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The recoil momentum and energy of ultra-cold atoms is studied for situations where collective
scattering or emission of photons is important. Effects due to the dipole-dipole interaction are
emphasized. For two and many atoms confined in optical traps, calculations of the energy and
momentum with respect to atomic separation are performed. When the atomic separation is com-
parable to or larger than the transition wavelength, the ultra-cold atoms’ recoil energy depends
mainly on collective spontaneous decay rather than forces from the cooperative frequency shift.
Calculations for a laser pulse reflecting from an atomic array suggest that the recoil energy of atoms
can be substantially larger than might be expected from an independent atom picture.

I. INTRODUCTION

The study of collective dipole interactions has been an
active field for many decades. The original investigation
in Ref. [1] predicted how several atoms within a wave-
length could decay coherently. This concept has been
widely explored (a sample of results includes Refs.[2–13]
investigating a wide variety of topics including super-
radiance, subradiance, collective Lamb shift, ...). One
of the interesting avenues for collective effects are when
the atoms are in an array because the uniform spacing
lends itself to a build-up of coherence between the atomic
states and the radiation field.[14–21] One of the possi-
ble applications of photons interacting with atom arrays
involves quantum information.[21–24] Another interest-
ing scenario arises through the observation that a single
atom layer can act as a perfect mirror due to the col-
lective dipole-dipole interaction as noted in Ref. [16] and
extended in Ref. [17]. This perfect reflection as well as
chiral quantum optics of the array in Ref. [24] promises
the control of light fields using small arrays of atoms.
Among these efforts with atom arrays, especially those

related to quantum information or to control of light, a
potential concern to be considered is the entanglement
between the internal and positional degrees of freedom
of the cold atoms or the entanglement between the pho-
ton and atomic position degrees of freedom. The atoms’
motion can then affect the evolution of the atoms’ in-
ternal states and the interaction of subsequent photons
with the atom array. At the simplest level, this leads to
the recoil of an atom, e.g. Ref. [25]. Atomic recoil has
been investigated in many situations, e.g. cases where
the recoil changes the interaction with light, Refs. [26–
28] among many possible cases. As another example, the
collective atomic recoil laser (CARL)[29, 30] technique
uses the atoms’ recoil as a mechanism for the amplifi-
cation of the laser field. Other situations have also in-
volved the atom motion, e.g. the self-organized cavity,
utilize the collective dipole-dipole interaction of ultra-

∗ robichf@purdue.edu

cold atoms coupled in a cavity as a friction force to form
the atoms into patterns.[31–35] In addition, the radiation
force and pressure on the gas center of mass in a coopera-
tive scattering process of cold atomic ensembles has been
investigated.[36, 37] The dipole-dipole shifts and decay
rates of cold atomic ensembles modulated through quan-
tized atomic motion has been calculated.[38]

In previous theoretical treatments, the atoms are ei-
ther fixed in space (for a patterned grid) or integrated
over space (for dense clouds) to simulate the evolution of
internal states of the atoms or properties like the scat-
tered electric field. The main goal of this paper is to
understand how a photon interacting with or reflecting
from an array of atoms can lead to recoil momentum and
energy for the atoms, especially when collective scatter-
ing is important.

The basic idea is illustrated in Fig. 1. Atoms are as-
sumed trapped in an array of far off resonance traps[39,
40] near their motional ground state and all in their elec-
tronic ground state. A photon is incident on the array,
Fig. 1(a). During the scattering, the photon is temporar-
ily absorbed which leads to a collective, singly excited
state with each atom’s recoil entangled with its excita-
tion, Fig. 1(b), because the photon has momentum. At
a later time, the photon emerges and the different atoms
can have different recoil directions. We will be investi-
gating the case where each atom’s vibrational period is
much larger than the excited state lifetime and the dura-
tion of the incident laser pulse. In this case, each atom’s
individual trap can be ignored during these steps because
they happen much more quickly than the vibrational pe-
riod. (This can be thought of as the impulse limit of the
photon interaction.) Just after the photon emerges, the
average change of momentum of all the atoms must equal
minus the change in the photon momentum. However,
it is not obvious how individual atoms recoil when the
dipole-dipole interactions are important. For example, if
the recoil is spread over several atoms, then the recoil
energy would be substantially smaller than for a single
atom. Recently, two preprints[41, 42] have addressed as-
pects of the recoil of atoms in arrays but in the opposite
time limit so that the atomic vibrations are important.
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Figure 1. A cartoon of the process under consideration.
Atoms in their electronic ground state are indicated by filled
circles while electronically excited atoms are indicated by
empty circles. The red, wavy arrows indicate the incoming
and outgoing photon. The purple arrows indicate non-zero av-
erage momentum. (a) Three atoms in their electronic and mo-
tional ground state before absorbing a photon. (b) The single
excitation and recoil due to photon absorption gives a super-
position of 3 states. During this step, the atoms also interact
through the dipole-dipole interaction. (c) After the photon
is re-emitted, the different atoms have different amounts of
recoil. The average recoil momentum equals the change in
the photon momentum but the average recoil energy might
be larger or smaller than for a single atom.

In this limit, they have found interesting collective be-
havior of the atoms.

In this paper, the collective recoil of an array of cold
atoms in a collective scattering process is studied using
master equations. The spatial dependence of the col-
lective Lamb shift and the collective spontaneous decay
both contribute to the atoms’ recoil energy for small sep-
arations whereas the collective decay dominates for large
separations. The contribution to the recoil energy and
momentum from the spatial distribution of the atoms is
relatively small for typical atomic trapping frequencies.
Calculations with various size 2D grids indicate that the
recoil energy converges to a finite, non-zero result when
the number of photons per unit grid area is constant.
For a perfectly reflected photon, one might expect that
the recoil energy would be 4Er where Er = ~

2k2/(2M)
because an atom would have a recoil of 2~k. If the pho-
ton momentum is distributed over several atoms in the
collective reflection, then one would expect the recoil en-
ergy to be less than 4Er. There are cases described below
where the recoil energy is larger than the expected value
and, in one case, is ∼ 2× larger than expected for perfect
reflection. The difference between these outcomes can be
very important because the recoil energy can be close to
the energy spacing of an atom trap. For example, a 795
nm photon leads to Er ∼ 0.2 µK for Rb whereas the en-
ergy spacing in a 20 kHz trap is ∼ 1 µK. Therefore, the
difference between a recoil less than 4Er or 2× larger can
be very important for exciting modes of the atom trap.

Section II describes the methods used for the calcula-
tions. Section III describes the results when the atoms

start in a singly excited state; although this doesn’t cor-
respond to a physical situation, it gives insight into some
of the mechanisms controlling the recoil of the atoms.
Section IV contains the results for a laser pulse interact-
ing with a grid of atoms; the recoil varies for changing
atomic spacing for a fixed detuning as well as for a fixed
spacing and a variable detuning.

II. METHODS

The calculations described below are for the recoil of
atoms due to the absorption and reemission of photons.
The atoms are either in a line or in a 2D array in a plane.
The number of atoms will be denoted by N . To pick
a specific geometry, the direction of the initial photon
propagation will be in the ŷ direction, k0 = kŷ, with
the polarization in the z-direction, Ê = ẑ. Bold face will
indicate vectors while ẑ is a unit vector. The vector rj
is the position of atom j and not an internal, electronic,
degree of freedom.
The calculation of the recoil is performed using density

matrix techniques. Generically, the density matrix is a
solution of the master equation[13, 17, 18, 38, 41]

∂ρ

∂t
=

1

i~
[H, ρ] + L(ρ) (1)

where the ρ is the density matrix, H is an effective Hamil-
tonian, and L is the Lindblad superoperator. The Hamil-
tonian and Lindblad superoperator will be given below.
They both contain terms from the dipole field propaga-
tor. The difference between the positions of two atoms
occurs many times below so we will introduce the defini-
tions

rij ≡ ri − rj r′ij ≡ ri − r′j r′′ij ≡ r′i − r′j (2)

to simplify the notation.
The goal of this paper is to calculate the effects from

recoil numerically with as few approximations as possi-
ble. However, for more than a couple atoms, the di-
mension of ρ becomes too large to treat numerically for
typical atoms. Instead of approximating the results from
Eq. (1), we will simplify the internal states of the atom to
reduce the size of the density matrix in the calculations.
There could be important effects missed due to the sim-
plification but the basic phenomena should be preserved.
One of the simplifications is to simulate the case where

there is one ground state and one excited state. This
simplification is often used in calculations because the
ground electronic state of a many atom system is only
one state. By also restricting the excited level to one
state, the number of states increases most slowly with
the number of atoms. In the calculations below, the for-
mulas will be for a system where the ground state has 0
angular momentum and the excited state has 1 unit of
angular momentum. The other simplification will be to
restrict the system to the weak laser limit so that only the
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ground state and singly excited states are relevant. This
limitation is to match the simulations of Refs. [16, 17, 24]
and to reduce the effects from other processes (e.g. hav-
ing a pair of excitations on neighboring atoms).

Because we are simulating 0 to 1 transitions in the
weak laser limit, the internal states of each atom can be
treated as harmonic oscillators instead of the two state
system used below: the resulting equations below for the
density matrix and recoil momentum and energy would
be unchanged if the internal states are treated as har-
monic oscillators.

The density matrix will be used to represent both the
internal states of the atom and the positional degrees
of freedom. Since there are only 0 or 1 excited atom
at a time, the collective internal states will be repre-
sented using the simplified notation: the ground state
corresponds to all atoms in the electronic ground state,
|g〉 = |g1g2...gN 〉, while the N different singly-excited
states are |ei〉 = |g1g2...ei...gN 〉. The position terms in
the density matrix will be represented using the atoms’
coordinates ri. The full density matrix will be repre-
sented as

ρ = |g〉〈g|ρgg(r1, r2, ...rN ; r′1, r
′
2, ...r

′
N ) +

∑

i

|ei〉〈g|ρeig(r1, r2, ...rN ; r′1, r
′
2, ...r

′
N ) +

∑

i

|g〉〈ei|ρgei(r1, r2, ...rN ; r′1, r
′
2, ...r

′
N ) +

∑

ij

|ej〉〈ei|ρejei(r1, r2, ...rN ; r′1, r
′
2, ...r

′
N ) (3)

with the ρab functions of 6N variables representing the
position components of the density matrix.

The effective Hamiltonian, H , is the sum of three
distinct types of terms: 1) the trapping Hamiltonian
for each atom, 2) the laser-atom interaction, and 3)
the dipole-dipole interaction between an excited and a
ground state atom. The Hamiltonian will be in the rotat-
ing wave approximation so that the fast time dependence
from the oscillation of the electric field is removed. The
trapping Hamiltonian for each atom will be assumed to
be deep enough that it can be approximated as a simple
harmonic oscillator for each atom, leading to

Ht =
∑

j

[

p2
j

2M
+ V (rj −Rj)

]

V (r) =
1

2
M

[

ω2
⊥x

2 + ω2
‖y

2 + ω2
⊥z

2
]

(4)

where the x, z harmonic oscillator frequency is assumed
to be the same while that in y is different and Ri is
the average position of the i-th atom. To isolate the
effects from recoil, we have chosen to have the ground and
excited states experience the same trapping potential, i.e.
the atoms are trapped at the magic wavelength. The
laser-atom term will include the effect from the detuning

as well as the laser-atom interaction:

Hl = ~

∑

j

[

−δπ†
jπj +

Ω

2
π†
je

ik0·rj +
Ω∗

2
πje

−ik0·rj

]

(5)

where πj = |gj〉〈ej | is the lowering operator for the in-
ternal state of atom j, Ω is the Rabi frequency, δ is the
detuning, and k0 = kŷ is the initial wave number of the
photons. The dipole-dipole interaction term is

Hdd = ~

∑

j 6=i

ℑ[g(rji)]π†
jπi (6)

where ℑ[α] means take the imaginary part of α and we
used Eq. (2). For z-polarization of the excitation

g(r) =
Γ

2

[

P0(cos θ)h
(1)
0 (kr) + P2(cos θ)h

(1)
2 (kr)

]

(7)

where Pℓ are the Legendre polynomials, h
(1)
ℓ are the out-

going wave spherical Hankel functions, cos θ = z/r, and
Γ is the radiative decay rate of the excited state. Lastly,
the Lindblad term is equal to

L(ρ) =
∑

i,j

[2ℜ[g(r′ji)]πjρπ†
i −ℜ[g(rij)]π†

i πjρ

−ℜ[g(r′′ij ]ρπ†
i πj ] (8)

where ℜ[α] means take the real part of α and we used
Eq. (2) r′ji = rj − r′i etc. This term includes the usual
one atom decay term when i = j.
Two important properties will be used extensively be-

low. The first is that the ℜ[g(r)] is an even function
which means the first derivative in any direction is zero
in the limit r → 0. The other is that ∇2g(r) = −k2g(r)
because the g is the sum of solutions of the Helmholtz
equation.

A. Slow oscillation approximation

Besides the simplifications described above, there will
be one approximation in the solution of the master equa-
tion. The calculations will only be for situations where
the time scale of the atom motion is much slower than
the time evolution of the internal states. Thus, the cal-
culations will be for cases where Γ ≫ ω⊥, ω‖ and where
the laser pulse has a time width much shorter than the
periods. In practice, this situation will often occur since
the frequencies are typically less than a few 10’s of kHz
while the excited state decay rates are often larger than
106 s−1. The restriction on the laser pulse duration im-
plies it is less than a few µs.
Within this approximation, the Ht part of the Hamil-

tonian has hardly any effect while the internal states are
excited and then decay back to the ground state. As will
be seen below, this leads to the density matrix after the
excited states have all decayed, but before the time scale
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of the atom trap, having a spatial dependence with the
form

ρf (r1, r2...; r
′
1, r

′
2...) = ρ0(r1, r2...; r

′
1, r

′
2...)

×F (r1, r2...; r′1, r′2...) (9)

where ρ0 is the initial spatial dependence and F is a
function with the property

F (r1, r2...; r1, r2...) = 1 (10)

to preserve the norm of the density matrix. The function
F does not necessarily have unit norm except for the case
of Eq. (10). Lastly, F is hermitian: F (r; r′) = F ∗(r′; r)
where r represents all of the coordinates.
The physical parameters discussed below will be the

recoil momentum and the recoil energy of the different
atoms; said differently, these are the change in momen-
tum and energy. They are computed from the propor-
tionality function, F . The simplest case is the change in
momentum which can be obtained by using the product
rule of calculus. The expectation value of the j-th mo-
mentum just after the atoms have returned to the ground
state is

〈pj〉f =
~

i

∫

[∇j(ρ0F )]δ(r
′
11)δ(r

′
22)...d

3r1d
3r′1d

3r2d
3r′2...

= 〈pj〉0 +∆pj (11)

where ∇j = x̂∂/∂xj + ŷ∂/∂yj + ẑ∂/∂zj, the first term
is derived from Eq. (10), and is the original expectation
value of the momentum and the second term is a defini-
tion but is physically the change in the expectation value
of the momentum (i.e. the recoil momentum):

∆pj =
~

i

∫

[ρ0(∇jF )]δ(r
′
11)δ(r

′
22)...d

3r1d
3r′1d

3r2d
3r′2...

≡ Tr[(pjF )ρ0] (12)

In the cases treated below, the 〈pj〉0 = 0 because the
initial state will be a thermal, trapped state which must
have expectation value of zero for the momentum.
In a similar way the change in the expectation value

of the motional energy can be computed from the kinetic
energy since the time scale of the trap is slow. Defining
the kinetic energy operator of the j-th atom as Kj =
p2
j/(2M), the expectation value of the kinetic energy of

the j-th atom just after the atoms have returned to the
ground state can be obtained from the product rule and
is

〈Kj〉f =
~
2

2M
Tr[∇j · ∇′

j(ρ0F )] ≡ 〈Kj〉0 +∆Kj (13)

where the first term is derived from Eq. (10) and is the
original expectation value of the kinetic energy and the
last term is the change in the kinetic energy. Because we
are starting from a thermal state or the ground state, the
cross derivative terms (one derivative on ρ0 and one on F )
are exactly 0 because, for example, ∂ρ0/∂xj = ∂ρ0/∂x

′
j

after setting all rj = r′j while ∂F/∂x′j = ∂F ∗/∂xj =

−∂F/∂xj since ∂F/∂xj is purely imaginary after setting
all rj = r′j . Thus, for this initial configuration

∆Kj =
~
2

2M

∫

[ρ0(∇j · ∇′
jF )]δ(r

′
11)δ(r

′
22)...d

3r1d
3r′1...

= ℜ[Tr[(KjF )ρ0]] (14)

where ∇′
j is the derivative with respect to the primed

coordinate and we have used (∇j · ∇′
jF ) = −ℜ[∇2

jF ];
this relation can be derived for any function with the
property F (rj , r

′
j) = F ∗(r′j , rj).

In most cases, the derivatives were computed using
simple 2 or 3 point difference expressions with the point
separation a small fraction of a wavelength of light. Con-
vergence was checked by comparing the results for differ-
ent step sizes.

III. SINGLY EXCITED, COHERENT DECAY

The case of laser excitation followed by emission of a
photon is complicated by the role played by the laser-
atom interaction. There is a different amount of recoil
depending on the strength, the duration, and the detun-
ing of the laser. In order to more simply understand how
the atom recoil depends on the separation and placement
of the atoms, this section will describe results for the sim-
plified situation where there is no laser but the system
starts with one atom excited.
Section IV will treat the more physical case where the

atoms start in the ground state then a laser pulse causes
an excitation followed by photon emission to the ground
state.

A. One atom

This section treats the simplest possible case, i.e.
where there is only one atom. Thus, not only is there
no laser-atom interaction, there is also no dipole-dipole
interaction between atoms. It is worth presenting the
derivation for this case since the results are analytically
known but it also shows how the recoil energy is incor-
porated using the master equation.
For this case, the master equation reduces to the un-

coupled equations

∂ρee(r1, r
′
1, t)

∂t
= −Γρee(r1, r

′
1, t)

∂ρgg(r1, r
′
1, t)

∂t
= 2ℜ[g(r′11)]ρee(r1, r′1, t) (15)

where the identity ℜ[g(r1 − r′1)] → Γ/2 as r′1 → r1 was
used in the first equation. At t = 0, the terms of the
density matrix are ρgg = 0 and ρee(r1, r

′
1, 0) = ρ0(r1, r

′
1)

using the notation of Eq. (9). These two equations can
be solved analytically for ρee and ρgg. In the limit that
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the final time is much larger than 1/Γ but much shorter
than the vibrational periods, the ρee → 0 and the

ρf (r1, r
′
1) =

2ℜ[g(r′11)]
Γ

ρ0(r1, r
′
1) (16)

using the notation of Eq. (9) which means F (r1, r
′
1) =

2ℜ[g(r1 − r′1)]/Γ.
As asserted above, the F (r1, r

′
1) → 1 as r′1 → r1. Hav-

ing obtained the function F , the change in the expecta-
tion value of the momentum can be obtained

∆p1 =
2~

iΓ
Tr[(∇1ℜ[g(r1 − r′1)]ρ0] = 0 (17)

because ℜ[g(r1 − r′1)] is an even function of the separa-
tion vector. This is expected because, for any emission
direction, the photon is equally likely to be emitted in
the opposite direction which means the expectation value
should be 0. Similarly, the change in the expectation
value of the kinetic energy is

∆K1 =
−~

2

2M
Tr[(∇2

1F )ρ0] =
~
2k2

2M
Tr[Fρ0] =

~
2k2

2M
(18)

where the fact that g is a solution of the Helmholtz equa-
tion was used in the first step and the Tr[ρf ] = 1 was
used in the second step. This shows that, as expected,
the change in kinetic energy is just the recoil energy

Er =
~
2k2

2M
(19)

from the photon emission.

B. Two atom

This section will treat in detail the case of two atoms.
We will do calculations at two levels of simplification. In
the first, the atoms will start in a state where the atoms’
internal and positional degrees of freedom are not entan-
gled. In the second, we will include an entanglement that
could result from the recoil absorption of a photon.
This section will take advantage of the fact that the

Hamiltonian and the Lindblad superoperator commutes
with the swap operator which exchanges the internal
states of the two atoms. For this section, we will use
the notation

|±〉 ≡ (|e1〉 ± |e2〉)/
√
2 (20)

where, as discussed above, |ei〉 is the N -atom state
|g1g2...ei...gN 〉; N = 2 for this section. We will use these
states to define the density matrix. As an example, one of
the terms of the density matrix representation Eq. (3) will
be |+〉〈g|ρ+g(r1, r2; r

′
1, r

′
2). Below, we will suppress the

explicit writing of the spatial dependence except where
confusion might arise.
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Figure 2. The total recoil energy, ∆K = ∆K1 + ∆K2,
in units of the recoil energy, Er, versus the separation, a,
of the two atoms in units of the wavelength, λ. In both
plots, the excitation is assumed to be for the z-component:
Jg = 0,Mg = 0 → Je = 1,Me = 0. In (a), the initial state
is a symmetric, singly excited state, Eq. (20), and (b) has
the excitation entangled with a momentum kick, Eq. (24).
In both plots, the red solid (blue dashed) line is for separa-
tion in the x(z)-direction with the initial spatial distribution
much smaller than a wavelength and the orange short-dashed
(green dotted) line is for separation in the x(z)-direction but
with a thermal spatial distribution corresponding to 1 µK as
described in the text.

1. Non-entangled initial state

The initial density matrix will be ρ = ρ0|+〉〈+| =
ρ++(t = 0)|+〉〈+|. The time dependent density matrix,
Eq. (1), reduces to

∂ρ++

∂t
= −[Γ++ + iΦ̇++]ρ++

∂ρgg
∂t

= D++ρ++ (21)

where

Γ±± ≡ Γ±ℜ[g(r12)]±ℜ[g(r′′12)]
Φ̇±± ≡ ±ℑ[g(r12)]±ℑ[g∗(r′′12)]
Dss′ ≡ ℜ[g(r′11) + sg(r′21) + s′g(r′12) + ss′g(r′22)](22)

where s, s′ = ± and the general form will be used in the
next section. Note that there is a phase accumulation
term, Φ̇++, that arises from the collective Lamb shift be-
tween the two atoms due to the dipole-dipole interaction.
When r′′12 → r12, the phase accumulation term is 0.
These equations can be solved analytically as in the

preceding section and lead to

F (r1, r2; r
′
1, r

′
2) =

D++

Γ++ + iΦ̇++

(23)
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which does have the property F (r1, r2; r1, r2) = 1 since

in this limit Φ̇++ = 0 and D++ = Γ++ = Γ+ 2ℜ[g(r12)].
Having derived the expression for F , Eqs. (12) and (14)
can be used to find the change in momentum and ki-
netic energy due to the recoil. As with the one atom
case, the total momentum change must be zero due to
the symmetry of photon emission. However, atom 1 can
have a nonzero change in momentum that is exactly op-
posite that of atom 2. The total change in kinetic energy
will be non-zero but will not necessarily equal Er due
to the dipole-dipole interactions. The form of F is suf-
ficiently complicated that we numerically evaluated the
derivatives in Eqs. (12) and (14).

Figure 2(a) shows the results for the change in kinetic
energy as a function of the separation of the atoms when
the separation is in the x- or z-direction. For each direc-
tion of separation, calculations are performed for a case
where the spatial spread in ρ0 is much smaller than the
wavelength of the photons (red solid for x-separation and
blue dashed for z-separation) and for a thermal distri-
bution (orange short-dashed for x-separation and green
dotted for z-separation). The thermal calculation uses
parameters for 85Rb in a trap with frequencies 40, 10, 40
kHz in the x,y,z directions and a temperature of 1 µK
(for these frequencies and temperature the 1/e length for
the density is (0.51/k, 1.81/k, 0.51/k) with k = 2π/λ).

There are a number of interesting features for the re-
coil energy. The first, and most important, is that the
change in energy is not Er. The recoil energy of the pair
oscillates around the single atom value, converging to Er

as the separation, a, gets larger. The size of the oscilla-
tion is much different for the case when the separation is
perpendicular to the polarization of the internal state (x-
separation) than when it is parallel (z-separation) with
the x-separation having a much larger oscillation. The
difference between the ∆K for the x- and z-separation is
an indication about which processes are important. The
reason for the larger ∆K for the x-separation is related to
the discussion of Fig. 4: the collective decay has a larger
effect than the collective Lamb shift on ∆K for this range
of a. The collective decay has a smaller effect on the par-
allel (z) separation compared to the perpendicular (x)
separation because photons are emitted perpendicular to
the dipole. Another difference is that the perpendicu-
lar separation has maxima energy change approximately
at integer plus 3/4 wavelength while the parallel separa-
tion has maxima energy change approximately at integer
wavelengths. Finally, the spread in the atomic positions
only has a non-negligible effect when the separation is
less than ∼ 0.8λ and the effect is not qualitative even in
the range 0.5−0.8λ. Since the largest averaging occurs in
the y-direction, this is perhaps not so surprising because
the main separation is perpendicular to this.

Mathematically, ∆K 6= Er arises due to the denomina-
tor of F . Only taking derivatives of the numerator gives
∆K = Er. The denominator encapsulates two effects: 1)
the change in the decay rate due to the interference of
photon emission from the two atoms (Γ++) and 2) the

-0.3

-0.2

-0.1

0.0

0.1

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

∆p
/p

r

a/λ

x,0
x,T
z,0
z,T

Figure 3. Same as Fig. 2(a) except all plots are for ∆p/pr
(pr = ~k) for atom 1 in the direction of the atom separation.
The line types are the same as for Fig. 2(a).

momentum kick due to the spatial dependence of the col-
lective Lamb shift (Φ̇++). Figure 3 shows the change in
momentum of atom 1 in the direction of the atom-atom
separation (the momentum change perpendicular to the
separation is 0). The momentum change of atom 2 is
opposite that of atom 1. This change in momentum can
only occur due to the collective Lamb shift. It oscillates
around 0 with an amplitude that decreases with increas-
ing separation. As with Fig. 2(a), the effect is larger
for perpendicular separation and the effect of position
averaging is small. Although the momentum change is
nonzero, the size of the effect also suggests that the col-
lective Lamb shift is not the main reason for the ∆K
oscillation. Estimating ∆K from 2 × ∆p2/(2M) would
lead to peaks with a separation of λ/2 not λ as seen in
Fig. 2(a). Also the size does not match (for example
the ∆p peak in the x-separation of ∼ 1.2λ would give
∆K ∼ 2 × (0.08pr)

2/2M ∼ 0.01Er which is a factor of
20 smaller than the actual change).

Figure 4 compares 3 calculations for ∆K when the
atoms have x-separation. The red solid line is the same
as for Fig. 2(a). The orange short-dashed line is for a cal-

culation where the Φ̇++ term is artificially set to 0; this
is equivalent to getting rid of the collective Lamb shift
but keeping the collective decay. Except for the small-
est separation, this calculation almost exactly reproduces
the full calculation. Even at small separation, 0.5−0.8λ,
the difference is more quantitative than qualitative which
suggests that the main effect is due to the collective de-
cay. This is confirmed by comparison with a calculation
(purple dash-dot line) where the atoms are initialized to
the antisymmetric excited state ρ0|−〉〈−|. At separations
where |+〉 has a larger decay rate, the |−〉 has a smaller
decay rate and vice versa which is evident in Fig. 4 where
the solid red and green dotted lines oscillate around 1 out
of phase by 180◦. This strongly suggests the collective
decay is the main mechanism because it has the same
property.
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Figure 4. Same as Fig. 2 except all plots are for separation
in the x-direction with initial spatial extent for each atom
much smaller than a wavelength. The red solid line is the
same as Fig 2(a). The orange short-dashed line is the same
except that we only keep the Lindblad terms in Eq. (21) which
is equivalent to disregarding the potential energy from the
dipole-dipole interaction. The purple dash-dotted line is for
the full master equation but for an antisymmetric excitation.

2. Entangled initial state

The results of Sec. III B 1 do not account for the mo-
mentum kick during photon absorption. To mimic this
effect, we performed calculations where the initial elec-
tronic state is entangled with a momentum kick:

|ψ〉 = eiky1 |e1〉+ eiky2 |e2〉√
2

= α+|+〉+ α−|−〉 (24)

where α± = [exp(iky1)±exp(iky2)]/2. The initial density
matrix is

ρ = ρ0
∑

i,j=±

αiα
∗
j |i〉〈j| ≡

∑

i,j=±

ρij |i〉〈j| (25)

where, as described above, we have suppressed the ex-
plicit writing of the spatial dependence. Because of the
symmetry in the collective Lamb shift and decay terms,
the density matrix equations reduce to

∂ρss′

∂t
= −[Γss′ + iΦ̇ss′ ]ρss′

∂ρgg
∂t

=
∑

ss′

Dss′ρss′ (26)

where Eq. (22) has been used. The first equation can
be analytically solved and used in the second equation
to obtain the final density matrix. This leads to the
expression for F being

F =
∑

s,s′

Dss′

Γss′ + iΦ̇ss′
αsα

∗
s′ (27)

where the s, s′ = ± and the spatial dependence (see
Eqs. (22) and (24)) has been suppressed as discussed
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Figure 5. Same as Fig. 2(a) except for n×n atoms in a square
array with spacing a in the xz-plane with the spatial extent
of each atom much smaller than λ. The plot is for n2 times
the recoil energy of the center atom. The solid red line is for
3×3, the blue dashed line is for 5×5, the orange short-dashed
line is for 9× 9, and the green dotted line is for 13× 13. The
purple dash-dotted line is the approximate ∞×∞ grid.

above. Note that the result without the absorption kick,
Eq. (23), results by setting α+ = 1, α− = 0.
The change in energy for this case is plotted in Fig. 2(b)

for separation in the x- and z-direction. As with the
case with no photon absorption kick, the spatial spread
is not a large effect. The dependence on the direction of
separation, separation distance, etc is very similar to the
case with no photon kick except that all of the energy
changes have increased by another Er. Perhaps, this is
not very surprising because the absorption gives a kick in
the y-direction whereas the emission is mainly averaged
over many directions so that the total energy change is
the sum of the energies from the two steps.

C. Two dimensional grid of atoms

References [16, 17] calculated the reflection of photons
from a plane of equally spaced atoms. To give an idea
of the change in energy per photon, we solved Eq. (1)
numerically for an n×n square grid when the initial elec-
tronic state is the symmetric state [|e1〉+ |e2〉+ ...]/

√
N .

The change in energy for a finite grid does not have a
simple analytic form because the dipole-dipole interac-
tion does not give pure decay due to the edges of the
grid. In all of the calculations, we treat the case where
the spatial distribution of atoms is much smaller than
a wavelength because the multidimensional integrations
become very time consuming. From the two atom calcu-
lations, we know that this will give results in qualitative
agreement with a spatial average as long as the x, z ex-
tent is small.
To get an idea of how much energy each photon de-

posits in the lattice, we computed the recoil energy of the
center atom and multiplied that result by N = n2. This
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should more quickly converge to the infinite lattice result
with increasing n because this atom is furthest from the
edges of the grid. The results are shown in Fig. 5 for
different grid sizes. The atoms are on a square array in
the xz-plane. As with the two atom case, the recoil en-
ergy varies around ∆K ∼ Er and is closer to that value
for larger separations. As expected, the oscillations be-
come sharper with increasing n because the super- and
sub-radiance effects become larger. One interesting fea-
ture is that the recoil energy can be larger than 4Er for
large grids which indicates that reflecting photons from
a large grid might result in relatively large recoil energy
per photon.
The infinite lattice with atoms starting in the symmet-

ric excited state can be approximately solved analytically
because the terms in the density matrix equation mainly
couple the symmetric excited state and the ground state;
when the atoms are not on a perfect lattice (as when
computing the derivatives), there is some coupling to the
non-symmetric states. Taking as an approximation only
the symmetric excited state and the ground state, the
equations for the coefficients of these states are

∂ρ++

∂t
= −{Γ+

1

N

∑

j 6=i

[g(rji) + g∗(r′ji)]}ρ++

∂ρgg
∂t

=
1

N

∑

j,i

2ℜ[g(r′ji)]ρ++ (28)

where the limit N → ∞ is taken. As above, these equa-
tions are solved by writing the ρ++ as an exponential
function of time and then integrating the second equa-
tion. In this case, every atom has the same change in
kinetic energy so the energy given to the grid of atoms is
N× that of atom 1. After some manipulations, it can be
shown that the energy given to the grid for this case is

∆K∞ = Er

∑∞
j=1 2ℜ[g(r1,j ]

Γ +
∑∞

j=2 2ℜ[g(r1,j]
(29)

where we chose atom 1 to be the reference atom but
the result does not depend on this choice. The purple
dash-dot line in Fig. 5 shows this result. It is clear the
numerical results are converging to the ∞ grid case as
more atoms are added. The sharp variation are when
the separation of atoms give collective emission in the
plane: a = 1,

√
2, 2,

√
3, ...,×λ.

IV. EXCITATION BY LASER PULSE

In this section, we perform calculations where the
atoms start in the ground state, a laser pulse excites the
atoms to a singly excited state (at most), and then the
atoms decay back to the ground state. All of the calcu-
lations in this section will be for a square array of n× n
atoms to gain insight into the simulations of Refs. [16, 17].
As with Sec. III C, the calculations are limited to the case
where the spatial extent of the wave function is much
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Figure 6. The energy recoil (times 25) of the center atom of
a 5 × 5 square grid versus the atom separation for various
time width of the laser pulse. The black solid line (which can
hardly be seen because the red solid line overlays it) is for
the case of no laser but with the initial wave function a singly
excited state entangled with the momentum kick, |+〉n×n of
Eq. (31). In units of 1/Γ, the solid red line is for tw = 0.1,
the dashed blue line is for 0.5, the orange short-dashed line is
for 2, the green dotted line is for 8, and the purple dash-dot
line is for 32. All of the lines for laser excitation have been
normalized to be the same value at a = 4λ as described in
the text.

smaller than λ, and we will compute the recoil for the
center atom and multiply by N to avoid some of the ef-
fects from the grid edge. At the end of the calculation,
we numerically calculate the derivatives needed to obtain
the recoil momentum and energy. Because there is not a
general way to solve for this case analytically, this section
is mostly the description of numerical results.
The calculations are for a time dependent laser ampli-

tude

Ω(t) = Ω0e
−t2/t2w (30)

where the Ω0 was chosen to be a small value, Γ/400. In
this limit, the recoil energy is proportional to Ω2

0. The
recoil energy depends on the duration of the laser pulse
in a nontrivial way. For small tw compared to 1/Γ, the
excitation is an impulsive step and leads to a state, just
after the laser pulse is finished, that is a good approxi-
mation to the entangled excitation state

|ψ〉0 =
√

1− |C|2|g〉+ C|+〉n×n (31)

where |+〉n×n =
∑

j |ej〉 exp(ikyj)/
√
N . In this limit, C

is proportional to twΩ0. This is reminiscent of the en-
tangled starting condition above, Eq. (24), so as a com-
parison we also performed calculations with no laser ex-
citation but with an initial state equaling |+〉n×n.
Figure 6 shows the weighted recoil of the center atom

(the recoil multiplied by N) versus the separation of the
atoms for various laser durations. The detuning for this
calculation is 0. Also plotted is the recoil energy for the
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Figure 7. Same as Fig. 6 for the recoil energy: Q =
25β∆K/Er for the middle atom and β is the normalization
constant discussed in the caption of Fig. 6. The red solid
line (0.1/Γ) and purple dash-dot line (32/Γ) are the same as
Fig. 6. The orange short-dashed line (0.1/Γ) and blue dashed
line (32/Γ) are 2× the recoil momentum: Q = 2× 25β∆p/pr.

case of no laser excitation but starting from the entangled
state |+〉n×n, black solid line. Because the amount of re-
coil depends on the laser parameters (duration, strength,
and detuning), we have normalized all curves to have the
same value as the entangled calculation at a = 4λ. The
results for the shortest duration laser pulse, tw = 0.1/Γ
red solid line, is nearly indistinguishable from the cal-
culation with no laser but starting from the entangled
state which shows that Eq. (31) is a good approximation
for short laser pulses for all separations. This figure also
shows that the calculations of Sec. III C qualitatively re-
produce the physical case when the separation is more
than ∼ λ. However, the level of agreement at smaller
separation decreases as the duration of the laser increases
beyond ∼ 1/Γ. The fact that the plotted value goes well
above 5 for smaller separations is an artifact of the nor-
malization of all curves at a = 4λ. The sharp increase is
more related to the changing line width and shift of the
resonance with a.
A different but similar type plot is shown in Fig. 7. In

this figure, both the recoil momentum in the y-direction
as well as the recoil energy are plotted for the shortest
and longest laser pulses in Fig. 6 (i.e. tw = 0.1/Γ and
32/Γ). In these plots, we have performed the same nor-
malization of the curves as in Fig. 6 for the recoil energy
and the detuning is again 0. For the recoil momentum,
we performed the same normalization and scaled by the
photon momentum, ~k, but also multiplied by 2 so that
the asymptotic value, a → ∞, goes to 2 for both mo-
mentum and energy. The red solid line and purple dash-
dot line are the recoil energies from Fig. 6 for 0.1/Γ and
32/Γ. The orange short-dashed line is the recoil mo-
mentum (times 2) for 0.1/Γ. Note that there is almost
no variation with a because a photon is equally likely
to be absorbed for any separation due to the large laser
line width. Also note that the plotted value is roughly
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Figure 8. Recoil momentum for the center atom versus detun-
ing. The recoil momentum is calculated per photon incident
on an area a2, Eq. (32), for a separation of 0.6λ and 0.8λ. The
red solid and blue dashed lines are for an 11 × 11 grid while
the orange short-dashed and green dotted lines are for 9× 9.
The black and gray curves are 2× the reflection probability
for a photon normally incident on an infinite array using the
results from Ref. [17].

2 which means that every photon delivers a recoil mo-
mentum ≃ ~kŷ to the grid of atoms. This result could
be anticipated because every absorbed photon delivers
~kŷ but the emitted photon has symmetrical emission
which does not contribute to the average atomic momen-
tum. When the laser has a long duration, the laser line
width becomes narrow; the shifting resonance (due to
the collective Lamb shift) and the changing resonance
width leads to a strong variation with a. Note that the
large increase in recoil energy is at the same separation,
a ∼ 0.8λ, where the recoil momentum, blue dashed line,
has a large increase. This suggests that a large part of
the increases might be due to an enhanced reflectivity of
the atom array.

The near unity reflection[16, 17] for the atomic array
occurs for separations less than a wavelength and for laser
pulses with linewidths much less than Γ. Because the
atom separation is less than a wavelength, a photon with
normal incidence to the grid must deliver a recoil mo-
mentum of 2prŷ when it is reflected and 0 when it is
transmitted.[17] For every photon through an area a2, a
simple model of the reflection gives a recoil momentum
in the y-direction of R × 2pr where R is the reflection
probability. It would also have a recoil energy of R×4Er

if each atom independently reflects the photon. The re-
flection probability for a photon normally incident on an
infinite array was given in Ref. [17] and we will com-
pare our numerical results to this idealized case. To gain
some understanding of this system, we simulated the case
where an n×n grid has a laser pulse with tw = 32/Γ nor-
mally incident on the grid. We performed the calculation
with Ω = Γ/400 to stay in the single excitation regime
for lattices up to 11× 11.

When using the form for the laser pulse, Eq. (30), the
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Figure 9. Recoil energy for the center atom versus detuning.
The recoil energy is calculated per photon incident on an area
a2, Eq. (32), for a separation of 0.6λ and 0.8λ. The line types
are the same as Fig. 8 except the black and grey curves are
4× the reflection probability for a photon normally incident
on an infinite array using the results from Ref. [17].

number of photons incident on an area a2 can be com-
puted. This is accomplished by integrating the intensity
of the laser pulse over time, multiplying by the area a2,
and dividing by a photon energy hf = hc/λ. The num-
ber of photons incident on an area containing one atom
is

ν =
(2π)3/2

6
(twΓ)

(a

λ

)2
(

Ω0

Γ

)2

(32)

where we have grouped products that give dimensionless
variables. In the plots, we divide the recoil momentum
and recoil energy of the center atom by this photon num-
ber to get a value which is the recoil per incident photon.
Figure 8 shows the plot of the recoil momentum ver-

sus detuning of the photon. The calculation is for the
center atom in an n × n array with the recoil momen-
tum divided by the number of photons incident on a unit
area, Eq. (32). The plots are for a spacing a = 0.6λ
and 0.8λ for two array sizes, 9 × 9 and 11 × 11. The
width and detuning of the resonance changes with the
atom spacing. The black and gray lines are 2R as calcu-
lated for an infinite array.[17] These lines are from a nu-
merical implementation of the full equations in Ref. [17]
of the reflection versus detuning for a separation a and
has negligible errors. Although the numerical results are
not exactly the same as the reflection probability from
Ref. [17], they are fairly close in detuning and linewidth.
This shows that the basic picture of photons reflecting
from the array behaves as expected with respect to the
recoil momentum.
Figure 9 shows the plot of the recoil energy versus de-

tuning of the photon. For this calculation, the recoil
energy is compared to R × 4Er which would be the re-
sult if each atom individually reflects a photon. Unlike
the recoil momentum, there is a substantial difference
in the recoil energy. It is interesting that the effect is

much larger for the narrower line (a = 0.8λ). This ef-
fect would be non-trivial for an estimate of the energy
deposited in the grid of atoms per reflected photon. For
the a = 0.8λ case with a 9× 9 grid, the center atom gets
a recoil energy approximately 2× greater than expected
from simple considerations.

V. SUMMARY

Results were presented from calculations of the recoil
momentum and energy for photons scattering from an ar-
ray of atoms. When the atoms are in an array and their
separation is comparable to a wavelength of light, the
dipole-dipole interaction between the atoms lead to col-
lective scattering. In this case, there can be enhanced op-
tical cross sections, cooperative resonances, chiral quan-
tum optics, etc. The results from the calculations above
give insight into how energy might be deposited into the
atomic array.
Calculations were performed for the artificial case

where the atoms start in a coherent, multi-atom, singly
excited state and the recoil momentum and energy was
determined for the atom system after the photon emis-
sion. Calculations were performed for a pair of atoms
where analytic results can be obtained as well as for n×n
grids. It was found that entangling a momentum kick
with the excitation approximately increased the recoil
energy by Er as would be expected for symmetric pho-
ton emission. In all of the cases, the recoil energy was
substantially changed from Er depending on the separa-
tion and geometry of the atoms.
Calculations were performed for the case where an n×n

grid of atoms start in their ground state and a weak laser
pulse is reflected from the grid. When the duration of
the pulse is much shorter than the lifetime of the excited
state, the recoil energy equals that for the case where the
atoms start in a singly excited state with the excitation
entangled with a momentum kick. As the duration of the
laser becomes longer than the excited state lifetime, the
variation of the resonance energy and width with atom
separation leads to complicated variation of the recoil
energy. The recoil was investigated for the case where
perfect reflection is expected. While the recoil momen-
tum was approximately what would be expected (2~k
times the reflection probability), the recoil energy could
be substantially larger than expected (up to ∼ 2 × 4Er

times the reflection probability) although in many cases
it was close to the expected value. This suggests that the
collective scattering can lead to anomalously larger recoil
energies which might negatively affect the utility of these
atomic arrays.
Other arrays of objects can interact collectively with

light (for one example from this extensive literature, see
Ref. [43]) which raises the question of the recoil energy
and/or momentum of each object. There are properties
of such arrays, besides being fixed in space, which sug-
gest the features discussed above may not be directly
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relevant. For example, the calculations above are for
the case where there is no dissipation into other modes
whereas this is always present to some extent in meta-
material arrays. It may be worth a separate study of the
recoil energy and momentum of metamaterial arrays to
understand the collective scattering process better.

VI. ACKNOWLEDGMENT

We thank Xiao Wang and Troy Seberson for critical
reading an early version of this paper. This work was sup-
ported by the National Science Foundation under award
No. 1804026-PHY. This research was supported in part
through computational resources provided by Informa-
tion Technology at Purdue University, West Lafayette,
Indiana.

[1] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[2] N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735

(1971).
[3] R. Friedberg, S. R. Hartmann, and J. T. Manassah,

Phys. Rep. 7, 101 (1973).
[4] N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and

M. S. Feld, Phys. Rev. Lett. 30, 309 (1973).
[5] M. Gross, C. Fabre, P. Pillet, and S. Haroche, Phys.

Rev. Lett. 36, 1035 (1976).
[6] M. O. Scully, Phys. Rev. Lett. 102, 143601 (2009).
[7] Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Oz-

eri, Phys. Rev. Lett. 113, 193002 (2014).
[8] J. Pellegrino, R. Bourgain, S. Jennewein, Y. R. P. Sortais,

A. Browaeys, S. D. Jenkins, and J. Ruostekoski, Phys.
Rev. Lett. 113, 133602 (2014).

[9] A. Browaeys, D. Barredo, and T. Lahaye, J. Phys. B 49,
152001 (2016).

[10] S. L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell,
J. Schachenmayer, T. L. Nicholson, R. Kaiser, S. F. Yelin,
M. D. Lukin, A. M. Rey, and J. Ye, Nat. Comm. 7, 11039
(2016).

[11] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys.
Rev. A 92, 063822 (2015).

[12] D. Plankensteiner, C. Sommer, H. Ritsch, and C. Genes,
Phys. Rev. Lett. 119, 093601 (2017).

[13] S. Jennewein, L. Brossard, Y. R. P. Sortais, A. Browaeys,
P. Cheinet, J. Robert, and P. Pillet, Phys. Rev. A 97,
053816 (2018).

[14] L. F. Buchmann, K. Mølmer, and D. Petrosyan, Phys.
Rev. A 95, 013403 (2017).

[15] Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and
D. S. Weiss, Phys. Rev. Lett. 115, 043003 (2015).

[16] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys.
Rev. Lett. 116, 103602 (2016).

[17] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin,
Phys. Rev. Lett. 118, 113601 (2017).

[18] J. P. Clemens, L. Horvath, B. C. Sanders, and H. J.
Carmichael, Phys. Rev. A 68, 023809 (2003).

[19] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R.
Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature 501,
521 (2013).

[20] V. Mkhitaryan, L. Meng, A. Marini, and F. J. G.
de Abajo, Phys. Rev. Lett. 121, 163602 (2018).

[21] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Pi-
otrowicz, L. Isenhower, and M. Saffman, Phys. Rev. Lett.
114, 100503 (2015).

[22] K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J.
Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman,
Phys. Rev. A 92, 022336 (2015).

[23] Y. Wang, A. Kumar, T.-Y. Wu, and D. S. Weiss, Science
352, 1562 (2016).

[24] A. Grankin, P. O. Guimond, D. V. Vasilyev, B. Vermer-
sch, and P. Zoller, Phys. Rev. A 98, 043825 (2018).

[25] Q. Li, D. Xu, C. Cai, and C. Sun, Sci. Rep. 3, 3144
(2013).

[26] M. M. Cola, D. Bigerni, and N. Piovella, Phys. Rev. A
79, 053622 (2009).

[27] J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg,
Phys. Rev. A 46, 1426 (1992).

[28] J. Javaloyes, M. Perrin, G.-L. Lippi, and A. Politi, Phys.
Rev. A 70, 023405 (2004).

[29] R. Bonifacio and L. De Salvo, Nuc. Inst. Meth. Phys.
Res. A 341, 360 (1994).

[30] N. Piovella, M. Gatelli, and R. Bonifacio, Opt. Comm.
194, 167 (2001).

[31] P. Domokos and H. Ritsch, Phys. Rev. Lett. 89, 253003
(2002).

[32] A. T. Black, H. W. Chan, and V. Vuletić, Phys. Rev.
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