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Recent work on Ising-coupled double-quantum-dot spin qubits in GaAs with voltage-controlled
exchange interaction has shown improved two-qubit gate fidelities from the application of oscillating
exchange along with a strong magnetic field gradient between adjacent dots [1]. By examining how
noise propagates in the time-evolution operator of the system, we find an optimal set of parameters
that provide passive stroboscopic circumvention of errors in two-qubit gates to first order. We
predict over 99% two-qubit gate fidelities in the presence of quasistatic and 1/f noise, which is an
order of magnitude improvement over the typical unoptimized implementation.

I. INTRODUCTION

Quantum dot spin qubits provide a promising platform
for quantum computing due to their potential scalabil-
ity and relatively long coherence times. For single-spin
qubits [2], one-qubit operations with gate fidelities ex-
ceeding the fault-tolerant threshold have been realized
in single-spin qubits [3], but two-qubit gates have much
lower fidelities [4, 5]. Likewise, for singlet-triplet spin
qubits [6, 7], which we focus on below, a recent two-qubit
experiment reported only up to 90% entangling gate fi-
delity [1]. This can be improved by circumventing the
effects of the two main noise sources, namely fluctuations
in the electric confining potential and fluctuations in the
Zeeman energy difference between the quantum dots.

The fluctuation in the confining potential is often at-
tributed to thermal fluctuations in the occupation of
nearby charge traps, i.e., charge noise, thus leading to
fluctuations in the local electric field [8]. Relative to the
time-scale of spin qubit rotation times, these fluctuations
can be treated quasistatically as a first approximation,
but the actual power spectral density of charge noise in
these qubit systems has been measured to behave like
1/f0.7 in GaAs [9] and 1/f in Si [10, 11] out to tens or
even hundreds of kHz. The quasistatic part of the noise
can be addressed by applying composite pulse sequences,
where noisy gate operations are applied sequentially such
that the gate errors conspire to cancel one another. These
sequences, however, typically only suppress noise that is
slow on the timescale of the sequence, and amplify noise
that is faster [12].

The Zeeman fluctuations manifest in two ways depend-
ing on how the gradient is generated. When the gradi-
ent comes from the Overhauser effect due to the hyper-
fine coupling of the dot electron with the nuclear spin of
the host semiconductor, such as in GaAs-based architec-
tures using dynamical nuclear spin polarization [13–15],
electron-mediated nuclear spin flip-flops produce 1/f2

noise [16, 17] that is essentially quasistatic. When the
gradient comes from a micromagnet structure [18], as
used in some GaAs devices [19, 20] and which is neces-
sary for silicon-based architectures with far fewer spinful
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nuclei [21], it is possible for charge noise to also couple
in via small shifts in the dot position, again resulting in
higher frequency noise [22].

Two-qubit gate fidelity in singlet-triplet systems is
mostly limited by charge noise when the qubit dynamics
is dominated by the exchange interaction [6, 23]. Recent
work on capacitively-coupled, double-quantum dot spin
qubits with gate-controlled exchange coupling between
the spins has demonstrated suppression of charge noise
by applying a strong magnetic gradient between the two
dots in each qubit that is much stronger than the ex-
change interaction [1]. An analytical expression for the
full time-evolution operator of this particular system can
be obtained by using the rotating-wave approximation
(RWA) [24].

In this work, we analyze how perturbations in the con-
trol parameters of a capacitively-coupled singlet-triplet
system affect the time-evolution and present a strategy
to minimize those effects. In Sec. II, we derive the time-
evolution operator using the RWA. We consider in Sec. III
two different parameter regimes for two qubits with sim-
ilar energy splitting: when the magnetic field gradient
dominates the splitting, and when the exchange interac-
tion dominates instead. We calculate the leading order
errors and show that certain parameter choices result in
a synchronization of oscillating error terms such that a
passive reduction of gate errors occurs at specific times.
In Sec. IV we examine the effects of the optimization
in the presence of both quasistatic noise and 1/f noise.
We find that our optimization isolates the effects of noise
into particular SU(4) basis elements, allowing us to pre-
scribe composite pulse sequences to mitigate the remain-
ing errors. In principle, this work allows the improvement
of experimental two-qubit gate fidelities to above 99%.
While most of our work is presented in the limit of zero
pulse rise time, we show in App. A that typical finite rise
times do not pose a challenge to the stroboscopic error
suppression.

II. THE TIME-EVOLUTION OPERATOR

We consider a system of capacitively-coupled singlet-
triplet qubits, which corresponds directly to the experi-
mental setup in Ref. [1], but our results are also appli-
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cable to any system similarly described by a static Ising
coupling and local driving fields. The effective two-qubit
Hamiltonian is given by

H =

2∑
i=1

(
Ji + ji cos[ωit]

2
σ

(i)
Z +

hi
2
σ

(i)
X

)
+ ασZZ , (1)

where σij ≡ σ
(1)
i ⊗ σ

(2)
j with {i, j} ∈ {I,X, Y, Z} collec-

tively form a 15-dimensional SU(4) basis. The exchange
interaction between two spins in the ith qubit is a func-
tion of the difference in electrochemical potential between
the dots, εi, which can vary in time. By oscillating εi,
the exchange is caused to oscillate at a driving frequency
ωi, which makes the effective exchange interaction oscil-
late about an average value Ji with an amplitude ji. The
static, longitudinal magnetic field gradient is denoted by
hi; this can be generated by using either a micromagnet
or, in GaAs, through the hyperfine interaction between
the dot electrons and the nuclear spins in the semicon-
ductor. Thus, the static part of a qubit’s total energy
splitting is Ωi ≡

√
h2
i + J2

i . Finally, α is the electrostatic
coupling strength between the adjacent qubits, which is
proportional to the product of the two qubits’ electric
dipole moments.

Ref. [24] reported an approximate time-evolution oper-
ator for the aforementioned Hamiltonian using the RWA.
There it was implicitly assumed that jiJi

2Ωi
� Ωi. We lift

this assumption and apply the same formalism to find a
more general description of the time evolution. We be-
gin by first performing a local rotation to align the x-axis
along the vector sum of the combined local static fields

U = exp

[
ı

2

2∑
i=1

φiσ
(i)
Y

]
U1 exp

[
− ı

2

2∑
i=1

φiσ
(i)
Y

]
, (2)

where φi ≡ tan−1(Ji/hi) and U is the lab-frame propa-
gator. We then transform to the rotating frame

U1 = exp

[
−ı

2∑
i=1

(
ωit+ ξi(t)

2

)
σ

(i)
X

]
U2, (3)

where the inclusion of ξi(t) = jiJi sin(ωit)
ωiΩi

generalizes

Ref. [24]. We perform the RWA by doing a coarse-grain
time-average over a time scale 1/α � τ � max{1/ωi}.
The addition of ξi(t)

2 in the local rotation causes some of
the terms in the rotating-frame Hamiltonian to have non-
trivial averages. The time-averaged propagator is given
by

U2 = exp

[
− ıt

(
2∑
i=1

(
χiσ

(i)
Z +

Ωi − ωi
2

σ
(i)
X

)
− h1J2α

Ω1Ω2
J1

[
j1J1

ω1Ω1

]
σZX −

h2J1α

Ω1Ω2
J1

[
j2J2

ω2Ω2

]
σXZ

+
J1J2α

Ω1Ω2
σXX +

h1h2α

2Ω1Ω2
(IY Y σY Y + IZZσZZ)

)]
, (4)

where Ji[z] is the i th order Bessel function of the first

kind, χi ≡
hiωiJ1

[
jiJi
ωiΩi

]
2Ji

is the Rabi frequency, and

IY Y =
1

τ

∫ τ

0

2 sin (ω1t+ ξ1) sin (ω2t+ ξ2) dt (5)

IZZ =
1

τ

∫ τ

0

2 cos (ω1t+ ξ1) cos (ω2t+ ξ2) dt. (6)

We require ωi �
{∣∣∣hiji2Ωi

∣∣∣ , α} to ensure the validity of the

RWA.
To gain a better understanding of the entangling dy-

namics, we take another transformation to eliminate the
remaining local operators in the Hamiltonian:

U2 = exp

[
−ıt

2∑
i=1

(
Ωi − ωi

2
σ

(i)
X + χiσ

(i)
Z

)]
U3. (7)

We set the control field at resonance with the energy

splitting, ωi = Ωi, thus eliminating the σ
(i)
X terms. Note

that by completely dropping this off-resonant term be-
low, we have limited the validity of our analysis to cases
where perturbations in Ωi are much less than χi. Lifting
this assumption would not permit us to obtain a time-
independent Hamiltonian. Nonetheless, this is not an
unrealistic assumption. At this point, we can proceed
the same way as in Ref. [24]. We apply another round of
the RWA which requires |χi| � α. If ||χ1| − |χ2|| � α,
the average time-evolution operator is given by

U3 = exp

[
−ıαt

2

(
h1h2IY Y + 2J1J2

2Ω1Ω2
(σXX + σY Y )

+
h1h2

Ω1Ω2
IZZσZZ

)]
,

(8)

but if ||χ1| − |χ2|| � α, we instead have

U3 = exp

[
− ıt αh1h2

2Ω1Ω2
IZZσZZ

]
, (9)

This reduces to the result of Ref. [24] in the regime
hi � Ji, which is experimentally relevant [1], but it be-
comes quite different when the exchange is dominant, as
in earlier experiments [6, 23].

The entangling dynamics depend on whether the qubit
energy splittings, Ωi, are nearly equal or not. If the dif-
ference between the two energy splittings is much larger
than α, |Ω1 − Ω2| � α, IZZ and IY Y become small.
Looking at Eqs. (8) and (9), one can avoid a suppressed
coupling rate by setting the Rabi frequencies equal to one
another, χ1 = χ2, and operating in the large exchange
regime, Ji � hi. On the other hand, if the two qubits
have similar energy splittings, the effective coupling rate
is ∼ α regardless of which parameter dominates.

III. FIRST-ORDER ERROR CHANNELS

As previously mentioned, the magnetic field gradient,
hi, in singlet-triplet systems is produced by either micro-
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magnets, as demonstrated in a silicon-based experiment
[21], or the hyperfine interaction between the quantum
dot electron and the nuclear spins, as has often been used
in the case of GaAs [13–15]. Whereas the latter case al-
lows some fine-tuning of hi through dynamic nuclear po-
larization, the same is not true for micromagnets. Thus,
we consider two main cases of experimental relevance –
when hi is tunable and when it is not. Furthermore, the
sensitivity of the qubits to fluctuations depends on the
parameter regime at work. If Ji and hi are completely
uncorrelated, the fluctuation on the qubit energy split-
ting is given by

δΩ2
i =

J2
i δJ

2
i + h2

i δh
2
i

Ω2
i

. (10)

Note that when either Ji or hi completely dominates the
energy splitting, the noise due to the weaker one is sup-
pressed by a factor of their ratio. We know from exper-
iments that δhi is mostly quasistatic on the timescale of
the gates [16, 17] and δJi contains both a quasistatic and
a 1/f component [9]. Thus, it is best to suppress the
1/f δJi errors by choosing hi � Ji and then correct the
residual quasistatic errors with spin echo protocols. This
is consistent with the improvement reported in Ref. [1]
when the magnetic field gradient was increased.

As discussed in the previous section, rapid entangle-
ment in the hi � Ji regime only occurs when the two
qubit energy splittings are tuned close to one another
(h1 ≈ h2). If one is forced to work with fixed but very
different gradients (|h1−h2| & min{hi}), which is a possi-
ble scenario when micromagnets are used, then one must
work in the Ji � hi regime. Therefore, we will limit
our discussion to these two cases: when hi is dominant
and when Ji is dominant. We assume similar qubit en-
ergy splittings in both cases for convenience, particularly
when simplifying Eqs. (5) and (6).

A. Similar qubits with hi � Ji

We consider a system of similar qubits (Ω1 = Ω2)
where the magnetic field gradient dominates the energy
splitting (hi � Ji,Ωi ' hi) and the driving frequen-
cies are equal and at resonance with the energy splitting
(ω1 = ω2 ≡ ω = Ωi) in the absence of noise. For simplic-
ity, we take the case where the Rabi frequencies of the
two qubits are dissimilar (Eq. (9)), although our analysis
can be extended to the similar Rabi case easily. In this
parameter regime, we can expand J1 [z] to first-order and

obtain χi ≈ hiji
4Ωi

, and ξi(t) ≈ 0 which allows us to evalu-

ate IY Y = IZZ ≈ 1. Thus, combining Eqs. (2), (3), (7),
and (9), the total time-evolution can be written as

U(t) = R1(t) exp

[
− ıt αh1h2

2Ω1Ω2
σZZ

]
R2(t), (11)

where the purely local operators R1(t) and R2(t) are
given by

R1(t) = exp

[
ı

2

2∑
i=1

φiσ
(i)
Y

]
exp

[
−ı

2∑
i=1

ωit

2
σ

(i)
X

]

× exp

[
−ıt

2∑
i=1

χiσ
(i)
Z

]
,

R2(t) = exp

[
−ı
2

2∑
i=1

φiσ
(i)
Y

]
.

(12)

Since Eq. (11) is already canonically decomposed into
local and nonlocal parts [25], it is clear to see how to
“undo” the local part of the evolution that accompanies
the entangling gate. By applying additional local opera-

tions, R†1 and R†2, in the absence of coupling, we obtain
a purely nonlocal σZZ gate,

R†1(t)U(t)R†2(t) = exp

[
− ıt αh1h2

2Ω1Ω2
σZZ

]
. (13)

So far we have been careful to distinguish between Ω1

and Ω2 so as to allow for the perturbative effect of noise,
but other than that we have not discussed the effect of
such a perturbation. Noise during the original entangling
operation produces errors in both the nonlocal phase of
Eq. (11) and in its accompanying local operations given

in Eq. (12). The pre- and post-applied locals, R†i , only
undo the ideal local rotations accompanying the entan-
gling gate, but any random perturbations are left un-
canceled. By expanding each term in Eqs. (11) and (12)
to first order in perturbations δJi, δji, δhi, and δα, and
commuting all of the perturbations to the right, we may
write the effect of the noise in the form

Unl(t) = R†1(t)U(t) (1 + ∆0 (t))R†2(t)

= exp

[
− ıt αh1h2

2Ω1Ω2
σZZ

]
(1 + ∆ (t))

' exp

[
− ıtα

2
σZZ

]
(1 + ∆ (t)) .

(14)

where 1 is the identity operator, ∆0 contains the first-
order perturbation of the physical entangling operation

U , and ∆ ≡ R2∆0R
†
2 is the resulting perturbation in

the purely nonlocal operation. The approximate equality
makes use of the fact that powers of Ji/hi are negligibly
small compared to the dominant errors we wish to cor-
rect. The error ∆ due to the perturbations is reported
in Table I in terms of its projections onto the 15 SU(4)
basis elements, henceforth referred to as error channels,

∆ =
1

4

∑
ij

tr(σij∆)σij . (15)

One prominent feature of these error channels is their
oscillatory behavior. Notice that one can, for example,
choose parameters such that sin(χit) = 0 at the end of
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TABLE I. First-order errors obtained by projecting ∆ onto an SU(4) basis formed by Kronecker products of Pauli operators.

σIX
(
ı(h2δJ2−J2δh2) cos(ωt)

2Ω2
2

− ı(h2δh2+J2δJ2)
h2j2

)
cos
(
h1h2αt
Ω1Ω2

)
sin(2χ2t)

σIY
ı(h2δJ2−J2δh2)

(
cos
(
h1h2αt
Ω1Ω2

)
cos(ωt) cos(2χ2t)−1

)
2Ω2

2
+

2ı(h2δh2+J2δJ2) cos
(
h1h2αt
Ω1Ω2

)
sin2(χ2t)

h2j2

σIZ
ı(h2δJ2−J2δh2)

(
j2J2t−2Ω2 sin(ωt)

)
4Ω3

2
− ıh2tδj2

4Ω2

σXI
(
ı(h1δJ1−J1δh1) cos(ωt)

2Ω2
1

− ı(h1δh1+J1δJ1)
h1j1

)
cos
(
h1h2αt
Ω1Ω2

)
sin(2χ1t)

σXX 0

σXY 0

σXZ
(
ı(h1δJ1−J1δh1) cos(ωt) cos(2χ1t)

2Ω2
1

+ 2ı(h1δh1+J1δJ1) sin2(χ1t)
h1j1

)
sin
(
h1h2αt
Ω1Ω2

)
σY I

ı(h1δJ1−J1δh1)

(
cos
(
h1h2αt
Ω1Ω2

)
cos(ωt) cos(2χ1t)−1

)
2Ω2

1
+

2ı(h1δh1+J1δJ1) cos
(
h1h2αt
Ω1Ω2

)
sin2(χ1t)

h1j1

σYX 0

σY Y 0

σY Z
(
ı(J1δh1−h1δJ1) cos(ωt)

2Ω2
1

+ ı(h1δh1+J1δJ1)
h1j1

)
sin
(
h1h2αt
Ω1Ω2

)
sin(2χ1t)

σZI
ı(h1δJ1−J1δh1)

(
j1J1t−2Ω1 sin(ωt)

)
4Ω3

1
− ıh1tδj1

4Ω1

σZX
(
ı(h2δJ2−J2δh2) cos(ωt) cos(2χ2t)

2Ω2
2

+ 2ı(h2δh2+J2δJ2) sin2(χ2t)
h2j2

)
sin
(
h1h2αt
Ω1Ω2

)
σZY

(
ı(J2δh2−h2δJ2) cos(ωt) sin(2χ2t)

2Ω2
2

+ ı(h2δh2+J2δJ2) sin(2χ2t)
h2j2

)
sin
(
h1h2αt
Ω1Ω2

)
sin(2χ2t)

σZZ
ıh2J1αt(h1δJ1−J1δh1)

2Ω3
1Ω2

+ ıh1J2αt(h2δJ2−J2δh2)

2Ω1Ω3
2

− ıh1h2tδα
2Ω1Ω2

the entangling gate. By doing so, one effectively elim-
inates several error terms in Table I. If we also choose
parameters such that cos(ωt) = 0 at the time that the
gate is complete, all but five of the error channels in Ta-
ble I (σZI , σIZ , σY I ,σIY , and σZZ) will be synchronized
to vanish at the gate time. We are thus left with a gate
that is partially corrected, for both quasistatic and 1/f
noise. This stroboscopic circumvention of error requires
no knowledge of the errors involved, only that they are
small enough for the higher-order terms in the error ex-
pansion to remain insignificant.

Specifically, stroboscopic error elimination can be
achieved by choosing

t = (m+ 1/2)π/ω, (16)

ji =
4niΩiω

hi(m+ 1/2)
' 4niω

(m+ 1/2)
, (17)

where m and ni are integers. We also want to produce
a given nonlocal phase, exp[ı θ2σZZ ], at the end of the
operation. So, we have another constraint from Eq. (13),
which we can satisfy to good approximation by choosing
m such that ∣∣∣∣ (m+ 1/2)π

ω
α− θ

∣∣∣∣ . (18)

is minimized. Due to the typically weak coupling, α/ω �
1, the minimum value is likewise small and occurs at a
large value of integer m (corresponding to a gate time
containing many cycles of the driving field).

As mentioned earlier, we must take care to stay within
a parameter regime where the RWA is valid. We use
some of the remaining free parameters to ensure that
the RWA remains valid for the choices above that lead
to error cancellation. We enforce the RWA condition of
resonant driving (ω = Ω1 = Ω2) by setting

h2 =
√
h2

1 + J2
1 − J2

2 ' h1 (19)

with the values of Ji still free as of yet other than being
small compared to hi. We enforce the RWA conditions on
the driving amplitude of |χi| � α and ||χ1|−|χ2|| � α by
taking the integers of Eq. (17) such that n2 = 2n1 in or-
der to maximize the difference in Rabi frequencies while
keeping both large (which can be ensured via the choice
of n1). In the case of detuning-controlled singlet-triplet
qubits, due to the empirically exponential dependence of
the exchange interaction on the detuning [9, 23], δJi ∝ Ji
and it is advantageous to choose small values of Ji, but
while still maintaining Ji > ji in order to avoid calling for
negative exchange. So, we will choose values of Ji slightly
larger than ji. Without loss of generality, and for the sake
of concreteness, we take j1 = 2j2, J1 = 2J2. Finally, an-
other physical consideration specific to the capacitively-
coupled singlet-triplet system is the treatment of pertur-
bations in the coupling, δα. Since α is proportional to the
product of the derivatives of the exchange interactions in
each qubit and the proportionality constant is such that
δα is about two order of magnitude smaller than δJi [23],
its effects are negligible and can safely be ignored.

We summarize and combine all of the constraints above
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TABLE II. The same errors reported in Table I after substituting the optimized parameters.

σIY ıJ2δh2−h2δJ2

2Ω2
2

σIZ ı

(
(−1)mh2−2n2J2π

)
(J2δh2−h2δJ2)

2h2Ω2
2

− ıh2tδj2
4Ω2

σY I ıJ1δh1−h1δJ1

2Ω2
1

σZI ı

(
(−1)mh1−2n1J1π

)
(J1δh1−h1δJ1)

2h1Ω2
1

− ıh1tδj1
4Ω1

σZZ
ıh2J1αt(h1δJ1−J1δh1)

2Ω3
1Ω2

+ ıh1J2αt(h2δJ2−J2δh2)

2Ω1Ω3
2

− ıh1h2tδα
2Ω1Ω2

in the following set of robustness conditions:

h1, J1, n1, α, θ are free and subject to

α� ji < Ji � hi with n1 ∈ Z,

ω =
√
h2

1 + J2
1 ' h1,

J1 = 2J2, j1 = 2j2,

h2 =
√
h2

1 − 3J2
1 ' h1

m = nint

(
θ

π

ω

α
− 1

2

)
,

t = (m+ 1/2)π/ω,

j1 =
4n1Ω1ω

h1(m+ 1/2)
' 4n1ω

(m+ 1/2)
,

(20)

where it suffices to meet the approximate equalities due
to the condition Ji � hi, and nint(x) is the nearest inte-
ger function. The effect of these constraints on the first-
order error channels is shown in Table II. With the pa-
rameter choices of Eq. (20), the surviving five error chan-
nels are left with terms that are approximately propor-

tional to δji
α , δJihi , Jihi

δhi
hi

, Jihi
δJi
hi

,
(
Ji
hi

)2
δJi
hi

, and
(
Ji
hi

)2
δhi
hi

.

The last four terms in the list are clearly negligible. By
invoking the exponential behavior of the exchange inter-
action, we have δJi = dJi

dεi
δεi ∝ Jiδεi, which indicates

that the second term in the list is also suppressed for
Ji � hi. However, the first term in the list is not neces-
sarily small. Errors from δji accumulate linearly with the
gate time and are, consequently, effectively proportional
to 1/α. Again noting that the empirically exponential
nature of the exchange implies δji ∝ ji, it is possible to
avoid unnecessarily large δji by choosing the free integer
n1 that appears in ji to be as small as possible while
still maintaining the RWA condition of |χi| � α. The
low-frequency content of the remaining δji error can be
removed by inserting a refocusing π-pulse about the x-
axis of each qubit in between two entangling gates. This
is a well-known strategy [26–28], making use of the fact
that the local σXX insertion commutes with the nonlocal
σZZ phase but anticommutes with the σIZ and σZI error
terms.

Since we are left with only five error channels, extract-
ing the first-order error of the refocused entangling gate
like in Eq. (14) is analytically straightforward. The re-

focusing process shuffles these errors among the SU(4)
basis elements, some of which appear in the σXX , σY Y ,
σXY , and σY X channels. These errors commute with the
nonlocal σZZ phase, which suggests that concatenating
with a local π-pulse about the z-axis of either qubit, e.g.
σZI , can be used to further correct the residual errors in
the refocused gate.

B. Similar Qubits with Ji � hi

We follow the same process as before but now we as-
sume that the magnetic field gradients are fixed. Since
we are taking Ji � hi, the terms in the propagator that
are proportional to h1h2

Ω1Ω2
are negligibly small. Thus, to

generate an entangling gate, it is preferable for us to take
the case where ||χ1| − |χ2|| � α (Eq. (8)). Ignoring the
negligible terms, the time-evolution is

U(t) = R1(t) exp

[
− ıt αJ1J2

2Ω1Ω2
(σXX + σY Y )

]
R2(t)

(21)

' R1(t) exp

[
− ıtα

2
(σXX + σY Y )

]
R2(t), (22)

where the purely local operators R1(t) and R2(t) are
given by

R1(t) = exp

[
−ı
2

2∑
i=1

φiσ
(i)
Y

]
exp

[
−ı

2∑
i=1

ωit+ ξi(t)

2
σ

(i)
X

]

× exp

[
−ıt

2∑
i=1

χiσ
(i)
Z

]
,

R2(t) = exp

[
ı

2

2∑
i=1

φiσ
(i)
Y

]
.

(23)
The error channels for this evolution can be calculated in
a similar fashion as in the previous case; the results are
reported in Appendix B.

We proceed to our goal of synchronizing the error terms
so that they vanish at the gate time. We can elimi-
nate a number of error terms by choosing our parameters
so that sin(χit) and cos(ωit+ ξi(t)) simultaneously van-
ish at the gate time. However, as before, a significant
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TABLE III. Average cphase fidelity in the presence of 20neV
magnetic noise and 8µV quasistatic charge noise with a 1/f 0.7

component of 0.9nV/
√

Hz at 1MHz.

Sequence 〈F 〉unoptimized 〈F 〉optimized
No refocusing .768 .811

Singly refocused .950 .974

Doubly refocused .944 .996

amount of error remains in the σIZ and σZI channels.
In this case, though, we cannot simply apply a refocus-
ing π-pulse since these error channels do not commute
with the entanglement generator σXX + σY Y . Fortu-
nately, Ref. [28] offers a sequence of 10 local π-pulses in-
terspersed between short entangling operations that can
deal with these anticommuting errors to first-order while
reducing the entanglement generator to σXX . Therefore,
it is again possible in principle to generate high-fidelity
entangling gates from a combination of stroboscopic de-
coupling and composite pulses in this parameter regime.

However, we must note that the assumption following
Eq. (7) of δΩi � χi is likely unrealistic in this Ji � hi
case for the charge noise levels currently reported in
singlet-triplet qubits. Quasistatic fluctuations in the de-
tuning, δε, typically have a standard deviation of several
µV [9] and around J ∼GHz this can cause δΩi ∼ 10MHz,
whereas in this regime χi ' hi/4 ∼ 10MHz as well. We
estimate that roughly an order of magnitude decrease in
the charge noise strength, down to under a microvolt,
would be required in order to safely neglect off-resonance
errors. Note that the previous case of hi � Ji did not
have this problem because there δΩi is dominated by
magnetic noise, which is typically ∼ 10neV, whereas in
that regime χi . ji/4 ∼ 100neV. Therefore, the case of
similar qubits with hi � Ji is a more feasible operat-
ing regime for our proposed high-fidelity two-qubit gates
in a double quantum dot singlet-triplet system. In the
context of silicon singlet-triplet qubits with micromagnet
gradients, this along with our discussion at the beginning
of Sec. III means that the silicon devices must be engi-
neered to either allow enough tunability of the magnetic
differences across each qubit (via dot positioning, etc.)
for them to be equalized in situ, or to physically reduce
charge noise in the device. The former seems an easier
target.

IV. SIMULATIONS

We now examine the effects of our optimization in the
presence of quasistatic magnetic noise and 1/f0.7 charge
noise [9]. We will simulate the fidelity of cphase gates
generated by a single-shot pulse, a single spin echo com-
posite pulse, and a double spin echo composite pulse for
both unoptimized and stroboscopically optimized param-
eters.

We report in Table III a summary of the calculated fi-

delities. The magnetic noise was generated from a normal
distribution with a standard deviation of 20neV [29, 30].
To generate the charge noise, we superimposed 20 ran-
dom telegraph noises with the appropriate weighting [31]
and relaxation times ranging from 1MHz to 1GHz [1]
evenly spaced on a logarithmic scale with an amplitude
of 0.9nV/

√
Hz at 1MHz. An additional quasistatic noise

component is added to ensure that the integrated power
spectral density from 0 to 1MHz is consistent with the
experimentally reported noise amplitude of 8µV [9]. Fi-
nally, we translated the noise in detuning ε into noise
in exchange J by using an exponential fit on the data
reported in Ref. [9].

We numerically solve for the time-evolution operator
using the unapproximated, time-dependent Hamiltonian
(1) with the optimal parameters predicted by the RWA
analysis above, and then convert it to a cphase gate by
using the perfect local operations prescribed by the RWA,
as in the left-hand side of Eq. (13). Note that for these
numerical calculations we do not assume that the RWA
is accurate; e.g, we do not assume now that the right-
hand side of Eq. (13) holds. We calculate the average
two-qubit gate fidelity [32]

〈F 〉 =
1

16

[
4 +

1

5

∑
σij

tr[U1σijU
†
1U2σijU

†
2 ]

]
, (24)

where U1 is the ideal cphase and U2 is the actual noisy
evolution, which we obtain purely numerically for a given
set of parameter values and averaging over 1000 different
noise realizations. Any error due to the RWA is also
included in that fidelity.

A summary of all the parameter values used in the
simulations are provided in Table IV. We have taken
α = 2π×2.3MHz in all cases for consistency. For all pulse
sequences the same unoptimized parameters are used, ob-
tained from Ref. [24] consistent with the range reported
in experiment [1]. On the other hand, the optimized pa-
rameters are chosen following the rules in Eq. (20). We
choose the free parameters h1 = 1GHz, J1 = 80MHz, and
n1 = 4 for the no refocusing and singly refocused case,
ensuring that h1 � J1 > j1. On the other hand, we take
h1 = 1.5GHz, J1 = 150MHz, and n1 = 2 for the doubly
refocused case in order to compensate for the shorter gate
time needed. These immediately determine the values of
ω, J2, and h2 shown in Table IV. The value of θ can ei-
ther be π/2, π/4, or π/8, depending on which composite
pulse sequence is being performed, as we discuss below.

As previously mentioned, all the simulations target a
cphase gate. When applying the singly refocusing pulse,
we replace the simple cphase gate Unl

(
tπ/2

)
with the

composite cphase gate

Unl(tπ/4)πXXUnl(tπ/4)πXX , (25)

where Unl(tθ) is the noisy entangling gate targeting a
nonlocal phase θ and πab is a local π rotation about
the a-axis of the first qubit and the b-axis of the sec-
ond qubit. The doubly refocused composite pulse re-
quires twice as many component gates, but note that the
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TABLE IV. Local parameters used in the simulations.

Parameters ( 1
2π

MHz) Unoptimized, Optimized, Optimized,

all cases no refocusing / singly refocused doubly refocused

J1 266 80 150

J2 320 40 75

j1 69 74 147

j2 36 37 73

h1 922 1000 1500

h2 905 1002 1506
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FIG. 1. Average infidelity as a function of noise strength for the unoptimized (LEFT) and optimized (RIGHT) case after
applying a doubly refocusing π-pulse. The values in the axes indicate the strength of quasistatic noise. 1/f noise is added to

the exchange with an amplitude 0.9nV/
√

Hz at 1MHz.

entangling time is not any longer since each entangling
component is shorter,[

Unl(tπ/8)πXXUnl(tπ/8)πXX
]
πZI

×
[
Unl(tπ/8)πXXUnl(tπ/8)πXX

]
πZI

= Unl(tπ/8)πXXUnl(tπ/8)πY X

× Unl(tπ/8)πXXUnl(tπ/8)πY X .

(26)

We further examine how our optimization behaves un-
der a range of noise amplitudes. We keep the amplitude
of the 1/f 0.7 charge noise component the same as before
for consistency, but we generate quasistatic noise with
amplitudes ranging from 0 to 24 neV (µV) for magnetic
(charge) noise. A contour plot of the average infidelity
as a function of quasistatic noise strength for the case
of doubly refocused gates is provided in Fig. 1. We find
that combining our optimization scheme with the doubly
refocusing pulse yields an order of magnitude improve-
ment in fidelity compared to the unoptimized case. We
emphasize that this improvement can be attributed to
the isolation of error onto specific channels presented in

Table II. In fact, if one can further reduce the average
fluctuations in the magnetic field gradient (e.g. down to
8neV [29]), it is possible to generate a cphase gate with
average fidelities over 99% using only the singly refocus-
ing pulse.

V. CONCLUSION

We theoretically analyze the first-order effects of er-
rors in two capacitively-coupled singlet-triplet qubits by
perturbing parameters in the time-evolution operator de-
rived using the RWA. We examined two extreme regions
of the parameter space and showed that it is better to op-
erate in the parameter regime where the magnetic field
gradient dominates the exchange than the opposite case.

We find that certain choices of parameter lead to pas-
sive, stroboscopic circumvention of errors. This enables
the isolation of the errors onto specific basis elements of
SU(4), consequently allowing the application of compos-
ite pulse sequence to mitigate the residual errors. Our
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numerical simulations show that our analytic prescrip-
tion produces cphase gates with fidelities above 99%
using only 4 applications of local π pulses on each qubit,
which is an order of magnitude improvement over an un-
optimized implementation.

This material is based upon work supported by the
National Science Foundation under Grant No. 1620740
and by the Army Research Office (ARO) under Grant
No. W911NF-17-1-0287.

Appendix A: Effects of Exchange Ramping
Evolution

In the main text we only considered the case when the
exchange Ji(t) is controlled using rectangular pulses both
in the beginning and the end of the evolution. Realisti-
cally, there is a finite rise time, τ , to go from Ji(−τ) ≈ 0
up to Ji(0) = Ji + ji, and, since Eq. (20) tells us that
the exchange should have gone through a odd number
of half cycles at the end of the gate, back down from
Ji(tgate) = Ji to Ji(tgate + τ) ≈ 0. We now consider
the effects of the evolution during the finite ramp on our
optimization scheme. We will show that the effects are
negligible, assuming typical values for the coupling, noise,
and rise time.

We choose the well-studied Rosen-Zener pulse
shape [33–35] for our ramp:

Ji(t) =

{
Ji,u sech( 2πt

τ ), −τ < t < 0

Ji,d sech(
2π(t−tgate)

τ ), tgate < t < tgate + τ,

(A1)
where Ji,u = Ji + ji is the upward ramp amplitude and
Ji,d = Ji is the downward ramp amplitude. In addi-
tion, since there is a rough proportionality between the
average capacitive coupling and the average exchanges,
α ∝ J1J2 [23], the coupling also has a finite ramping

time. However, we take τ = 1 ns which is consistent
with experimental ramp times in spin qubits [36], and so
a typical coupling that ranges up to 1 − 2 MHz [1, 23]
has a negligible effect on such a short time scale. Thus
the evolution during the ramp is dominated by the local
terms, and the ramping Hamiltonian takes the form

H =

2∑
i=1

(
Ji(t)

2
σ

(i)
Z +

hi
2
σ

(i)
X

)
. (A2)

We first consider the case where the exchange is
ramped up. We begin by noting that since the spin op-
erators for each qubit commute, then we can separate
the propagator into U(t) = U1(t)U2(t). Each of these
propagators are solutions to

ı
d

dt
Ui(t) =

(
Ji,u sech

(
2πt
τ

)
2

σ
(i)
Z +

hi
2
σ

(i)
X

)
Ui(t). (A3)

In order for us to use known analytical results, we first
rotate to a frame so that

Ui(t) = exp
[
ı
π

4
σ

(i)
Y

]
exp

[
ıt
hi
2
σ

(i)
Z

]
U ′i(t). (A4)

This allows us to write two coupled differential equationsı ṡ(t) =
Ji,u sech

(
2πt
/
τ
)

2 e−ıhitp(t)

ı ṗ(t) =
Ji,u sech

(
2πt
/
τ
)

2 eıhits(t),

(A5)

where U ′i(t)ψ
′(to) = (s(t), p(t))t and ψ′(to) is the initial

wavefunction. Using the results from Refs. [33, 35], we
can write the time-evolution in the rotating frame for
t ≤ 0 as

U ′i(t) = UI1 + UXσ
(i)
X + UYσ

(i)
y + UZσ

(i)
Z , (A6)

where

UI =
1

2

{
2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;

1− ıhiτ
2

; z

]
+ 2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;

1 + ıhiτ

2
; z

]}

UX =
1

4
Jiτ sech

[
t

τ

]e−ıhit2F1

[
1− Ji,uτ

2 , 1 +
Ji,uτ

2 ; 3−ıhiτ
2 ; z

]
hiτ + ı

−
eıhit2F1

[
1− Ji,uτ

2 , 1 +
Ji,uτ

2 ; 3+ıhiτ
2 ; z

]
hiτ − ı


UY = ı

1

4
Jiτ sech

[
t

τ

]e−ıhit2F1

[
1− Ji,uτ

2 , 1 +
Ji,uτ

2 ; 3−ıhiτ
2 ; z

]
hiτ + ı

+
eıhit2F1

[
1− Ji,uτ

2 , 1 +
Ji,uτ

2 ; 3+ıhiτ
2 ; z

]
hiτ − ı


UZ =

1

2

{
2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;

1 + ıhiτ

2
; z

]
− 2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;

1− ıhiτ
2

; z

]}
,

(A7)

and 2F1[a, b; c; d] is Gauss’s hypergeometric function and
z = 1

2

(
1 + tanh

[
t
τ

])
. We note that U ′i(t) satisfies the

initial condition U ′i(−∞) = 1. In order to get the actual
solution to equation (A3) with Ui(−τ) = 1, we use the
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composition property of time-evolution operators:

Ui(t;−τ) = Ui(t;−∞)U†i (−τ ;−∞), (A8)

where U(t; to) indicates the evolution from to to t. More
explicitly, the upward ramp propagator that corresponds
to the Hamiltonian in equation (A2) is approximately
given by

Uu(t;−τ) = exp

[
ı
π

4

2∑
i=1

σ
(i)
Y

]
exp

[
ıt

2∑
i=1

hiσ
(i)
Z

]
U ′1(t)

× U ′†1 (−τ)U ′2(t)U ′†2 (−τ)

× exp

[
ıτ

2∑
i=1

hiσ
(i)
Z

]
exp

[
−ıπ

4

2∑
i=1

σ
(i)
Y

]
.

(A9)

To solve for the downward ramp evolution, we first
note that there is a relationship between the upward and
downward ramp Hamiltonian when their amplitudes are
similar: Hd(t) = Hu(tgate − t). Using this, then we can
write the time-evolution of the downward ramp as

Ud(t) = T exp

[
−ı
∫ t

tgate

Hd(t
′)dt′

]
. (A10)

where T denotes the time-ordering operator. Using a
simple change of variable and using the composition
property of time-evolution operators, we can express the
evolution of the downward ramp in terms of the upward
ramp:

Ud(t) = T exp

[
−ı
∫ t

tgate

Hu(tgate − t′)dt′
]

= T exp

[
ı

∫ tgate−t

0

Hu(t′′)dt′′
]

= T exp

[
ı

∫ tgate−t

−τ
Hu(t′′)dt′′

]
× T exp

[
ı

∫ −τ
0

Hu(t′′)dt′′
]

= T exp

[
ı

∫ tgate−t

−τ
Hu(t′′)dt′′

]
×
(
T exp

[
ı

∫ 0

−τ
Hu(t′′)dt′′

])†
= Ūu(tgate − t;−τ)Ū†u(0,−τ).

where the bar indicates change from Ji,u → −Ji,d, and
hi → −hi. Therefore, the downward ramp propagator is

given by

Ud(t; tgate) = exp

[
ı
π

4

2∑
i=1

σ
(i)
Y

]
exp

[
−ı(τ − t)

2∑
i=1

hiσ
(i)
Z

]
× Ū ′1(τ − t)Ū ′1(0)Ū ′2(τ − t)Ū ′2(0)

× exp

[
−ıπ

4

2∑
i=1

σ
(i)
Y

]
.

(A11)
Now that we have an analytical expression for the ramp

propagators, we can finally address how they affect the
error channels and our optimization. In the presence of
noise, it can be verified numerically with the parameters
provided in section IV that perturbations in Ji results
in infidelities that are one to two orders of magnitude
smaller than the infidelities we report in the main text.
This can be mainly attributed to the fact that hi � Ji
and τ is relatively short. Thus, the dominant source of
error in the ramp evolution is due to perturbations in
the magnetic gradient δhi. However, if we assume 1 ns
ramp times and a standard deviation δhi = 8neV [29],
the resulting infidelities are also found to be an order
of magnitude smaller than those discussed in the main
text. Thus, provided that δhiτ is much less than the
remaining errors in Table II, then the errors associated
with the ramp can be neglected.

Finally, we address how the unperturbed ramp evolu-
tion affect the error channels. The total evolution of the
qubits is given by

U(t) = Uu(t)R1(t) exp

[
−ıtαh1h2

Ω1Ω2
σZZ

]
R2(t)Ud(t).

(A12)
We can rewrite this into

U(t) = Uu(t)
(
R1(t)R†1(t)

)
R1(t) exp

[
−ıtαh1h2

Ω1Ω2
σZZ

]
×R2(t)

(
R†2(t)R2(t)

)
Ud(t).

(A13)
We can further rewrite this in terms of our optimized
gate given in equation (14):

U(t) = Uu(t)R1(t)Unl(t)R2(t)Ud. (A14)

Since Uu and Ud are purely local operations and provided
that the ramp errors are negligible, then applying an ini-

tial local rotation R†1(t)U†u(t) and a final local rotation

U†d(t)R†2(t) ensures that our optimized gate Unl(t) and
its errors are unperturbed by the ramps.

Appendix B: Error Channels

We present here a table of error channels for the dis-
similar qubit case in Section III.
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TABLE V. First-order errors for the similar qubit case with Ji � hi. Due to the complexity of the error channels, we had only
shown the errors due to fluctuations in the first qubit. To find the effects of perturbations in the second qubit, one need only
generate a second table where the labels are swapped (1 ↔ 2 and σij ↔ σji).

σIX 0

σIY 0

σIZ

(
ı

(
(J1δh1−h1δJ1) sin(ω1t+ξ1)−2Ω2

1t
(
∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
2Ω2

1
− ıt ∂χ1

∂j1
δj1

)
sin2

(
J1J2αt
Ω1Ω2

)
σXI

((
ı(h1δJ1−J1δh1) cos(ω1t+ξ1)

2Ω2
1

− ı(h1δh1+J1δJ1)
4χ1Ω1

)
sin(2χ1t)− ı

2
cos(2χ1t)

(
∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂j1

δj1
))

cos
(
J1J2αt
Ω1Ω2

)
σXX

ıh1J2αt(J1δh1−h1δJ1)

2Ω3
1Ω2

− ıJ1J2tδα
2Ω1Ω2

σXY

(
ı

(
(h1δJ1−J1δh1) sin(ω1t+ξ1)+2Ω2

1t
(
∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
4Ω2

1
+ ı

2
t ∂χ1
∂j1

δj1

)
sin
(

2J1J2αt
Ω1Ω2

)
σXZ 0

σY I
(
ı(h1δJ1−J1δh1)(cos(2χ1t) cos(ω1t+ξ1))

2Ω2
1

+ ı(h1δh1+J1δJ1) sin2(χ1t)
2χ1Ω1

+ ı
2

sin(2χ1t)
(
∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂j1

δj1
))

cos
(
J1J2αt
Ω1Ω2

)
σYX

(
ı

(
(J1δh1−h1δJ1) sin(ω1t+ξ1)−2Ω2

1t
(
∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
4Ω2

1
− ı

2
t ∂χ1
∂j1

δj1

)
sin
(

2J1J2αt
Ω1Ω2

)
σY Y

ıh1J2αt(J1δh1−h1δJ1)

2Ω3
1Ω2

− ıJ1J2tδα
2Ω1Ω2

σY Z 0

σZI

(
ı

(
(J1δh1−h1δJ1) sin(ω1t+ξ1)−2Ω2

1t
(
∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
2Ω2

1
− ıt ∂χ1

∂j1
δj1

)
cos2

(
J1J2αt
Ω1Ω2

)
σZX

(
ı(J1δh1−h1δJ1) cos(2χ1t) cos(ω1t+ξ1)

2Ω2
1

− ı(h1δh1+J1δJ1) sin2(χ1t)
2χ1Ω1

− ı
2

sin(2χ1t)
(
∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂j1

δj1
))

sin
(
J1J2αt
Ω1Ω2

)
σZY

((
ı(h1δJ1−J1δh1) cos(ω1t+ξ1)

2Ω2
1

− ı(h1δh1+J1δJ1)
4χ1Ω1

)
sin(2χ1t)− ı

2
cos(2χ1t)

(
∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂j1

δj1
))

sin
(
J1J2αt
Ω1Ω2

)
σZZ 0
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