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We measure the differential polarizability of the 176Lu+ 1S0 ↔ 3D1 clock transition at multiple
wavelengths. This experimentally characterizes the differential dynamic polarizability for frequen-
cies up to 372 THz and allows an experimental determination of the dynamic correction to the
blackbody radiation shift for the clock transition. In addition, measurements at the near resonant
wavelengths of 598 and 646 nm determine the two dominant contributions to the differential dynamic
polarizability below 372 THz. These additional measurements are carried out by two independent
methods to verify the validity of our methodology. We also carry out a theoretical calculation of
the polarizabilities using the hybrid method that combines the configuration interaction (CI) and
the coupled-cluster approaches, incorporating for the first time quadratic non-linear terms and par-
tial triple excitations in the coupled-cluster calculations. The experimental measurements of the
|〈3D1||r||3PJ〉| matrix elements provide high-precision benchmarks for this theoretical approach.

PACS numbers: 06.30.Ft, 06.20.fb

The differential scalar polarizability, ∆α0(ω), of a clock
transition is an important quantity to determine. The dc
value ∆α0(0) quantifies the blackbody radiation (BBR)
shift, and contributes to micromotion shift assessments
in ion-based clocks. The variation of the polarizability
over the BBR spectrum determines the so-called dynamic
correction to the BBR shift [1], and the value at the clock
frequency quantifies sensitivity to probe-induced ac Stark
shifts.

For the 176Lu+ 1S0 ↔ 3D1 transition at 848 nm, the
recent measurement of ∆α0(ω) at 10.6µm inferred an
exceptionally small BBR shift of −1.36(9) × 10−18 at
300 K [2]. As the measurement was carried out at a fre-
quency that is fairly central to the BBR spectrum, the
assessment is insensitive to the true dc value of ∆α0(ω)
and its variation over the BBR spectrum. Nevertheless,
it is still of interest to make an experimental assessment,
as ∆α0(0) can factor into planned assessments of the dc
polarizability of the 1S0 ↔ 3D2 and 1S0 ↔ 1D2 clock
transitions at 804 and 577 nm, respectively.

The accuracy of the BBR assessment for the 848-nm
transition relies on the small measured value of ∆α0(ω)
at 10.6 µm; a modest fractional error in a small number
is still a small number. This is not the case for the other
two clock transitions in 176Lu+. For these two transi-
tions micromotion-induced shifts can be used to deter-
mine ∆α0(0) as done in [3]. For 176Lu+ this can be el-
egantly done by measuring frequency ratios within the
same apparatus. In this case many systematics are com-
mon mode. The difference in the ratio with and with-
out micromotion depends only on (a) the micromotion
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amplitude, which can be accurately characterized from
micromotion sidebands, and (b) the difference in ∆α0(0)
for the two transitions. Assessment of ∆α0(0) for the
804- and 577-nm transitions by comparison to the 848-
nm clock would then be limited by the small contribution
from the 848-nm transition.

In light of the above considerations, ∆α0(ω) for the
848-nm transition has been measured at six optical fre-
quencies corresponding to the approximate wavelengths
1560, 987, 848, 804, 646, and 598 nm. All measurements,
together with previous measurements at 10.6µm [2], are
then used to formulate a model for ∆α0(ω) for frequen-
cies up to 372 Thz (804 nm) providing an estimate of
∆α0(0), and a reassessment of the BBR shift.

Measurements at 598 and 646 nm determine the dom-
inant pole contributions to ∆α0(ω) which largely de-
termine the frequency dependence below 372 THz (λ =
804 nm). The 598 and 646 measurements are indepen-
dently verified using an alternative technique based on
the comparison of ac Stark shifts and scattering rates
[4]. With this technique, the dependence on laser inten-
sity factors out and provides a consistency check for the
more conventional approach that involves characterizing
the beam intensity [5, 6].

The paper is organized into three main sections. The
first section details the experimental and theoretical
methodologies, the measurements made, and compares
theoretical and experimental results for the matrix ele-
ments and polarizabilities. The second section develops a
suitable model for ∆α0(ω) based on a theoretical under-
standing of the atomic structure and supported by the
measurements. An independent assessment based on the
single pole approximation [6] is used for comparison as
a means to check for modeling dependencies. The final
section applies the results to the BBR assessment.
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I. POLARIZABILITY MEASUREMENTS

The experimental methodology employed is similar
to that reported in previous work [2]. Linearly polar-
ized light is focused on the ion to induce an ac Stark
shift. This shift is measured on either the optical transi-
tion, | 1S0, F=7,mF=0 〉 ↔ | 3D1, 7, 0 〉, or the microwave
transition | 3D1, 7, 0 〉 ↔ | 3D1, 6, 0 〉. The optical tran-
sition is realized as an average of the | 1S0, 7,±1 〉 ↔
| 3D1, 7, 0 〉 transitions probed by Rabi spectroscopy with
typical π-times of 5-20 ms. The ac Stark shift is measured
by an interleaved servo technique [2, 7]. The laser inten-
sity is determined from in situ 2D profiling of the beam
at the ion, and power measurements using a calibrated
detector.

A. Experimental setup and optical power
characterization

Experiments are performed in the same linear Paul
trap used for previous work [8]. The trap consists of
two axial endcaps separated by 2 mm and four rods ar-
ranged on a square with sides 1.2 mm in length. All elec-
trodes are made from 0.45 mm electropolished copper-
beryllium rods. Radial confinement is provided by a
16.8 MHz radio-frequency (rf) potential applied to a pair
of diagonally opposing electrodes via a helical quarter-
wave resonator. A dc voltage applied to the other pair
of diagonally opposing electrodes ensures a splitting of
the transverse trapping frequencies. The endcaps are
held at 8 V to provide axial confinement. The mea-
sured trap frequencies of a single Lu+ are (ωx, ωx, ωz) ≈
2π × (608, 560, 134) kHz, with the trap axis along z.

The optical setup for the ac-Stark shift laser is shown
schematically in Fig. 2. The light is delivered to the ex-
periment on a single mode optical fiber. An assembly
consisting of an aspheric lens to collimate the fiber out-
put, a Glan-Taylor polarizer to set the polarization, and
an achromat doublet to focus onto the ion, is mounted on
a motorized two-axis translation stage which has speci-
fied bi-directional repeatability of 1.5µm. The exact op-
tical components of this assembly are changed as needed
to be suitable for the laser wavelength used (1560, 987,
848, 804, 646, or 598 nm). The reflection from the first
surface of the fixed-position glass pick-off is captured by
a charge-coupled device (CCD) to characterize the move-
ment of the stage during beam profiling.

The first reflection from the vacuum viewport, P2 in
Fig. 2, is used to actively stabilize the optical power by
feedback onto an acousto-optic modulator (AOM) before
the optical fiber. When the active stabilization is en-
gaged, the reading on the monitor power meter at P4

is repeatable to the lowest significant display digit over
a day, and measurements of the ac-Stark shift indicate
fractional power instability less than 10−3 as shown in
Fig. 1. To determine the optical power at the ion, P0, the
vacuum viewport transmission, T = (P1 − P2 − P3)/P1,
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FIG. 1. (a) ac-Stark shift induced by an intensity-stabilized
646 nm laser which is measured for 8 hours by the interleaved
servo technique. (b) Allan deviation of the data in (a) com-
pared to the servo projection noise limit (black line).

and the ratio of reference and monitor detectors readings,
r = Pref/Pmon, are measured while the active stabiliza-
tion is disengaged. The power at the ion with the stabi-
lization engaged is then P0 = rTP4, with an uncertainty
determined by the calibration accuracy of the reference
detector and the statistical uncertainty in r and T . Two
of our commercial detectors were calibrated by the Na-
tional Metrology Centre (NMC) in Singapore: a Silicon-
based detector at 633 and 850 nm, and Germanium-based
detector at 976 and 1550 nm. All NMC calibrations have
a certified 2σ uncertainty of 1.5%. For each laser wave-
length used in the experiment, the reference detector’s
calibration is traceable to the NMC calibration at the
nearest wavelength.

B. Beam profiling and intensity characterization

In order to determine the laser intensity, the beam is
profiled by measuring the position-dependent ac Stark
shift δf(x′, y′) induced on the | 1S0, 7, 0 〉 ↔ | 3D1, 7, 0 〉
clock transition as the beam is displaced by motorized
translation stages (Fig. 2) in a two-dimensional space
(x′,y′) orthogonal to the laser direction. We define a
normalization constant

C =
δfmax∫∫

δf(x′, y′)dx′dy′
(1)

where δfmax is the peak ac Stark shift and C has units
of m−2. The peak beam intensity is then I0 = CP0.
A useful length scale to parameterize the mode is the
effective waist we =

√
2/(πC), which corresponds to the

waist of a Gaussian beam with the same normalization
constant C.

After each movement of the translation stages, the
beam center position is determined by a 2D Gaussian
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FIG. 2. (Color Online) Schematic of experimental setup. The
light shifting laser is delivered to the experiment by optical
fiber. The optics assembly to collimate and then focus the
light onto the ion is able to be displaced along both axes
orthogonal to the beam direction using motorized transla-
tion stages. A CCD camera monitors the beam displacement.
Power measurement at the points P1 to P4 are used to infer
the power at ion, P0, as described in the main text. The laser

direction ~k is approximately 30◦ from normal incidence with
respect to the viewport. The externally applied magnetic field
~B is rotated in the yz-plane to form an angle φ with respect
to the linear laser polarization ~E .

fit to an image captured by the fixed position CCD cam-
era shown in Fig. 3. The beam position measurement by
the CCD camera has ±150 nm repeatability. Observed
over the course more than 34 hours, the beam position is
observed to drift by approximately 3µm over the course
of one day, with maximum rate of 9µm/day, correlated
with the ambient lab temperature. For a typical profile
scan over a 300 µm square grid, the rms positioning er-
ror of the stages relative to the programmed coordinates
is ∼ 1µm as assessed by the CCD camera. The beam
displacement measured by the camera at each point is
used for position coordinates when evaluating the beam
profiles.

The ac-Stark shift profile for the 598 nm laser is shown
in Fig. 3a as a representative dataset. Here Rabi spec-
troscopy with a 9 ms π-time is used. The measurement
at each position is the average value after 20 interleaved
servo updates, where one update occurs after 160 interro-
gations alternately with and without the Stark shift beam
present. Before starting each measurement, the servo is
run for 5 iterations to lock onto the Stark-shifted line to
avoid servo error in the averaged value. For the data in
Fig. 3a, the peak Stark shift is -528.8 Hz and the projec-
tion noise limited uncertainty at each position is 1.0 Hz.
The mode function is approximated by a cubic spline in-
terpolation, and integration over the square data region
yields a normalization constant of C = 117.1(3) mm−2,
corresponding to we = 73.73(9)µm. The statistical un-
certainty of C is determined by a bootstrapping method

where new data is generated by a Monte Carlo method
allowing for variation due to (i) the projection noise in
each measurement, (ii) an overall position offset of the
coordinates with respect to the measured profile, and
(iii) beam pointing drift over the duration of the pro-
file measurement. Three profiles were taken for both 646
and 804 nm and the repeatability was consistent with
the uncertainty estimated by this method. For the other
wavelengths, only a single profile was taken.

A potential source of systematic error with this
methodology is beam power not captured within the
data region. To illustrate, consider two test functions in
Fig. 3(c-d) with the same normalization as our measured
profile: a Gaussian (blue solid line) and Airy distribution
(green dashed line) with respective intensity distributions
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where J1 is the Bessel function of the first kind of order
one. The Airy function, a realistic optical profile result-
ing from uniform illumination of a circular aperture, has
a significant fraction of power distributed over regions
of large r/we. Even a partial contribution of the Airy
distribution to the laser profile, which could result from
either beam clipping or focusing aberration, for exam-
ple, would be undetectable within the projection noise
at the tails of the measured profile, yet still result in sig-
nificant error for a data region extending to r/we = 3.5
(Fig. 3d). Considering the measured ac Stark shifts (dark
orange points, Fig. 3c), even the modest deviation of the
observed profile from a Gaussian at the tails of the dis-
tribution (inset Fig. 3c) requires the data region to be
extended from r/we = 1.5 to 2 in order to achieve 99%
power capture (inset Fig. 3d).

For the last two wavelengths measured, 646 and 598
nm, the low-intensity tails of the distribution were further
investigated by independently profiling the beam with a
low readout noise camera outside of vacuum. With the
same optical assembly used for the experiment (Fig. 2),
including a glass pick-off and an identical vacuum view-
port, beam profile images were captured at several posi-
tions around the focal plane. For 598 nm, the camera im-
age which had normalization nearest (C = 118.8 mm−2)
to the measured ac-Stark profile is shown in Fig. 3b.
From the camera data (light orange points) in Fig. 3c,
we see good agreement with the ac-Stark data within the
profiled region (r/we < 3.5) and no significant intensity
beyond r/we > 3.5. For 598-nm, the camera data indi-
cates the 360µm square grid used for the ac-Stark profile
captures &99.8% of the power.

For wavelengths 804, 848, and 987 nm, the beam had
been profiled at the focus only for the purpose of esti-
mating the beam waist, at that time. For assessing the
fraction of power not captured within the scan region of
the ac-Stark shift profile, Ploss, only the 987 nm camera
profile was of sufficient quality to extract useful quanti-
tive information at a later date. For 1560 nm, we did not
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FIG. 3. (Color Online) Beam profiling data for the 598 nm laser. (a) Cubic-spline interpolation to ac-stark shift measurements.
Black points indicate the measurement positions as determined by the CCD camera. (b) Beam profile captured on a low-noise
camera outside the chamber at the focal plane of the ion. (c) Measured intensity as a function of radial distance from the beam
center for the Stark shift (dark orange) and camera (light orange) data. (d) Fraction of encircled power within radius r. (c-d)
Gaussian (blue solid line) and Airy (green dashed line) test functions with the same normalization C as the measured profile
for comparison. Inset plots show magnified views for clarity.

have a suitable camera to profile this wavelength. For the
available camera profiles, Fig. 4 shows Ploss evaluated as
a function the halfwidth, l, of a square integration region.
For those wavelengths with a camera profile, Ploss is es-
timated from the corresponding beam profile. For those
wavelengths without a camera profile, Ploss is estimated
from the common trend observed in the profiles at the
other wavelengths.

The normalization constants determined from the ac-
Stark shift profiles at all wavelengths are summarized in
Table I. The C values given in Table I are corrected for
the power capture effect and the full size of the correction
has been included in the uncertainty budget. For the case
of 1560 nm, the CCD camera is not sensitive to this wave-
length and therefore it was not possible to monitor the
stage movements. Additional uncertainty due to stage
positioning was included in the bootstrapping method to
assess the uncertainty contribution for this wavelength.

Even though the spatial mode is filtered by an optical
fiber and focused with optics that have minimal spherical

TABLE I. Results of beam profiling for all laser wavelengths
λ. l is the half-width of the square grid used for the profile,
scaled to the effective beam waist we. Ploss is the fraction of
power estimated to be outside the profile data region. C is the
normalization constant as defined in Eq. (1). Uncertainties
are given in parentheses.

λ (nm) l/we Ploss C (mm−2) we (µm)

598 2.5 0.2% 116.8 (1.1) 73.83 (35)
646 3.0 0.1% 399.5 (2.7) 39.92 (13)
804 1.7 1.3% 293.9 (2.6) 46.43 (21)
848 1.6 1.6% 268.3 (5.3) 48.7 (5)
987 1.7 1.5% 271.4 (4.8) 48.4 (4)
1560 1.8 1.1% 84.2 (1.2) 87.0 (6)

aberration, fitting to gaussian models was found to be
insufficient for determining the peak intensity at the 1%
level. For example, if an elliptical gaussian distribution
including TEM0,0, TEM0,1, and TEM1,0 modes is used,
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FIG. 4. (Color Online) The fraction of the beam power,Ploss,
not captured in a square region with halfwidth l scaled to
the effective waist we. Solid lines are evaluated from camera
beam profiles for the respective wavelengths. For reference,
the dashed black line is for a TEM0,0 Gaussian mode. Points
indicate the size of data region used for the respective ac-Stark
shift profile scan. For circles, Ploss is given by the associated
camera profile. For others, Ploss is estimated from the com-
mon trend of all the available camera profiles.

as in [6], we found the normalization C is consistently
overestimated by 3-5% for both the ac-Stark shift and
camera profile data at all wavelengths compared to the
methodology employed here.

C. Accurate assessment of the 646 and 598 poles

Given the potential to mischaracterize the beam inten-
sity, it would be advantageous to have an independent
measurement to validate the methodology. This can be
done by conducting measurements near-to-resonant with
a contributing transition. For Lu+, ideal candidates are
the 3D1 ↔ 3P0 and 3D1 ↔ 3P1 transitions at 646 and
598 nm, respectively. Sufficiently near to the pole, the
polarizability is, to a good approximation, determined
by the single pole. Additionally, there can be a mea-
surable scattering rate, which is proportional to the ac
Stark shift and the linewidth of the transition. The ratio
of ac Stark shift to scattering rate is then independent of
the laser intensity. As demonstrated in [4], this can pro-
vide an accurate assessment of the corresponding matrix
element and hence polarizability.

1. 646 pole via polarizability

The intensity of the Stark shift-inducing laser at 646
nm is actively stabilized with a peak intensity at the ion
of I0 = 1.942(21) Wcm−2, as assessed by the methods of
the previous sections. The laser is linearly polarized with
the magnetic field aligned to the beam propagation axis
(φ = 90◦) and detuned by ∆0/2π = −241.7(2) GHz from
the | 3D1, 7, 0 〉 ↔ | 3P0, 7, 0 〉 transition. All other tran-

sitions combined are estimated to contribute less than
< 0.2% to the differential dynamic polarizability of the
clock transition at this detuning. To a good approxima-
tion, the ac Stark shift, ~δ0, of the | 3D1, 7, 0 〉 state is

δ0 =
1

6

Ω2
0

4∆0
(2)

where Ω0 = ea0
~

√
2I0
ε0c
〈3D1||r||3P0〉. The measured shift

of δ0/2π = −846.5(3) Hz at the position of peak intensity
yields the matrix element:

|〈3D1||r||3P0〉| = 1.432(8) a.u. (3)

2. 646 pole via the scattering rate to stark shift ratio

The 646 laser for this measurement is derived from
the detection and cooling laser but frequency offset to
a detuning of ∆0/2π ∼ −1 GHz from the | 3D1, 7, 0 〉 ↔
| 3P0, 7, 0 〉 transition. The optical power is actively sta-
bilized but the absolute intensity at the ion is not accu-
rately determined. The beam propagates in the direction
of the magnetic field (φ = 90◦) and has circular polariza-
tion (σ+ coupling). This polarization ensures that once
the atom Raman scatters out of | 3D1, 7, 0 〉 it cannot re-
turn to this state (Fig. 5a). An atom prepared in the
| 3D1, 7, 0 〉 state scatters via the | 3P0, 7,+1 〉 state at the
rate

R0 =
Γ0

6

Ω2
0

4∆2
0

(4)

where Γ0 is radiative decay rate of the 3P0 state. From
the ratio of Eq. (2) and Eq. (4), one finds

Γ0 =
R0∆0

δ0
(5)

where R0, ∆0, and δ0 are all readily measurable quanti-
ties without characterization of the laser intensity. Once
Γ0 is determined, it is related to the matrix element by:

Γ0 =
ω3
0e

2a20
3πε0~c3

|〈3D1||r||3P0〉|2, (6)

where ω0 is the resonant transition frequency.
The experimental procedure to measure R0 is:

1. Repeat optical pumping into | 3D1, 7, 0 〉 (∼ 95%),
shelving to | 1S0, 7,−1 〉 on the clock transition, and
detection of 3D1 population until the atom is de-
tected dark. This prepares the atom in | 1S0, 7,−1 〉
with ∼ 99.8% fidelity.

2. Shelve | 1S0, 7,−1 〉 back to | 3D1, 7, 0 〉 with proba-
bility Ps ≈ 0.99.

3. Apply detuned 646 laser for duration τ
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FIG. 5. (Color Online) (a) Schematic of relevant energy levels.
Population initially prepared in | 3D1, 7, 0 〉 is pumped out by
a detuned 646 nm laser with circular polarization. The 848
nm clock laser is used for shelving to measure the population
of | 3D1, 7, 0 〉 and to measure the ac Stark shift induced by the
646 nm laser. (b) Population pumped out of | 3D1, 7, 0 〉 after
a 646 nm pulse of duration τ . Black line is a fit to Eq. (7).

4. Shelve remaining | 3D1, 7, 0 〉 population to
| 1S0, 7,+1 〉 with probably Ps

5. Detect 3D1 population

The measured bright population after a pulse length
of τ is then:

p(τ) = Ps(1− Pse−R0(1−b)τ ), (7)

where b is the fraction of Rayleigh scattering events back
to | 3D1, 7, 0 〉 and is equal to 1

6 for the states considered
(Fig. 5a inset).

Fig. 5b shows the result of a typical preliminary ex-
periment run which is fit to Eq. (7) with Ps and R0 as
free parameters. We acquire statistics on Ps, R0, and
δ0 from three interleaved experiments: (i) measure the
bright population after preparation but without a 646
pulse to determine Ps (ii) measure the population after a
646 pulse of fixed duration to determine R0 from Eq. (7),
and (iii) measure the ac-Stark on the | 3D1, 7, 0 〉 state us-
ing the 848-nm clock transition.

Fig. 6a shows the result from 15 hours of continuous
data acquisition, grouped into blocks of 2000 cycles of
the interleaved experiments. From the allan deviation
of the measured quantities (Ps, P (τ), and δ0), we are
able to characterize the stability of systematics such as
the shelving probability and laser intensity. The eval-
uated 〈3D1||r||3P0〉 is insensitive to slow variation in
these systematics and thus the final uncertainty is ex-
pected to be statistically limited. Indeed, the Allan de-
viation (Fig. 6b) indicates the result averages down with
projection-noise limited statistics. Fig. 6c shows all re-
sults from three consecutive days with a combined mea-
surement time of approximately 35 hours. Black circles
were taken at a detuning ∆0 = 2π × −989.46(10) MHz
and the black square at −1119.46(10) MHz.

The weighted mean result of the three experiments is

|〈3D1||r||3P0〉| = 1.440(2) a.u., (8)
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FIG. 6. (Color Online) (a) Each point represents a block of
2000 experiment cycles as describe in the main text. The
mean value is 1.441 (3) (solid line and shaded region) with
reduced χ2 = 0.82. (b) Allan deviation of the dataset in (a)
where the solid line is the projection noise limit. (c) Compar-
ison of the matrix element determined from the polarizability
method (red line) and the scattering rate to Stark shift ratio
(black line) from multiple experimental datasets (black cir-
cles/squares). The bottom point (circle) corresponds to the
dataset shown in (a)-(b). Shaded regions represent respective
uncertainties. The black dashed line is the theory value from
previous work [9] and the blue dotted line is a new theory
value from the method applied in this work, Sec. I D.

indicated by the black line in Fig. 6c. For comparison, the
red line is the result from the polarizability measurement,
and the dashed lines are theoretical matrix elements from
different methodologies discussed in Sec. I D. The results
from the two experimental methodologies agree to within
one standard error of the largest uncertainty.

Our initial results from the two methodologies were in
significant disagreement. The source of the discrepancy
was found to be the contribution of the amplified spon-
taneous emission (ASE) when using diode laser sources
near to a resonance. For the polarizability measurement
at ∆0/2π = −241.7(2) GHz, we used a diffraction grat-
ing to filter the ASE before the optical fiber going to
the experiment. This increased the measured Stark shift
by 2.9(6)% compared to no filtering and for the same
laser intensity at ion. For the scattering rate measure-
ment, a Fabry-Pèrot resonant filter was used to suppress
ASE and undesired spurious spectral components from
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an AOM which were near resonant.
It is also noted that the implied natural decay rate

of 3P0 reported here, Γ0/2π = 2.447(27) MHz, is in dis-
agreement with the measurement reported in Ref. [8],
2.579(17) MHz. In Ref. [8], the linewidth of the transition
was extracted from the resonant line profile as a 646-nm
laser was stepped through the atomic resonance. It was
assumed that the laser linewidth would be dominated by
Gaussian technical noise sources and result in a Voigt
line shape. This 646-nm laser was recently compared to
our spectrally narrow optical frequency comb and found
instead to have a nearly Lorzentian power spectral den-
sity with full-width-half-maximum (FWHM) of 140 kHz.
As the FWHM of two Lorzentians add in convolution,
broadening due to 646-nm laser linewidth fully accounts
for the discrepancy in the earlier measurement. All mea-
surements reported in this work are in a dispersive regime
and are not sensitive to laser linewidths.

3. 598 pole via polarizability measurement

The intensity of the ac-Stark shift-inducing laser at
598 nm is actively stabilized with a peak intensity at
the ion of I0 = 34.4(6) mWcm−2. The laser frequency
is referenced to an optical frequency comb and set to
a detuning of ∆1/2π = −1097.0(1) MHz with respect to
the | 3D1, 7, 0 〉 ↔ | 3P1, 6, 0 〉 transition. The polarization
is linear and aligned parallel to the externally applied
magnetic field (φ = 0). The Stark shift, ~δ1, on the
| 3D1, 7, 0 〉 state is given by

δ1 =
Ω2

1

4

(
4

45

1

∆1
+

7

90

1

∆1 − ω68

)
, (9)

where ω68 = 2π × 52.832 2 GHz is the separation of
the 3P1 F=6 and F=8 hyperfine levels, and Ω1 =
ea0
~

√
2I0
ε0c
〈3D1||r||3P1〉. The second term in Eq. (9) is due

to coupling from the | 3D1, 7, 0 〉 ↔ | 3P1, 8, 0 〉 transition
and contributes 1.7% to the total Stark shift. Since the
laser is π polarized there is no contribution from the 3P1

F=7 level. At the position of peak intensity, we measure
a shift of δ1/2π = −1318(1) Hz. From Eq. (9) we obtain

|〈3D1||r||3P1〉| = 1.265(11) a.u. (10)

4. 598 pole via scattering rate to stark shift ratio

The 598-nm laser has the same polarization and fre-
quency as used in the polarizability measurement. The
laser frequency is sufficiently close to the | 3D1, 7 〉 ↔
| 3P1, 6 〉 transition that the scattering through | 3P1, 8 〉
can be neglected. From the | 3D1, 7, 0 〉 state, the atom
will scatter at the rate

R1 = Γ1
4

45

Ω2
1

4∆2
1

, (11)

where Γ1 is the total decay rate of the 3P1 state. From
the ratio of Eq. (9) and Eq. (11), Γ1 is determined inde-
pendent of Ω1.

The experimental procedure to measure R1 is similar
to the 646-nm case:

1. Repeat optical pumping into | 3D1, 7, 0 〉 and shelv-
ing to | 1S0, 7,−1 〉 on the clock transition until the
atom is detected dark.

2. Shelve | 1S0, 7,−1 〉 back to | 3D1, 7, 0 〉

3. Apply 598 nm laser for duration τ

4. Detect remaining 3D1 population.

The population dynamics are slightly complicated
compared to the 646-nm case because 3D1 ↔ 3P1 is an
open transition. The possible decay paths from 3P1 F=6
are shown in Fig. 7a(inset), where β is the branching ratio
from 3P1 → 3D1. Scattering via | 3P1, 6, 0 〉 redistributes
the populations, p6 (p7) in the 3D1 F=6 (7) hyperfine
manifolds by the following rate equations:

dp6
dt

=
3

7
βR1p7 (12)

dp7
dt

= −
(

1− 4

7

)
βR1p7. (13)

Solving for initial conditions p7(0) = P0 and p6(0) = 0,
the bright population, p6+p7, after a pulse of length τ is

p(τ) = P0

[
3β

7− 4β
+

7− 7β

7− 4β
e−R1(1− 4

7β)τ

]
. (14)

The branching ratio β was measured previously in 175Lu+

and reported to be 0.1862 (17) [9]. It has been remea-
sured in 176Lu+ and the same value was found with com-
parable uncertainty, β = 0.1862 (13).

The model, Eq. (14), does not account for the fact that
population decaying to other magnetic substates in 3D1

F=7 will subsequently scatter at different rates. How-
ever because the branching ratio back to F=7 is only
4
7β ≈ 10% and the relative scattering rates for π-coupling
from |m| = (0, 1, 2) are close, (1.0,0.98,0.92), this is not
expected to bias R1 comparable to the reported uncer-
tainty.

An example of the observed bright population after a
598-nm laser pulse of duration τ is shown in Fig. 7a.
The dashed black line indicates the expected asymp-
totic bright population, 3β

7−4β = 0.08936 (16), after the
3D1 F=7 hyperfine manifold has been emptied. The
solid black line is a fit to Eq. (14) with P0 and R1 as
free parameters. We acquire statistics on P0, R1, and
δ1, with three interleaved experiments: (i) measure the
bright population after preparation but without the 598-
nm pulse to determine P0 (ii) measure the population af-
ter a 598-nm pulse of fixed duration to determine R1 from
Eq. (14), and (iii) measure the ac-Stark on the | 3D1, 7, 0 〉
state using the 848-nm clock transition. From P0, R1,
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FIG. 7. (Color Online) (a) Bright population remaining af-
ter 598-nm laser pulse of duration τ . Solid black line is
a fit to Eq. (14). a(inset) Schematic of 598-nm scatter-
ing experiment including branching paths from the 3P1 F=6
state. (b) Comparison of results from different methodolo-
gies. Points are results from scattering to stark shift ratio
experiment runs as described in the main text. Light or-
ange points were taken at the detuning of −1097.0(1) MHz
with respect to the | 3D1, 7, 0 〉 ↔ | 3P1, 6, 0 〉 transition, while
dark orange points were at +995.7(1) MHz with respect to the
| 3D1, 7, 0 〉 ↔ | 3P1, 8, 0 〉 transition. The black line is the χ2

optimized mean of these results. Red line is the result from
the polarizability measurement. Shaded regions indicate the
uncertainties. The black dashed line is the theory value from
previous work [9] and the blue dotted line is the new theory
value from the method applied in this work, Sec. I D.

and δ1 the decay rate Γ1 is found, which is related to the
matrix element:

βΓ1 =
ω3
0e

2a20
3πε0~c3

1

2J ′ + 1
|〈3D1||r||3P1〉|2, (15)

where J ′ is the total angular momentum of the excited
state.

Fig. 7b shows the results from multiple experiment
runs. Light orange points were taken at the detuning
of −1097.0(1) MHz with respect to the | 3D1, 7, 0 〉 ↔
| 3P1, 6, 0 〉 transition, while dark orange points were
at +995.7(1) MHz with respect to the | 3D1, 7, 0 〉 ↔
| 3P1, 8, 0 〉 transition. The analysis is modified accord-
ingly for scattering via 3P1 F=8. Square points used the
conditional state preparation step as described, which
prepares P0 ≈ 99% population in | 3D1, 7, 0 〉. Circles
used only 646-nm optical pumping for state preparation
which prepares ≈ 95% of the population in | 3D1, 7, 0 〉,
and ≈ 2% each in | 3D1, 7,±1 〉. From a full rate equa-

TABLE II. Measured peak ac-Stark shifts from which polar-
izabilties are determined.

λ P0 δf(φm) δfµ(φm) δfµ(π/2)
(nm) (mW) (Hz) (Hz) (Hz)
804 12.49 (25) -316.0 (0.3) -0.01 (0.26) 168.3 (0.1)
848 16.19 (17) -286.1 (0.2) 0.13 (0.11) 165.2 (0.1)
987 29.18 (26) -280.8 (0.4) -0.07 (0.42) 209.2 (0.1)
1560 441 (10) -386.0 (0.3) -0.45 (0.37) 698.4 (0.1)

tion simulation including all magnetic sublevels, we find
less than 0.15% deviation of the scattering rate as com-
pared to the model, Eq. (14), for either state preparation
method.

The weighted mean result from the four experiment
runs is

|〈3D1||r||3P1〉| = 1.255(7) a.u., (16)

indicated by the black line in Fig. 7b. The uncertainty
in the mean is limited by the accuracy of β. The polar-
izability result (red in Fig. 7b) is in agreement to within
one standard deviation of the larger uncertainty.

D. Polarizability measurement results and
comparison with theory

For the remaining wavelengths, the differential dy-
namic scalar polarizabilities ∆α0(ω) and tensor polar-
izabilities α2(3D1, ω) of the 1S0 ↔ 3D1 clock transition
are found by the same methodology used in Ref. [2]. The
differential ac-Stark shifts induced on the | 1S0, 7, 0 〉 ↔
| 3D1, 7, 0 〉 optical clock transition, δf , and | 3D1, 6, 0 〉 ↔
| 3D1, 7, 0 〉 microwave transition, δfµ, due to linearly po-
larized laser light of frequency ω are given, in Hz, by [13]

δf =− 〈E
2〉

2h

(
∆α0(ω) +

1

2
α2(ω)(3 cos2 φ− 1)

)
(17)

δfµ = −〈E
2〉

2h

(
7

10
α2(ω)(3 cos2 φ− 1)

)
(18)

where φ is the angle between the laser polarization and
quantization axis, and 〈E2〉 is mean squared electric field
averaged over one optical cycle. This is related to the
laser intensity by 〈E2〉 = I0/(cε0). The peak laser inten-
sity is I0 = CP0 where P0 is the power at the ion and
C is the normalization coefficient found by beam profil-
ing and given in Table I. Polarizabilities are reported
in atomic units which can be converted to SI units via
α/h [Hz m2 V−2] = 2.48832× 10−8α (a.u.).

To find ∆α0(ω), the magnetic field is rotated to φm =

cos−1(
√

1
3 ) ≈ 54.7◦ where the tensor contribution to δf

is nulled. The optimal angle is found by measuring δfµ.
Table II gives measured values of δf and δfµ at the opti-
mized angle. The residual Stark shifts measured on the
microwave transition imply φ has been set to within 1
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TABLE III. Measured and calculated differential dynamic
scalar polarizabilities ∆α0(ω) and tensor polarizabilities
α2(3D1, ω) (in a.u.). The uncertainties are given in paren-
theses.

Experiment Theory
λ (nm) ∆α0 α2 ∆α0 α2

804.13 18.4 (4) −13.97 (31) 22 (4) −15.5 (1.2)
847.74 14.06 (31) −11.59 (26) 17.2 (3.9) −12.7 (1.0)
987.09 7.56 (15) −8.05 (16) 9.9 (3.5) −8.8 (7)
1560.80 2.22 (6) −5.73 (15) 3.6 (3.1) −5.9 (5)
10600 0.059 (4)a −4.4 (3)a 1.2 (2.9) −4.9 (4)

aThese values were obtained in Ref. [2].

mrad of φm for every wavelength. Uncertainties on all
ac Stark shift measurements are statistical from projec-
tion noise. To find α2(ω), the field is rotated to find the
extremal Stark shift at φ = π/2. The measured shifts
on the microwave transition at this position are given in
Table II. The inferred polarizabilities are summarized in
Table III. The measurement wavelengths are given to
an accuracy of 0.01 nm in Table III but are known more
accurately. A breakdown of the uncertainty budget for
∆α0(ω) at each wavelength is given in Table IV.

We compare polarizability measurements with theoret-
ical calculations. In Ref. [9], we used a method that com-
bines configuration interaction (CI) and the linearized
coupled-cluster single-double (LCCSD) approaches to
study Lu+. The application of this method to the calcu-
lation of polarizabilities was described in detail. In this
work we further develop this method, additionally includ-
ing quadratic non-linear terms and (partially) triple exci-
tations in the framework of the coupled-cluster approach
to improve the effective Hamiltonian used in the CI calcu-
lation. The triple excitations are allowed from the core
shells with principal quantum numbers n = 4, 5 to the
virtual orbitals with maximal quantum numbers n = 15
and l = 3. Following the formalism developed in [10] we
solve equations for triple cluster amplitudes iteratively,
i.e., triples are included in all orders of the perturbation
theory. The results obtained in the approach combin-
ing CI and coupled-cluster single-double-triple (CCSDT)
method (we refer to it as the CI+CCSDT method) are
listed in Table III. At λ = 10600 nm, the theory is un-
able to provide a reliable prediction because the value
is consistent with zero with the theoretical uncertainty.
We use the effective (“dressed”) electric dipole opera-
tor in the polarizability calculations, which includes the
random-phase approximation, core-Bruekner, two parti-
cle, structural radiation, and normalization corrections.
A detailed description of these corrections is given in
Ref. [11]. The assignment of theoretical uncertainties is
as discussed in Ref. [9]. As seen from the table, there is a
good agreement between theory and experiment, though
the experimental accuracy is better.

In Table V we compare the absolute values of the re-
duced matrix elements 〈5d6s 3D1||r||6s6p 3P0,1〉 obtained

TABLE IV. Contributions to the uncertainty in ∆α0 for each
wavelength.

804 848 987 1560
effect % % % %
beam profiling 0.9 2.0 1.8 1.4
power measurement, statistical 1.8 0.6 0.4 2.3
power meter calibration 0.8 0.8 0.8 0.8
ac Stark shift, statistical 0.06 0.06 0.1 0.03
total uncertainty 2.2 2.2 2.0 2.7

TABLE V. The absolute values of the reduced matrix el-
ements 〈5d6s 3D1||r||6s6p 3P0,1〉 (in a.u.) obtained in the
CI+CCSDT method are compared with the results obtained
in the CI+LCCSD approximation in Ref. [9] and present ex-
perimental results. The uncertainties are given in parenthe-
ses.

Ref. [9] This work
CI+LCCSD CI+CCSDT Expt.

|〈3D1||r||3P0〉| 1.480 1.430 1.440(2)

|〈3D1||r||3P1〉| 1.287 1.253 1.255(7)

in this work with current experimental results and the
values obtained in the framework of the CI+LCCSD ap-
proximation in Ref. [9]. We find that the inclusion of
the non-linear and triple terms into consideration signif-
icantly improved the agreement between the theoretical
and experimental values.

II. MODELING THE DIFFERENTIAL
POLARIZABILITY

The scalar dynamic polarizability of a given clock state
| ν 〉 can be written as a positive sum of second order
poles. In atomic units, this is given by [12, 13]:

α0(ω) =
2

3(2Jν + 1)

∑
ξ

〈ξ||r||ν〉2
ωξν

1

1− (ω/ωξν)
2 , (19)

where 〈ξ||r||ν〉 is the reduced dipole matrix element for
a transition at frequency ωξν = Eξ − Eν , and Jν is the
total angular momentum of state | ν 〉.

Using the identity

1

1− x2 =
x2(n+1)

1− x2 +

n∑
k=0

x2k (20)

any pole can be split into the sum of a polynomial of
order 2n and a term that is henceforth referred to as the
pole residual. From calculated matrix elements [9], pole
residuals for each contributing transition can be calcu-
lated at each measurement wavelength. For n = 2, these
results are tabulated in table VI along with subtotals
for each clock state. The two dominant contributions
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TABLE VI. The n = 2 residuals for each pole contributing
to ∆α0(ω) evaluated at ω804 and ω848. For the 598- and
646-nm poles, the values are determined from the measured
matrix elements. All others are taken from theory [9] using
experimental energies. Subtotals given for the 3D1 state omit
the two dominant contributions from the 598- and 646-nm
poles.

State Contribution 804-nm 848-nm

6s2 1S0 6s6p 3P o1 0.029 0.021
6s6p 1P o1 0.063 0.045
5d6p 3Do

1 9.4[-4] 6.9[-4]
5d6p 3P o1 1.5[-4] 1.1[-4]
5d6p 1P o1 4.1[-4] 3.0[-4]

Total 0.094 0.067

5d6s 3D1 6s6p 3P o0 4.990 3.074
5d6p 3P o0 6.0[-3] 4.4[-3]

6s6p 3P o1 1.752 1.135
5d6p 3Do

1 0.023 0.017
5d6p 3P o1 7.3[-3] 5.3[-3]

6s6p 3P o2 0.022 0.015
5d6p 3F o2 0.086 0.061
5d6p 1Do

2 0.012 9.0[-3]
5d6p 3Do

2 0.016 0.011
5d6p 3P o2 4.2[-4] 3.0[-4]

Subtotal 0.174 0.124

from the 598 and 646-nm transitions are omitted from
the 3D1 subtotal. As the residuals are less significant
at longer wavelengths, only results for the measurement
wavelengths of 804 and 848 nm are given.

As seen from the table, the residual contribution from
either clock state is at most the measurement error for
any given measurement wavelength and, even then, there
is a significant cancellation between them. The omission
of these residuals is then well justified even for rather
significant changes to the theoretical calculations. Addi-
tionally, with 1% accuracy on the contributions from 598
and 646, the error from this is no more than 30% of the
measurement error. Hence, ∆α0(ω) can be modeled by

∆α0(ω) =
2

9

µ2
598

ω598

1

1− (ω/ω598)
2 +

2

9

µ2
646

ω646

1

1− (ω/ω646)
2

+ a0 + a1

(
ω

ω804

)2

+ a2

(
ω

ω804

)4

, (21)

where µλ are the reduced electric dipole matrix elements
for the respective transitions, ω646 and ω598 are the re-
spective resonant transition frequencies, and ak are poly-
nomial fitting coefficients. The scaling of the frequency
for the polynomial terms is arbitrary and conveniently
set to the largest frequency in the measurement window,
ω804. Using Eq. (20) and a suitably modified ak, this can

be rewritten in the mathematically equivalent form

∆α0 = b598(ω) + b646(ω) +

2∑
k=0

akω̄
2k, (22)

where ω̄ = ω/ω804 and

bλ(ω) =
2

9

µ2
λ

ωλ

(ω/ωλ)
6

1− (ω/ωλ)
2 . (23)

Values for ak can then be found from a χ2-minimization.
As the fitting function is a linear combination of bases

functions, the minimization can be elegantly solved us-
ing singular-valued decomposition (SVD). The functional
form of bλ(ω) is practically exact as the transition fre-
quencies are well known [8]. Only the overall scale, which
is determined by the relevant matrix element (squared),
is subject to experimental uncertainty. For now we as-
sume these are exact. With measurements, mj, of the
polarizability performed at ωj with uncertainties σj , we
seek to find coefficients a via the χ2-minimization,

min
a
‖A · a− b‖2 (24)

where

(A)jk =
ω̄2k
j

σj
, bj =

(m− b598 − b646)j
σj

, (25)

and (bλ)j = bλ(ωj). With the SVD, A = USVT , the
solution is then

a = VS−1UTb, (26)

where S−1 is to be interpreted as the left inverse. The
polarizability at any given frequency is then given by

∆α0(ω) = a · v (ω̄) + b598(ω) + b646(ω) (27)

with v(x) = (1, x2, x4).
In terms of errors there are two distinct considerations.

The first is simply the error associated with the fit, which
arises from the first term in the equation for α0(ω). As
this is a linear combination of the coefficients a, the 1-σ
error is given by

δα0(ω) =
√
v(ω̄)T (ATA)−1v(ω̄), (28)

which cannot be treated as uncertainties in each of the
polynomial coefficients. Although each coefficient ak can
be prescribed an uncertainty, each of these uncertainties
has some degree of correlation which is accounted for by
Eq. 28 insofar as the evaluation of the polarizability at a
given frequency is concerned.

The second consideration is from an error in bλ(ω).
Varying either of these by the fractional amount σλ will
change the solution by

δα0(ω) = −
(
v(ω̄)TVS−1UT

(
bλ
σ

))
σλ

+ bλ(ω)σλ, (29)
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FIG. 8. (Color Online) Polarizability measurement results
(orange points) from Table III and fit to the model given by
Eq. (27) (solid black line). The inset shows the model uncer-
tainty (gray shaded) near dc, which is predominately deter-
mined by the measurement uncertainty at 10.6 µm (orange
point inset).

where σ is the vector of measurement uncertainties, σj ,
and the vector division is be interpreted element-wise. As
v and A are unaffected, the error given by Eq. 28 is un-
changed. Note that both σ598 and σ646 are . 0.01. As it
turns out, these errors are much smaller than those from
the fit and can be largely ignored being no more than
around 5% of the fitting error over the frequency range
of interest. The reason for this is that small changes in
bλ(ω), that may make significant changes to the polar-
izability, are largely compensated by the fitting so as to
remain consistent with the measurements.

The result of the minimization procedure described
above is shown in Fig. 8. We find

∆α0(0) = 0.0201(45) (30)

with a reduced χ2 = 1.48. The extrapolated value is
consistent with that determined from the measurement
at 10.6µm and extrapolated using theory [2]. The error
bar also reflects the intuitively obvious fact that the error
in the extrapolation cannot be better than the measure-
ment error at 10.6µm: with a three parameter fit to five
data points there is insufficient averaging to expect bet-
ter particularly with the other measurements far removed
from the extrapolation point. This should be contrasted
with the claim in [6].

It is of interest to compare and contrast the model used
with the single pole approximation [6]

∆α0(ω) ≈ c0 +
c1(ω/ω0)2

1− (ω/ω0)2
, (31)

which may be viewed as a Padé approximant accurate
to 4th order. In general, care should be taken with such
an approximation: it constrains the relative signs of the

quadratic and quartic terms and this need not be the
case for a differential polarizability in which there can
be significant pole cancelation. In the case of lutetium,
∆α0(ω) is dominated by two transitions connected to
3D1 which ensures the relative sign. Moreover the two
poles are closely spaced and reasonably removed from the
measurement window of interest. Hence such an approx-
imation may be reasonable. Fitting to this model gives
∆α0(0) = 0.0203(42) with a reduced χ2 of 0.94, in com-
plete agreement with the previous fit. Additionally, the
effective pole at ω0 has a wavelength of 639(7) nm con-
sistent with the expectation that it lies between the two
dominant poles at 598 and 646 nm and weighted towards
the strongest contribution at 646 nm. As there is no sig-
nificant modeling dependence, we use the more general
model in assessing the BBR shift for the convenience that
comes with the linear parameter dependence.

III. THE BBR SHIFT ASSESSMENT

With ∆α0(ω) experimentally characterized up to ω804,
the BBR shift can be readily calculated. Integrating over
the BBR spectrum we have

δν = −1

2

∫ ∞
0

∆α0(ν)
8πh

c3ε0

ν3

ehν/(kBT ) − 1
dν (32)

= −1

2

(
8π5k4BT

4
0

15h3c3ε0

)(
T

T0

)4

× 15

π4

∫ ∞
0

∆α0(u)
u3

eu − 1
du (33)

= −1

2
(831.945 V/m)

2

(
T

T0

)4

× 15

π4

∫ ∞
0

∆α0(u)
u3

eu − 1
du, (34)

where T0 = 300 K and u = hν/(kBT ) is a dimensionless
scale of integration. Defining T̄ = T/T0 and using Eq. 27,
the BBR shift can be written

δν = −1

2
(831.945 V/m)

2
T̄ 4a ·w(T̄ ), (35)

where

w(T̄ ) =

(
1,

40π2

21
ε2T̄ 2, 8π4ε4T̄ 4

)
, ε =

kBT0
~ω804

. (36)

From the fitted coefficients, the fractional BBR shift is
then given by

δν

ν
= −4.90× 10−19T̄ 4(1 + 1.77T̄ 2), (37)

where the term proportional to T̄ 8 has been omitted as
it contributes only ∼ 1% at 300 K.

As with the polarizability itself, only the fitting error
significantly influences the uncertainty. Also, although
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the BBR shift is best given as an expansion of varying
powers of temperature, the uncertainty in its estimate
is best represented by a term similar to Eq. 28 and not
independent uncertainties of the expansion coefficients.
Explicitly

2.45× 10−17T̄ 4
√
w(T̄ )T (ATA)−1w(T̄ ), (38)

and, over the practical temperature range of 270-330 K,
this is well approximated by 9.8 × 10−20T̄ 4. Corrections
due to Eq. 29 are less than 1% of this expression. The
BBR shift at room temperature is then −1.364(98) ×
10−18 in agreement with the previous assessment [2].

IV. CONCLUSION

In summary, the differential polarizability of the
176Lu+ 1S0 ↔ 3D1 clock transition has been measured
over a range of wavelengths. This has allowed an extrap-
olation to the true static value relevant to micromotion
clock shifts and an experimental determination of the dy-
namic correction to the BBR shift. Model dependency for
the extrapolation was investigated using two independent
fitting models: both of which could be justified based on
theoretical considerations and gave excellent agreement
in the extrapolated value.

The experimental determination of intensities is a cru-
cial component of the polarizability assessment and this
was rigorously tested using an independent polarizabil-
ity measurement near to resonance with two contribut-
ing transitions. We consider this an essential consistency
check when using extrapolation of high accuracy polariz-
ability measurements for BBR shift assessments. Such a
consistency check is readily available for any clock candi-
date having a transition associated with detection. The
measurements also provided precision benchmarks for the
theoretical approach developed in this work.
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