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By decomposing the initial state wave function into its unique natural orbital expansion, as defined
in the 1950s by Löwdin and used in modern studies of entanglement, we analyze the role of electron
correlation in the initial state of an atom or molecule in determining the angular distribution of one-
photon double ionization. Final state correlation of the two ejected electrons is treated completely in
numerically accurate calculations as the initial states of He, H− and H2 are built up from correlating
configurations in strict order of decreasing natural orbital occupations. In the two-electron atoms
it is found that the initial state correlation plays a sometimes modest but generally measurable
role. In striking contrast, for H2 a large number of correlating configurations in the ground state
is often necessary to produce angular distributions even approximately resembling the correct ones.
One-photon double photoionization of oriented H2 is found to be particularly sensitive to left-right
correlation along the bond.

I. INTRODUCTION

A central argument motivating a long history of theo-
retical and experimental interest in single-photon double
photoionization of atoms and molecules is that this pro-
cess is particularly sensitive to the effects of electron cor-
relation. The two ejected electrons must share the energy
of a single photon, but the operator for interaction of the
electrons with the electromagnetic field is a one-body op-
erator, which for the conditions of most experiments is
simply the dipole operator. This fact strongly suggests
that the dynamics of double photoejection are correlated,
and that expectation has been verified by a large num-
ber of experimental measurements showing strong cor-
relation in the angular dependence of the two ejected
electrons in double photoionization of both atoms [1–9]
and molecules [10–19], only a selection of which we cite
here.

The history of theoretical studies of one-photon dou-
ble photoionization is characterized by an evolution of
ever more sophisticated treatments of electron correlation
in the context of overcoming the considerable difficulties
imposed by the incorporation of appropriate boundary
conditions for three-body Coulomb breakup. A sample
of that literature employing various theoretical and com-
putational approaches includes many studies of double
photoionization of atoms [20–46] and of the more chal-
lenging problem single-photon double photoionization of
molecules [47–61].

A number of these calculations, especially the more
recent ones, seek to treat the problem exactly in prin-
ciple. In other words, to the degree such calculations
are converged, they can completely treat electron corre-
lation in both the initial and final states. The focus of
these studies is generally on the calculation of the triply
differential cross section (TDCS) for double photoioniza-
tion which depends on the emission directions of the two
electrons and on the energy sharing between them. Thus
the TDCS contains the signatures of the contributions

of various types of electron correlation to the dynam-
ics. The implicit assumption in all these studies is that
correlation in both the initial and final states must be
treated well to achieve accurate results. The literature
contains numerous detailed comparisons between these
methods, for example between the time-dependent close-
coupling method, the convergent close coupling method
and the exterior scaling approach we use here, that ver-
ify their agreement and validity [33], and there is now no
question that we can calculate the TDCS accurately for
two-electron systems by a variety of means.

In this study we explore the effects of electron corre-
lation in the initial state of a neutral atom or molecule
on the final angular distribution of the ejected electrons.
We seek to answer the question: “To what degree does
the observation of one-photon double photoionization of
an atom or molecule measure the degree and nature of
correlation in the initial neutral system?” The theoreti-
cal studies mentioned above have focused extensively on
the nature of correlation in the final state and the dy-
namics of the double ionization process. To our knowl-
edge, although there are certainly some previous stud-
ies that have addressed the question in one way or an-
other [36, 40, 57], there have been, somewhat supris-
ingly, no quantitatively systematic studies of the degree
to which the correlation of the two ejected electrons in
the neutral system prior to double photoionization leaves
a distinct signature in the TDCS. To make such a study
we must treat final state correlation completely and ac-
curately, independent of the approximation being used
to treat the initial state as it is made more correlated,
and we will describe in Section III how we can do that
using grid methods and exterior complex scaling of the
electronic coordinates.

To make this analysis meaningful, we need a rigorous
and systematic way of increasing the degree of correla-
tion in the initial state. Fortunately, there is a well-
established way to do so using the idea of the natural
orbital expansion of the exact wave function, which was
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introduced in 1955 by Löwdin [62]. The special proper-
ties of the natural orbital expansion for two-electron sys-
tems were initially explored by Löwdin and Shull [63] in
the early days of electronic structure theory. The concept
of the expansion of the exact wave function “as a sum of
Slater determinants of all ‘ordered’ configurations” orig-
inates with that early work, and natural orbital expan-
sions have become a standard tool in modern electronic
structure theory [64, 65]. For a two-electron system, the
natural orbital occupations give the ordering of the con-
figurations in terms of their coefficients in an expansion of
the exact wave function, as explained in Section IV. For
two electrons the natural orbital expansion is a special
case of the Schmidt decomposition of the density matrix
of a quantum system into reduced density matrices of
two (in this case identical) subsystems. In the context of
quantum information theory it plays a central role in dis-
cussions of entanglement [66–71] and its quantification
in particular [66].

The procedure we will follow to analyze the role of
initial state correlation in one-photon double photoion-
ization is to start with an effectively converged, highly
correlated wave function for the ground state of three
systems, He, H−, and H2, and decompose them in terms
of their natural orbital expansions. For these systems we
can effectively calculate converged final states and con-
struct the TDCS to observe how it changes as correlation
contributions are added to the initial state. We find dra-
matic differences between the signature in the TDCS of
the correlation in the initial state in the atoms versus that
in H2. This is a surprising result because the degree to
which H2 is correlated compared H−, for example, does
not immediately suggest such radical differences in the
sensitivity of the TDCS to small contributions of corre-
lating configurations. The implication is that in other
molecules one-photon double ionization may be a more
sensitive and specific probe of initial state correlation in
bonds than of electronic correlation in general.

The outline of this paper is as follows. In Section II
we define the double photoionization amplitude and show
how it can be effectively decomposed into contributions
of each correlating term in the initial state wave func-
tion. Section III briefly summarizes our computational
approach to solving both for the initial state and for the
double photoionization amplitude using a combination
of a finite-element discrete variable representation of the
wave function with exterior complex scaling (ECS) of the
electronic coordinates. Then in Section IV we review the
natural orbital expansion for two-electron singlet states
and its particular form for the ground states of the sys-
tems we consider here, making a connection with the
recent literature on Schmidt decomposition of fermionic
systems in the context of discussions of entanglement in
quantum information theory. We present the results of
calculations on He and H− in Section V on the sensitiv-
ity of the TDCS to initial state correlation by considering
the convergence of the TDCS with respect to the natu-
ral orbital expansion. In Section VI we present a similar

analysis of H2 where we find that in a system less cor-
related near its equilibrium internuclear distance than
H−, there is a dramatically stronger signature of initial
state correlation in the TDCS. Finally in Section VII we
make some concluding remarks about the prospects for
experiments on polyatomic molecules that could probe
correlation in the ground state in a way that in principle
tests the most subtle details of electronic structure.

II. CONNECTION OF INITIAL ELECTRON
CORRELATION TO IONIZATION AMPLITUDES

Independent of the theoretical method employed in the
calculations, it is useful to look at the formal definition of
the TDCS to see why it might be sensitive to initial state
correlation. The TDCS, which depends on the angles of
ejection of the two electrons, Ω1 and Ω2, and the energy
sharing specified by the energy of one of the electrons E1,
is given by (atomic units throughout, ~ = e = a0 = 1)

d3σ

dE1dΩ1dΩ2
=

4π2

ωc
k1k2

∣∣f(k1,k2)
∣∣2 , (1)

with the double photoionization amplitude defined by
(see e.g. [22])

f(k1,k2) = 〈Ψ(−)
k1k2
|µ1 + µ2|Φ0〉 , (2)

where µi = ε · ∇i is the “velocity form” of the dipole
operator for linearly polarized light, and ε is the polar-
ization direction of the photon defining the z axis in the
laboratory frame. The exact initial state Φ0, and final

state Ψ
(−)
k1k2

, which is a continuum wave function with
two electrons initially in the continuum with incoming
wave boundary conditions, must both obviously be rep-
resented by correlated wave functions.

While it may be difficult to see directly from the matrix
element in Eq.(2) how small correlation contributions to
|Φ0〉 contribute to the amplitude, the equivalent “first
order equation” from perturbation theory provides a path
to rigorously identifying those contributions. The first
order equation is

(E0 + ω −H)|Ψ+
sc〉 = µ|Φ0〉 (3)

where the solution, |Ψ+
sc〉, satisfies purely outgoing

boundary conditions and E0 is the energy of the initial
state. Considering a two-electron atom, with electronic
coordinates r1 and r2 and infinitely heavy nucleus, the
asymptotic form of the solution in the region Ω0 where all
three particles are well separated, can be written by using
the result for the three-body Coulomb Green’s function
in ref. [72] and is found to be [31, 32]

Ψ+
sc −→
ρ→∞
in Ω0

√
2πi

(
K3

ρ5

)1/2

eiKρ+ζ ln 2Kρ+iσ0f(k1,k2) .

(4)
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In Eq.(4) the total energy in terms of the outgoing mo-
menta of the electrons, k1 and k2, is K2/2 = k2

1/2+k2
2/2;

the hyperradius and hyperangle are ρ =
√
r2
1 + r2

2 and
α = tan−1 r2/r1,. The other quantities are defined by

ζ =
1

K

(
Z

cosα
+

Z

sinα
+

1√
1− r̂1 · r̂1 sin 2α

)
(5)

σ0 =
1

K

(
Z ln cos2 α

sinα
+
Z ln sin2 α

sinα

− ln((1− sin 2αr̂1 · r̂2)/2)

(1− sin 2αr̂1 · r̂2)1/2

)
(6)

As we will discuss in detail in Section IV the exact wave
function can be uniquely decomposed into a sum of de-
terminants, |Φk〉, of natural spin orbitals,

|Φ0〉 =
∑
k

ck|Φk〉 (7)

the first of which is essentially identical to the Hartree-
Fock wave function. Because of the linearity of Eq.(3),
the corresponding |Ψ+

sc〉 is then a sum of functions,

|Ψ+
sc〉 =

∑
k

ck|Ψ(k)
sc 〉 (8)

each separately satisfying that equation with the asymp-
totic form in Eq.(4) containing a contribution to the dou-
ble photoionization amplitude, f(k1,k2), which is there-
fore a sum of contributions due to each of the contribu-
tions to |Φ0〉 in Eq.(7).

This is the approach we use here, solving Eq.(3) ac-
curately for different numbers of terms in Eq.(7) on the
right hand side, treating correlation completely on the
left hand side. Even though the coefficient of the dom-
inant (≈ Hartree-Fock) contribution to Eq. (7) is far
larger than that of the correlating terms, we will find that
the resulting contribution to the photoionization ampli-
tude can be smaller than the contributions of correlating
terms with much smaller coefficients. The contributions
to f(k1,k2) can of course interfere in the coherent sum
that produces the TDCS. Although one might expect
that the importance of initial state correlation in dou-
ble photoionization would be larger for more correlated
systems, we will see that this is not necessarily the case.

To address that question we must specify what we
mean by a “more correlated system.” There are at least
two commonly used measures of the degree of electronic
correlation in a system. In bound-state electronic struc-
ture theory, one standard measure of the degree of corre-
lation is the correlation energy, defined as the difference
between the Hartree Fock energy, EHF, and the exact
nonrelativistic energy, ENR [73]. The degree of corre-
lation, KE , based on energy can then be expressed as
the exact nonrelativistic electronic energy divided by the
Hartree-Fock electronic energy, i.e. KE = ENR/EHF,
and we note that KE ≥ 1. Alternatively, Grobe et al. [74]
make a strong argument that the amount by which the
trace of the square of the one-electron density matrix is

less than one is a better quantitative measure of corre-
lation in the wave function. They therefore propose the
definition of the degree of correlation as K = 1/tr(ρ2), a
quantity also used in discussions of entanglement quan-
tification [66]. That quantity is of course equal to one if
there is only one occupied natural orbital and the wave
function is exactly expressible as one determinant, and
is greater than one otherwise. In Sections V and VI we
will explore the sensitivity of the TDCS to initial state
correlation and see to what extent that sensitivity is re-
lated to traditional measures of the degree of correlation
in the two-electron systems considered here.

III. CALCULATION OF THE TRIPLE
DIFFERENTIAL CROSS SECTION FOR
DOUBLE PHOTOIONIZATION USING

EXTERIOR COMPLEX SCALING

A. Double photoionization amplitudes

The method for combining numerical grids with ex-
terior complex scaling of the electronic coordinates to
solve the double ionization and electron-impact ioniza-
tion problems has been described in detail elsewhere [41,
52, 75], and so here we give only a summary of the es-
sential ideas. The correct outgoing boundary conditions
for both single and double ionization are imposed on Ψ+

sc

in Eq.(3) by applying the ECS transformation [75–77]
to the radial coordinates of both electrons, which scales
those coordinates by a complex factor eiθ beyond some
radius R0,

r →

{
r if r ≤ R0

R0 + (r −R0)eiθ if r > R0
, (9)

and requiring Ψ+
sc to vanish for large r1 or r2 on the

complex contour. The amplitude f(k1,k2) for single-
photon double ionization associated with Ψ+

sc is given,
up to an irrelevant overall phase, by a volume integral
over a finite volume [30, 52, 75],

f(k1,k2) =

〈Φ(−)(k1, r1)Φ(−)(k2, r2)|E − T − V |Ψ+
sc〉

(10)

where E = E0 + ω is the excess energy above the double
ionization threshold, T is the two-electron kinetic energy
operator, and V in the case of an atom with nuclear
charge Z is the sum of the one-electron potentials,

V = −Z/r1 − Z/r2 (11)

while in the molecular case (with nuclei fixed with coor-
dinates ±A) the potential in Eq.(10) is the sum of the
nuclear attraction potential seen by each of the electrons,

V = − 1

|r1 −A|
− 1

|r1 + A|
− 1

|r2 −A|
− 1

|r2 + A|
. (12)
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The “testing functions” Φ(−)(k, r), in Eq.(10) for the
atomic case are momentum-normalized Coulomb func-
tions with charges Z equal to the charge of the nuclear
potential in V [30, 41]. With that choice Eq.(10) ex-
actly projects out the single ionization contributions from
the double-ionization channels by orthogonality of the
Coulomb functions to the residual bound one-electron
atom. Following the same logic, in the molecular case
the testing functions are the H+

2 continuum wave func-
tions [52]. The triple-differential cross section (TDCS)
for double photoionization is directly related to the am-
plitude f(k1,k2) by Eq.(1)

B. Representation of the wave function in ECS
calculations

We solve the driven equation, Eq.(3), by expanding
both the first order wave function, Ψ+

sc, and the initial
state, Φ0 in products of spherical harmonics as was done
in previous calculations on He [32], H− [41] and H2 [52]
where a single center expansion around the middle of the
molecule was used,

Ψ+
sc =

∑
l1m1

∑
l2m2

1

r1r2
ψl1m1,l2m2

(r1, r2)Yl1m1
(r̂1)Yl2m2

(r̂2) .

(13)
The radial function, ψl1m1,l2m2(r1, r2) is described by the
combination of a discrete variable representation further
expanded in a product basis of one-dimensional finite-
element-method (FEM) discrete-variable representation
(DVR) functions. The DVR basis functions are the car-
dinal functions (polynomials) of a discrete variable rep-
resentation based on a Gauss-Lobatto quadrature within
each radial finite element.

ψl1m1,l2m2
(r1, r2) =

∑
i,j

Cl1m1,l2m2

ij ϕi(r1)ϕi(r2) (14)

where ϕi(r) is a DVR basis function and the coefficients

satisfy Cl1m1,l2m2

ij = Cl2m2,l1m1

ji .
We include all the terms, labeled by l1,m1, l2,m2 in

Eq.(13) up to a maximum value, lmax, of l that produce
a scattered wave function with total angular momentum
quantum numbers L=1, M=0, and Φ0 with L=0, M=0
in the atomic case. For the molecular case, we include
all the terms that contribute to Σ+

u (M = 0) and Πu

(M = ±1) for Ψ+
sc and Σ+

g (M = 0) for Φ0. In all the

calculations presented here the value of lmax for Ψ+
sc was

held fixed at the value needed to converge calculations
with a completely correlated initial state, while the de-
gree of correlation in Φ0 was varied. The numerical pa-
rameters we used are similar to those of previous calcula-
tions [32, 41, 52], where extensive convergence tests were
performed. For H− and He we used lmax = 7, and for H2

we also used lmax = 7 for both Σ+
u and Πu symmetries.

The values of lmax are the same for the initial and final
states in all cases.

The radial basis and ECS parameters were also similar
to those of previous studies. For H− 15th order Gauss
quadrature was used in 11 finite elements, with ECS scal-
ing beginning at R0 = 95 bohr and a maximum value of
r for each electron of 130 bohr. For He the radial grid
was 9 finite elements with 15th order quadrature in each,
with the value of R0 = 65 bohr and a maximum value of
r of 95 bohr. In the calculations on H2 we used a radial
basis of 9 finite elements with 15th order quadrature in
each, R0 = 65 bohr and a maximum value of r of 95
bohr. In all cases the ECS scaling angle, θ, was 30◦ and,
and as expected [78] there was essentially no variation in
the results of grid based calculations with varying θ.

This representation of the wave functions reduces the
solution of Eq.(3) to the solution of large sets of linear
equations, described in references [41] and [52]. The
fully correlated ground state wave function (and natu-
ral orbitals) are obtained in our calculations using the
finite element method and discrete variable representa-
tion (FEM-DVR) by diagonalizing the full Hamiltonian
of each system using only the real portions of the radial
FEM-DVR grid, truncated at a value of r large enough to
contain the ground state completely. The corresponding
natural orbitals are constructed by applying the algo-

rithm of Section IV once the coefficients, Cl1m1,l2m2

ij in

Eq.(14) have been calculated.

IV. NATURAL ORBITALS OF
TWO-ELECTRON SYSTEMS

The initial states of the systems we treat here, namely
nondegenerate singlet states (1S and 1Σ+

g ), are examples
of the simplest version of the natural orbital expansion
of the exact wave function. In that case, as Löwdin orig-
inally showed [63] the exact wave function can be ex-
panded as a sum of Slater determinants of only doubly
occupied natural orbitals, χk(r1),

Φ(x1,x2) =
N∑
k

ck|χk(r1)α(1)χk(r2)β(2)| (15)

where xi denotes spin and space coordinates of electron i,
and N is the number of the natural orbitals with nonzero
occupations. The coefficients of the expansion, ck, are
square roots of the natural orbital occupations, and thus
the natural orbital expansion in Eq. (15) expresses the
exact wave function as a uniquely defined sum of Slater
determinants which can be ordered by the magnitudes
of their contributions. A natural orbital expansion of
the initial electronic state ordered by occupation number
thus provides a well-defined basis with which to study the
convergence of the TDCS for the double photoionization
process with respect to increasing the initial state corre-
lation.

The phases of the coefficients, ck, in Eq. (15) in general
are not all the same, and so we describe here how they
are calculated as well as the general applicability of the
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expansion. “Natural spin orbitals” were introduced by
Löwdin [62, 63] as the functions which diagonalize the
one-electron reduced density matrix. The one-electron
density matrix for an N-electron system is defined by
the expression familiar in the electronic structure litera-
ture [64]

ρ(x;x′) =

∫
Φ(x,x2 · · ·xN )Φ∗(x′,x2 · · ·xN ) dx2 · · · dxN

(16)
where xi denotes space and spin coordinates, and its
eigenfunctions satisfy∫

ρ(x;x′)χn(x′)dx′ = λnχn(x) (17)

where the eigenvalues λn are called the natural orbital
occupations and, with the normalization of Φ and Eq.(16)
for ρ, they satisfy

∑
n λn = 1. They are a standard

tool of electronic structure theory, where they reduce the
number of determinants required to represent the wave
function to any particular accuracy when compared to
being expressed in other orbital bases.

Systems with only two electrons are an important spe-
cial case in which simplifications appear that do not ap-
ply to many-electron systems. The essential theorem is
that for a two-electron system, the wave function Φ is
expressible in the explicitly diagonal form [64, 68]

Φ =
∑
i

µifi(x1)t∗i (x2) (18)

where the natural spin orbitals in this expansion are
eigenfunctions of the density matrix with the same eigen-
values ∫

ρ(x;x′)fi(x
′)dx′ = |µi|2fi(x)∫

ρ(x;x′)ti(x
′)dx′ = |µi|2ti(x)

(19)

The diagonal form of Eq.(18) applies to both ground and
excited states [79], and specializes [63, 68] to the simpler
form in Eq.(15) for our cases. It almost always radically
reduces the number of terms in the expansion relative to
full CI in the natural orbital basis.

The centrality of the natural orbital expansion of the
wave function in the understanding of correlation derives
from the fact that Eqs. (18) and (19) are an example of
the Schmidt decomposition of a many-particle wave func-
tion in terms of the eigenfunctions of the reduced density
matrices corresponding to dividing the particles into two
groups. The idea of the Schmidt decomposition [80] also
appears extensively in recent treatments of quantum en-
tanglement [66–71]. Although Eq.(18) does not explicitly
display permutational symmetry or the property of being
a spin eigenfunction, there are general discussions in the
literature of how to construct versions that do so for both
fermionic and bosonic systems [68]. The natural orbital

expansion has also been used to provide a quantitative
measure of correlation in two-electron systems [74, 81].

Our construction of the two-electron wave function in
Eq.(13) for singlet states is an expansion in terms of basis
functions

Φ(x1,x2) =
∑
i,j

Cij ψi(r1)ψj(r2)
α(1)β(2)− β(1)α(2)√

2

(20)

with

ψj(r) = ϕj(r)Ylj ,mj
(r̂) (21)

being the products of FEM DVR radial functions and
spherical harmonics. The density matrix is defined in
terms of this basis as

ρ(x;x′) = (αα′ + β β′)
∑
kl

ψl(r)ψ∗k(r′)ρl,k (22)

where

ρl,k =
∑
m

ClmC
∗
km, ρ = CC† (23)

Because the spin eigenfunction for a singlet state is an-
tisymmetric, the matrix C must be symmetric. For the
1S and 1Σ+

g states we consider here, where the sum of
the quantum numbers in the spherical harmonics of the
product basis must sum to zero, m1 +m2 = 0, the matrix
C is also real (as is the two-electron ground wave func-
tion), and that fact simplifies the algebra of constructing
the natural orbital coefficients [82].

In this case the real-valued orthogonal matrix U that
diagonalizes C also diagonalizes the density matrix

CU = Uc, ρU = Uc2 = Uλ (24)

The natural orbitals are then defined by the matrix rela-
tion

χ = UTψ , (25)

and the eigenvalues of C satisfy c2k = λk and are thus the
square roots of the occupation numbers of the natural
orbitals χk, but with well-defined phases. Substituting
Eq.(25) into the wave function in Eq.(20) leads to the
natural orbital expansion

Φ(x1,x2) =
α(1)β(2)− β(1)α(2)√

2

M∑
k

ckχk(r1)χk(r2)

(26)

where M is the number of the natural orbitals with
nonzero occupations and thus to Eq.(15).
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TABLE I. Coefficients of the natural expansion of the He
and H− ground states, with comparison earlier calculations
employing analytic basis sets and the present calculations in
the case of He. Ref. [64] comments on the signs. Note that
the 3p, 4p, 3d, and 4d orbitals with the other possible values
of m have coefficients with the same magnitude, but with
sometimes different signs.

NO (m) Ref [83] Ref [84] Present Present
He He He H−

1s (0) +0.99599 +0.99598 +9.95973×10−1 +9.71958×10−1

2s (0) −0.06148 −0.06163 −6.15655×10−2 −2.05838×10−1

3s (0) −0.00786 −0.00790 −7.89868×10−3 −1.44055×10−2

4s (0) −0.00197 −0.00192 −1.99462×10−3 −2.92130×10−3

2p (0) −0.03563 −0.03574 −3.57540×10−2 −6.33681×10−2

2p (+1) +3.57540×10−2 +6.33681×10−2

2p (−1) +3.57540×10−2 +6.33681×10−2

3p (0) −0.00638 −0.00643 −6.41313×10−3 −8.96297×10−3

4p (0) −0.00180 −0.00189 −1.82277×10−3 −2.23093×10−3

3d (0) −0.00566 −0.00566 −5.72895×10−3 −7.98852×10−3

4d (0) −0.00178 −0.00174 −1.80151×10−3 −2.34227×10−3

V. EFFECTS OF INITIAL STATE
CORRELATION IN He AND H−

To systematically analyze the effects of initial state
correlation we first solve Eq.(3) for Ψ+

sc using only the
first term in the natural orbital expansion of Φ0 that was
calculated with the value of lmax necessary to converge
the completely correlated calculation, and then add the
remaining terms in order of increasing natural orbital oc-
cupation. In every such calculation we use the same value
of lmax and the other numerical parameters to represent
both sides of the equation. While optical selection rules
dictate that each term in the natural orbital expansion
of the initial state is only connected by the dipole opera-
tor to a subset of all angular momentum contributions to
Ψ+

sc, the electron repulsion potential, 1/r12, can of course
connect all such contributions of the l1m1, l2m2 contri-
butions in Eq.(13). Thus in these calculations we are
varying the amount of initial state correlation, adding
terms in the order of their contribution to Φ0 while al-
ways allowing the final doubly ionized state to be fully
correlated.

In Table I we compare the natural orbital coefficients
for the two electron atoms He and H−. In both cases the
first natural orbital is graphically indistinguishable from
the Hartree-Fock 1s orbital. The Hartree-Fock energy
of H− is above that of the hydrogen atom, as given in
Table II, and so it is physically bound only because of
correlation energy. The absolute correlation energy of
H− is less than that of He although much larger relative
to its total energy. Thus the value of KE is larger for H−

than it is for He. This same trend is seen in the values of
K obtained from the density matrix verifying that H− is
the more correlated of the two atoms.
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FIG. 1. (Color online) TDCS at ~ω=99 eV for double ioniza-
tion of He for in-plane geometries with unequal energy shar-
ing. Fixed electron (single ended red arrows) with 90% of the
available energy and various directions respect to the polariza-
tion (double ended blue arrow). Solid dark-cyan line (velocity
gauge): including only the first term (1s2) in the natural or-
bital expansion of the initial sate wave function. Dashed blue
line (length gauge): including three terms (1s2+2s2+2p2).
Black points: including all the natural orbitals in the expan-
sion (converged wave function). Units are barn/eV/sr2.

The convergence of the TDCS calculated in the veloc-
ity gauge for He at a photon energy of ~ω=99 eV with
increasing number of terms in the natural orbital expan-
sion is shown in Fig. 1. The convergence is so rapid
that adding only the natural orbital term with the next
largest coefficient (2s in Table I) produces essentially the
converged result. The convergence of the TDCS for H−

for a photon energy of ~ω=18 eV, chosen to produce
two electrons whose shared energy is the same fraction
of the double ionization potential, is shown in Fig. 2. In
this case adding the second term in the natural orbital
expansion (2s) is insufficient to produce a result indis-
tinguishable from the exact TDCS, but adding one more
orbital shell (2p) converges the TDCS.

In Fig. 1 we also show results in the length gauge.
In all cases the cross sections calculated in the length
gauge converge somewhat more slowly. For example, in
Fig. 1 the contributions of three natural orbitals are
necessary in the length gauge to recover a result close
to that obtained with only the Hartree-Fock initial state
in the velocity gauge. However, all the trends we ob-
serve here in the velocity gauge (for the atoms as well
as for H2) are reproduced in the length gauge, with more
terms always being required in the length gauge. For that



7

"

0

30

60
90

120

150

180

210

240
270

300

330

2 4 6
0

30

60
90

120

150

180

210

240
270

300

330

2 4 6

0

30

60
90

120

150

180

210

240
270

300

330

2 4 6 8
0

30

60
90

120

150

180

210

240
270

300

330

2 4 6 8

FIG. 2. (Color online) TDCS for double ionization of H− at
~ω=18 eV for in-plane geometries with unequal energy shar-
ing. Fixed electron (single ended red arrows) with 90% of
the available energy and various directions with respect to
the polarization (double ended blue arrow). Solid dark-cyan
line: including the first term in the natural orbital expansion
of the initial sate wave function. Dashed magenta line: in-
cluding two terms (1s2+2s2). Black points: including all the
natural orbitals in the expansion (converged wave function).
Units are kbarn/eV/sr2.

reason, and simplicity of presentation, we restrict the re-
sults we present in the other figures to the more rapidly
convergent velocity gauge. Of course, length and veloc-
ity gauges give precisely the same results when enough
terms for convergence are included in the natural orbital
expansion of the initial state.

In Fig. 2 we see that the TDCS converges slightly more
slowly for H−, as one would expect by any measure of the
degree of correlation in the initial state. Nonetheless,
in both cases the Hartree-Fock initial state is sufficient
to produce the general shape and the rough magnitude
(within a factor of three in the case of H−) of the cross
section. It has been argued previously [41] that extreme
unequal energy sharing minimizes correlation in the final
state. While that is certainly true at very high photon
energies, we find that for equal energy sharing at these
energies (not shown) the conclusions about the conver-
gence of the TDCS with the inclusion of initial state cor-
relation are the same. For the atomic cases, in general
the Hartree-Fock wave function is nearly adequate. The
molecular case is very different.

10-6

10-5

10-4

10-3

10-2

10-1

100

O
cc

up
at

io
n 

x 
D

eg
en

er
ac

y

54321
n

 H2 σg
 H2 σu
 H2 πu
 H2 πg
 H2 δg
 H2 δu

10-6

10-5

10-4

10-3

10-2

10-1

100

To
ta

l O
cc

up
at

io
n

54321
n

 He
 H–

 H2

FIG. 3. (Color online) Convergence of the natural expan-
sions for the two-electron systems considered here. Left panel:
Convergence of the contributions from the orbitals of differ-
ent symmetry in H2 at R = 1.4 bohr as a function of n.
Right panel: Comparison of the convergence of the H2 nat-
ural orbital expansion, summed over all symmetries for each
n, and the convergence of the corresponding natural orbital
expansions in He and H−. In all cases, the contributions from
degenerate orbitals have been summed.

TABLE II. Energies and degree of correlation for He, H−,
and H2 at several internuclear distances. Hartree-Fock ener-
gies, EHF, are from Ref. [85] for He, Ref. [86] for H−, and
computed using an aug-cc-pV6Z basis set [87] for H2. Exact
non-relativistic energies, ENR, are from Ref. [88] for He and
H− and from Ref. [89] for H2.

System EHF ENR KE K
He −2.86168 −2.90372 1.01469 1.01625

H− −0.48793 −0.52775 1.08161 1.11819

H2(R = 1.0 bohr) −1.08513 −1.12454 1.03631 1.02614

H2(R = 1.2 bohr) −1.12502 −1.16494 1.03548 1.03057

H2(R = 1.4 bohr) −1.13363 −1.17448 1.03603 1.03653

H2(R = 1.6 bohr) −1.12635 −1.16858 1.03750 1.04450

H2(R = 1.8 bohr) −1.11096 −1.15507 1.03971 1.05475

H2(R = 2.0 bohr) −1.09162 −1.13813 1.04261 1.06786

H2(R =∞) −0.71580 −1.00000 1.39704 2.00000

VI. EFFECTS OF INITIAL STATE
CORRELATION IN H2

To understand the more dramatic effects of correlation
on one-photon double ionization of H2, it is useful first to
analyze the convegence of the natural orbital expansion
itself. The natural orbital coefficients calculated with the
procedure in Section IV are listed at the H2 equilibrium
internuclear distance in Table III. The table is organized
in terms of n, which is the effective principal quantum
number for each orbital in the united atom limit. More
specifically, the value of n for the orbital with the highest
occupation in a given symmetry is the principal quantum
number for the lowest atomic state in the united atom
limit. For example, the most important σg orbital is
assigned n = 1, corresponding to the 1s atomic orbital.
Then the lowest σu and πu orbitals are given by n = 2
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FIG. 4. (Color online) TDCS for double ionization of H2 at
75 eV for in-plane geometry at R = 1.43 bohr and θmol = 0◦

for which only the 1Σ+
u continuum final state symmetry con-

tributes. Fixed electron (single ended red arrows) with 90%
of the available energy and perpendicular to the polarization
(double ended blue arrow at the center of the figure). Light
dotted curve (cyan points): increasing amounts of correla-
tion in the initial state as contributions to the natural or-
bital expansion of its wave function are added. A: 1σg, B :
A+1σu+1πu, C : B+2σg (all coefficients greater than 10−2),
and D : Including all natural orbitals configurations with coef-
ficients greater than 5×10−3. The darker curve (black points)
gives the same data in all panels (note the changing radial
scales) and include all the natural orbitals in the expansion
(converged wave function). Units are barn/eV/sr2.

corresponding to the 2p orbital in the united atom limit.
The natural orbitals of that symmetry are then numbered
in order of their importance starting at that number.
This arrangement of the orbitals reflects the fact that for
H2, as shown in Table III, the configurations constructed
from orbitals with the same n have expansion coefficient
of very similar magnitude. The same relationship is also
present in the atomic systems presented in Table I.

The rate of convergence with respect to n of the oc-
cupation for the orbitals in each symmetry is presented
in Fig. 3. We also present in Fig. 3 a comparison of the
convergence natural orbital occupations with respect to
n for both H2 at R = 1.4 bohr with those of He and
H−. We can see that, in agreement with the relative
values of K and KE show in Table II, the convergence
of correlation of the H2 system is intermediate between
He and H−. We note however, at higher values of n the
molecular system converges somewhat more slowly. It is
interesting to consider how the correlation of H2 varies

0

30

60
90

120

150

180

210

240
270

300

330

5 10 15
0

30

60
90

120

150

180

210

240
270

300

330

4 8

0

30

60
90

120

150

180

210

240
270

300

330

4 8
0

30

60
90

120

150

180

210

240
270

300

330

4 8

A B

C D

"

FIG. 5. (Color online) Same as Fig. 4 but for molecular
orientation θmol = 90◦ for which only the 1Πu continuum
final state symmetry contributes.

a function of R. Of course, in the united atom limit,
the electronic state of H2 just becomes the ground state
of He. In contrast, in the separated atom limit, H2 be-
comes two isolated H atoms. In that limit, the restricted
Hartree-Fock wave function contains both covalent and
ionic terms leading to rather a large correlation energy
and as shown in Table II and the value of K ≡ 1/tr(ρ2)
rigorously limits to 2.

The convergence of the TDCS with respect to the ad-
dition of terms in the natural orbital expansion of the
wave function is, however, radically different from that
for either atom. In the comparisons in this section we
focus on the case of strongly unequal energy sharing that
was investigated by experiment and theory in an earlier
study [53] that explored the changes with varying inter-
nuclear distance in the TDCS. The photon energy here
is ~ω = 75 eV, as in that study, and the internuclear
distances for which we report results here are the ones
for nuclear kinetic energy release of 0.55 and 0.7 hartrees
that appear there together with comparison of the con-
verged TDCS with experiment. The results for equal
energy sharing at this photon energy are similar to what
we find below.

In Fig. 4 we plot the TDCS for unequal energy shar-
ing with the polarization vector along the axis of the
molecule. With just the first term (again nearly indis-
tinguishable from the Hartree-Fock wave function) the
cross section not only has a completely incorrect angular
dependence, but is more than a factor of 10 larger than
the converged result. Adding the first two natural orbital
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TABLE III. Coefficients in the natural expansion of H2 ground state at R=1.4 bohr. Coefficients for the configurations
corresponding to orbitals with ±m are the same. n is the effective principal quantum number as defined in the text.

n σg σu πu πg δg δu

1 +9.91039×10−1

2 −5.47711×10−2 −9.95069×10−2 +4.62621×10−2

3 −9.97783×10−3 −9.68934×10−3 +6.57201×10−3 +8.48462×10−3 −6.66464×10−3

4 −6.56733×10−3 −2.77750×10−3 +2.59382×10−3 +2.28040×10−3 −1.83612×10−3 −2.28496×10−3

5 −2.69258×10−3 −2.25059×10−3 +1.68292×10−3 +1.04529×10−3 −9.69261×10−4 −8.49212×10−4
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FIG. 6. (Color online) Same as Fig. 4 but for molecular
orientation θmol = 20◦ and internuclear distance R = 1.43
bohr corresponding to kinetic energy release of 0.7 hartrees.

configurations of σu and πu symmetry, which are the first
two terms describing angular correlation, also produces
the wrong order of magnitude and incorrect shape. Only
after adding the 2σ2

g with a smaller occupation than ei-
ther the σu and πu configurations, does the cross section
have the correct order of magnitude but still not the right
shape. Even adding all the terms with coefficients greater
than 5×10−3, a total of 10 more configurations (with de-
generate pairs) that can be identified in Table III, does
not produce a completely converged TDCS. This result
from the systematic addition of initial state correlation
supports the assertion [53] that one-photon double pho-
toionization is “is exquisitely sensitive to electron corre-
lation in both the initial and final state,” at least for the
case of molecules.

It has been pointed out that in one-photon double ion-
ization of H2 [57] and in photoionization of H+

2 [90] the
ionization dynamics in the final state for polarization per-
pendicular to the axis, which has Πu symmetry, is dom-
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FIG. 7. (Color online) Same as Fig. 6 but for R = 1.82 bohr
corresponding to kinetic energy release of 0.55 hartrees.

inated by p waves at all internuclear distances, whereas
that is not true of the Σ+

u component that contributes
solely in Fig. 4 and for which the p-wave component is
near a minimum at the equilibrium internuclear distance.
Following that logic, one would expect the cross sections
for perpendicular polarization in Fig. 5, which shows
the calculations analogous to those in Fig. 4, to show a
more “atomic” behavior, and that is in fact the case. The
convergence with respect to the inclusion of correlating
terms in the natural orbital expansion is similar to that
shown in Fig. 2 for H−.

The comparison between Figs. 4 and 5 is evidence that
the sensitivity to initial state correlation is a molecular
effect. For polarization parallel to the molecular axis, the
electromagnetic field drives the electrons parallel to the
bond and thus across the nuclei. The terms in Table III
that contribute to left-right correlation, namely the σ2

u

configurations, are connected directly by the dipole op-
erator to the correlated 1Σ+

u double continuum to which
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TABLE IV. Occupation numbers c2k for the natural orbitals of the H2 ground state for different internuclear distances (in bohr).
These are the dominant contributions to the natural orbital expansion over this range of R. The contribution from the 1πu

orbital includes both of the degenerate orbitals.

NO R = 1.0 R = 1.2 R = 1.4 R = 1.6 R = 1.8 R = 2.0
1σg 9.8716×10−1 9.8502×10−1 9.8216×10−1 9.7836×10−1 9.7351×10−1 9.6737×10−1

1σu 5.0910×10−3 7.0773×10−3 9.9016×10−3 1.3783×10−2 1.8775×10−2 2.5088×10−2

1πu 3.9014×10−3 4.1284×10−3 4.2804×10−3 4.3328×10−3 4.3260×10−3 4.2830×10−3

2σg 3.2629×10−3 3.1500×10−3 2.9999×10−3 2.8371×10−3 2.6894×10−3 2.5467×10−3

A B

C D

FIG. 8. (Color online) TDCS for double ionization of H2 for
out-of-plane geometries with equal energy sharing at R = 1.43
bohr and θmol = 55◦. Fixed electron (single ended red ar-
rows) is perpendicular to the plane formed by the polarization
(vertical double arrow) and the molecule. Panels showing in-
creasing amounts of correlation in the initial state A: 1σg, B :
A+1σu, C : B+1πu and D : Converged result. TDCSs have
been multiplied by factors of, A: 1, B : 1.42, C : 3.79 and D :
2.59 to appear on the same scale.

this motion causes the transition. The σ2
g configurations

are dipole connected to the same configurations in the
double continuum, and the coefficients of the σ2

u and σ2
g

configurations decay most slowly in Table III. So the
sensitivity of the TDCS to initial state correlation in the
molecule is a result of the fact that left-right correlation
is the most important correlating contribution in both
the initial and (in this orientation) final states.

The sensitivity of the TDCS in H2 to varying inter-
nuclear distance has been studied previously [53, 57]. It
is directly observable from the variation in the angular
distributions of the two electrons with kinetic energy re-
lease of the nuclei, which via the Coulomb explosion of
the molecule following double ionization maps directly
on to internuclear distance. This effect is revealed most
strongly in the TDCS for molecular orientations that are
neither parallel nor perpendicular to the polarization vec-
tor, for which the 1Σ+

u and 1Πu continuum contributions
are mixed coherently. In Fig. 6 we show the slow conver-

gence with respect to the natural orbital expansion of a
case shown in ref. [53] for kinetic energy release of 0.70
hartrees corresponding to 1.43 bohr, near the equilibrium
internuclear distance.

It has been known since the early history of molecular
physics and the Heitler-London [91] model for bonding in
H2 that the correlation contributions, in particular the
contribution of the first σ2

u configuration, vary rapidly
with increasing internuclear distance in H2 as the wave
function converts into that of two separated atoms, and
this behavior can be seen in Table IV. For that rea-
son it was expected [53, 57] that variations in the TDCS
with kinetic energy release might contain a signature of
changes in initial state correlation combined with changes
in the correlation of the final double continuum. In Fig.
7 we show the convergence of the TDCS for a kinetic en-
ergy release that was studied previously of 0.55 hartrees
corresponding to an internuclear distance of 1.82 bohr.
With only a few natural orbital configurations, the cal-
culated TDCS is only slightly further from convergence
than at 1.43 bohr, even though the coefficient of the first
correlating configuration, 1σ2

u is nearly twice as large.
One of the most dramatic variations with kinetic en-

ergy release was seen in the experimental results for an
“out of plane” geometry with the fast electron emerging
perpendicular to the plane of molecule and polarization
vector. The entire angular distribution twists relative to
the molecular axis as the internuclear distance varies, as
shown in the comparison of theory and experiment in the
second figure in ref. [53]. In Fig. 8 we show that, in ad-
dition to large changes in magnitude, the convergence of
the TDCS there involves a similar twisting of the angular
distribution that would have obscured the comparison of
experiment with theory in the absence of a fully corre-
lated initial state wave function.

VII. CONCLUSION

While it has long been understood that initial state
correlation must play a role in one-photon double ioniza-
tion, the extent of its effect and the difference between
atomic and molecular cases have not been widely un-
derstood and quantified. The natural orbital analysis of
nearly exact initial state wave functions has provided a
systematic way to do so, and shown that in molecular
systems the role of initial state correlation can be strik-
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ingly greater than in similarly correlated atomic systems.
In molecular targets, the sensitivity to electron corre-

lation in double photoionization is by far best revealed
by measurements in the molecular frame [11–18], and
for that reason we have limited ourselves here to the ex-
ploration of this question to oriented molecules. While
those measurements thus far have been almost exclu-
sively limited to the cases of the H2 and D2 molecules,
this study suggests that double photoionization experi-
ments on other oriented molecules will contain strong sig-
natures of initial state correlation in molecular bonds of
more complicated systems. Such measurements in H2O
have been explored already [92, 93], where the dissocia-
tion of some states of the dication into two protons and
a neutral oxygen atom creates the opportunity for body
frame coincidence measurements.

For future theoretical treatments of molecular dou-
ble photoionization however, these results may suggest
the problem is more difficult than for many-electron
atoms. For atomic cases, there is a large number of
studies of double ionization in the “two-active-electron”
model [35, 36, 38, 40, 42–45] which involves freezing all
but two electrons in orbitals from which they are not

excited, thereby ignoring their correlation with the ac-
tive electrons. If initial state correlation in polyatomic
molecules is indeed generally much more important in de-
termining the angular correlation of the ejected electrons
than in atoms, that approximation may be much less
successful in the molecular case, and one-photon double
ionization may be expected to be particularly sensitive
to electron correlation associated with bonds.
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[63] P.-O. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).
[64] E. R. Davidson, Rev. Mod. Phys. 44, 451 (1972).
[65] E. R. Davidson, in Advances in Quantum Chemistry ,
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