs1/2 matrix el-
ement is the spherical harmonic Y00, which is constant
and never vanishes, the 2p1/2 → ǫs1/2 matrix element is
present for all angles. Thus, even though the magnitude
of the 2p1/2 → ǫd3/2 matrix element is generally signifi-
cantly larger than 2p1/2 → ǫs1/2 , the latter contributes
at all angles, which makes the phase of the transition
to the plus spin state, Eq. (4), rather different from the
minus state, Eq. (5), especially insofar as the rapid rise
of the phase is concerned. On the other hand, the co-
efficient of the 2p1/2 → ǫd3/2 matrix element in Eq. (4)

contains Y20 which vanishes at the so-called magic angle
[31], about 54◦, where only the 2p1/2 → ǫs1/2 matrix el-
ement contributes to the transition amplitude. Thus, at
60◦, quite close to the magic angle, the coefficient is small
and the 2p1/2 → ǫs1/2 matrix element dominates, leading
to an angular dependence of the phase and time delay for
the plus transition which are different from the other an-
gles shown in Fig. 1. It is clear, then, that spin-polarized
time delay measurements of the spin plus transition at
the magic angle, and the spin minus transition at any
angle, would result in the experimental determination
of the phases (and time delays) of the individual ma-
trix elements. Obtaining the magnitudes and the phases
of transition matrix elements is the ultimate goal of ex-
perimental physics; the magnitudes obtained from cross
sections, and the phases obtained by spin-resolved mea-
surements as explained above. And such spin-polarized
measurements are essentially a reality at present [32, 33].
The situation remains of interest even if the photo-

electron spin is not resolved, and the time delay is the
weighted average, Eq. (7). This averaged time delay,
shown for 2p1/2 in Fig. 2, shows that some of the vari-
ation of the time delay with energy and angle, seen in
Fig. 1, is diminished owing to the averaging. The angular
dependence is similar to the positive spin channel alone
because the magnitudes of the amplitudes of Eq. (4) are
generally significantly larger than Eq. (5) owing to an-
gular momentum factors. That this is not always true
is evident in the time delay at 60◦, where the averaged
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FIG. 2: (Color online) Average time delay, Eq. (7), for the
photoemission from the 2p1/2 subshell of Ne in the vicinity of
the 2s → 3p autoionizing resonance.

results of Fig. 2, are rather different than those shown in
the upper right panel of Fig. 1; the deep minimum has
entirely vanished. In other words, some of the physics is
lost in taking the average.
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FIG. 3: (Color online) Averaged time delays for the photoe-
mission from the 2p1/2 and 2p3/2 subshells of Ne in the vicinity
of the 2s → 3p autoionizing resonance.

Similar considerations apply to photoemission time de-
lay from the 2p3/2 subshell, but the analysis is more com-
plicated because there are four amplitudes in this case
[26]. However, comparing 2p1/2 with the 2p3/2 reveals
role of relativistic interactions; this comparison is shown
in Fig. 3 where relativity is indeed seen to affect the re-
sults, even at such a low Z and so small an energy. From
Fig. 3, near the maxima and minima at certain angles,
differences of the order of 40% are in evidence. Note also
that at 90◦, the 2p3/2 time delay maximizes at a value
significantly larger than 2p1/2, while at 0◦, the maxi-
mum magnitude of the time delay (negative, in this case)
is rather larger for 2p1/2. This indicates that small as
they are, relativistic interactions play an important role
(changes in magnitudes) and a subtle one (changes in
which subshell has the larger time delay).
Finally, the average 2p time delay is considered; this
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FIG. 4: (Color online) Average time delay for photoemission
from the unresolved 2p subshell of Ne in the vicinity of the
2s → 3p autoionizing resonance. Top: RRPA+RMQDT cal-
culation, bottom: analytical model, Eq. (8).

is simply the average of 2p1/2 and 2p3/2 average time
delays, weighted by their respective differential cross sec-
tions in the same manner as Eq. (7), and is shown on
the top panel of Fig. 4. The results are very similar to
the time delays depicted in Fig. 3. Of interest is that,
despite an average over averages, the dramatic variation
of time delay with energy and angle across the resonance
remains, so that experimental investigation, even with-
out energy resolution of the two spin-orbit-split subshells
or spin-resolution of the photoelectrons, would still be
quite fruitful.
This variation can be understood from a simple an-

alytical model. We parameterize the amplitudes Ta of
the strong 2p → ǫd channel and Tb of the weak 2p → ǫs
channel near the resonance as

Ta = Da

[

1 + ρ
q − i

ǫ+ i

]

, Tb = Db

[

1− ρ
q − i

ǫ + i

]

(8)

with Fano parameters ρ2 = 0.7, q = −1.6, and ǫ =
(ω − ω0)/(Γ/2), ω0 = 45.55 eV , Γ = 0.013 eV from
[34]. The nonresonant ampltiudes Da, Db, are taken from
non-relativistic RPAE calculations. For truly practical
parameterizations, these amplitudes and phases can be
deduced from the measurable nonresonant 2p photoion-
ization cross section and angular anisotropy β parameter.
The resonant amplitudes, presented in Fig. 5, are anal-

ogous to amplitudes for the 3s → 4p autoionizing reso-
nance in Ar shown in Fig. 7 of [23]. Outside the res-
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FIG. 5: (Color online) Moduli (left) and phases (right) of the
resonant amplitudes Ta, Tb Eq. (8) .

onance, the strong amplitude is dominant and the or-
bital d-character determines the angular symmetry of the
ionized photoelectron wave packet. Because this orbital
character is unique, there is no angular dependence of the
time delay. Near the resonance, the strong amplitude
drops rapidly in magnitude and the competition with
the nominally weak amplitude becomes intense. This
explains the angular dependence of the time delay near
the resonance. The strong and weak amplitudes vary
near the resonance out of phase. Hence the time delay
makes positive and negative oscillations as the energy
increases. Beyond the magic angle of 54◦, the spheri-
cal harmonic supporting the strong amplitude changes
its sign and the energy oscillation of the two amplitudes
becomes in phase, making the time delay always positive.

IV. CONCLUSION

In summary, the Wigner time delay, in the vicinity of a
Fano resonance, exhibits dramatic variation with energy
and angle, with the time delay even being of opposite
signs at different angles at the same energy. Relativistic
interactions were found to induce significant effects, even
at such low Z, suggesting that time-delay chronoscopy
might be a useful tool in probing relativistic interac-
tions. And it was shown how the recently-developed
spin-polarized time delay spectroscopy could be used
to determine the phases of individual transition matrix
elements. Note that there is nothing special about the
particular resonance studied so that the phenomenology
uncovered should be qualitatively similar for other
resonances and other systems. Finally, we note that
the effect of the probing laser field used to measure
WTD goes beyond the scope of this investigation. For
a resonant transition, this effect has been considered in
[23, 35, 36]. We believe that the present study would
stimulate further interest for experimental explorations.
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