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Abstract

Using a Bayesian methodology, we introduce the maximum a posteriori probability (MAP) estimator
for quantum state and process tomography. We show that the maximum likelihood, the hedged maximum
likelihood, and the maximum likelihood-maximum entropy estimator, and estimators of this general type,
can be viewed as special cases of the MAP estimator. The MAP, like the Bayes’ mean estimator includes
prior knowledge. For cases of interest to tomography MAP can take advantage of convex optimization
tools making it numerically tractable. We show how the MAP and other Bayesian quantum state
estimators can be corrected for noise produced if the quantum state passes through a noisy quantum
channel prior to measurement. Numerical simulations on a single qubit indicate that on average, including
these corrections significantly improve the estimate even when the measurement data is modestly large.

1 Introduction

The task of quantum state tomography is to estimate a quantum state or density operator by performing
measurements. Its classical analogue is to estimate the parameters of a probability distribution by sampling
from it several times. Quantum process tomography deals with the estimation of a noisy quantum channel or
completely positive trace preserving map; its classical analogue is the estimation of a conditional probability
distribution.

An estimator is a procedure which uses the data from measurements to construct an estimate of the
object of interest called the estimand. A point estimator provides a single best guess of the estimand, for
example guessing the bias of a coin by flipping it several times, or locating a point in the qubit Bloch ball by
measuring many identically prepared qubits. An interval estimator, more generally a set estimator, provides
a set of plausible values for the estimand, for example a confidence interval for the bias of a coin, or a
confidence region in the Bloch ball for a qubit state. In general, interval estimates provide more information,
such as error bars, but are harder to construct than point estimates. For the latter error bars must be
constructed independently. A lot of effort has been devoted to constructing good estimators for quantum
states. Various point estimators [1–5] and interval estimators [6–9] have been proposed.

Maximum A Posteriori (MAP) point estimators are widely used in statistics, and have been applied
in various fields of physics [10, 11]. In this work we introduce the MAP estimator for quantum state and
channel tomography. One begins with a prior probability density on the set of quantum states or channels,
and using the measurement data the prior is updated to obtain a posterior density. The maximum of the
posterior density gives the MAP estimate. The mean of the posterior density gives what is called the Bayes’
mean estimator (BME) [12]. We show that in many cases of interest in quantum tomography the MAP
estimator can be computed efficiently using convex optimization tools [13], some of these tools have been
tailored for quantum information [14–16]. Obtaining the MAP estimate may be computationally simpler
than computing the BME, which is evaluated by numerically integrating over the set of density operators.

Several well known estimators, in particular the maximum likelihood estimator (MLE) [1], the hedged
maximum likelihood estimator (HMLE) [2], and the maximum likelihood-maximum entropy (MLME) esti-
mator [3], can be viewed as special cases of the MAP estimator corresponding to particular choices of the
prior probability density. Thus, the MAP estimator provides a systematic framework for discussing estima-
tors of this general type, and casts them in a new light. In addition we show how MAP estimators can be
applied to quantum process tomography.

Experimental setups are noisy, and it is useful to be able to correct the experimental data for noise.
The MAP approach provides an easy way to do this if the noise can be represented by a noisy quantum
channel with known parameters (that may have been determined in a separate experiment), through which
the system of interest passes on its way to the measurement device.

The rest of this paper is organised as follows. Section 2 is devoted to a general discussion of quantum state
tomography and the linear inversion estimator; the material here is not new, but helps understand the later
material. Section 3 introduces Bayesian estimators and the MAP estimator for quantum state and process
tomography. In Sec. 4 we discuss how the simple noise model mentioned above can be incorporated in the
MAP estimation framework, and present results from simulations that evaluate the effect of incorporating
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the noise model. Section 5 is a brief summary, and is followed by an appendix illustrating the use of convex
optimization tools for minimizing convex functions over qubit density operators.

2 Quantum State Tomography

Let H be a d-dimensional Hilbert space, and L(H) be the space of operators on H. The set S of quantum
states i.e. density operators forms a convex subset of L(H). Measurements on quantum systems can be
described using a POVM (positive operator-valued measure), a collection of positive operators that sum to
the identity in H. Let {Λi} be a POVM, and ρ be a density operator. The probability pi of observing an
outcome corresponding to the operator Λi is

pi = Tr(ρΛi). (1)

One simple measurement scheme for doing quantum state tomography is to prepare N quantum systems,
each corresponding to density operator ρ, and independently measure each using the same POVM {Λi}ki=1.
The measurements yield a data set δ = {n1, n2, . . . , nk}, where ni is the number of measurement outcomes
corresponding to Λi, and

∑
i ni = N . The probability Pr(δ|ρ) of observing the data set δ given the density

operator ρ is

Pr(δ|ρ) = Cδ

k∏
i=1

pni
i , (2)

where Cδ = N/(n1!) . . . (nk!) is a normalization constant, which depends only on δ.
The linear inversion estimator ρ̂inv is a simple method for estimating a system’s density operator ρ when

the measurement data is related to ρ by a set of invertible linear equations. An example of this general
strategy is the measurement scheme discussed above when the POVM {Λi}d
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i=1 forms a basis of L(H). The
dual basis {Λ̄i} is defined by

〈Λ̄i,Λj〉 = δij , i, j ∈ {1, . . . , d2}, (3)

where 〈ρ, σ〉 = Tr(ρ†σ) is the Frobenius inner product. The set of invertible linear equations,

Tr(ρ̂invΛi) = p̂i := ni/N, i = 1, . . . , d2, (4)

where p̂i is an estimate of pi, can be solved to obtain the linear inversion estimate

ρ̂inv =

d2∑
i=1

p̂iΛ̄i. (5)

The estimate p̂i has a variance of pi(1 − pi)/N , so one expects this strategy to work well when N is large.
The linear inversion estimator generalises in an obvious way when {Λi} is a Hermitian basis of the operator
space but not a POVM.

The linear inversion estimator is quite special as it requires a set of invertible equations of the form (4).
Note that estimates constructed using (5) may not be valid quantum states. While they have unit trace,
they may have negative eigenvalues.

3 Bayesian Estimators

3.1 Bayes’ Rule

For Bayesian estimators one chooses a prior probability for the estimand, and a model that relates observed
data to the estimand. Using Bayes’ rule (discussed below), the prior is updated to obtain a posterior
probability, and the latter is used to construct point or set estimates. We will be focusing on point estimates.

Let Pr(ρ) be a prior probability measure on S. It represents the belief or uncertainty about the quantum
system prior to the measurement. For quantum state tomography, measurements are performed on many
copies of a quantum system to generate a discrete data set δ. A model Pr(δ|ρ) is chosen, it relates δ to
ρ (see Eq. (2) for an example) and represents the probability of obtaining the data given the quantum state.
In the literature, Pr(δ|ρ) for a fixed δ is often viewed as a non-negative function of ρ called the likelihood
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function (for more examples see [17, 18]). The posterior probability measure Pr(ρ|δ) on S given the data is
obtained from Bayes’ rule

Pr(ρ|δ) = kPr(δ|ρ) Pr(ρ), (6)

where k, which depends on δ, not ρ, is a normalization constant.
As ρ varies continuously, a useful way to express Pr(ρ) is by making ρ a smooth one to one function ρ(x)

of a collection of real variables X, and introducing a non-negative prior probability density p(ρ) such that

Pr(ρ ∈ A) =

∫
A

p(ρ(x))dx, (7)

where A ⊆ S is some subset of density operators, and A ⊆ X the corresponding subset of parameters. The
posterior probability density

p(ρ|δ) = kPr(δ|ρ)p(ρ), (8)

uses the same parametrization X as before, and is related to the measure Pr(ρ|δ) in a manner similar to (7).
Note that for a given probability measure Pr(ρ) the density p(ρ) depends on the choice of parametrization
ρ(x). Conversely, if p(ρ) is held fixed, a different parametrization will lead to a different measure Pr(ρ). The
same is true for the relationship between Pr(ρ|δ) and p(ρ|δ).

The Bayes’ mean estimator ρ̂BME [12] is the expectation of ρ in the posterior probability measure Pr(ρ|δ),
and can be written using the density p(ρ|δ) as

ρ̂BME =

∫
ρ(x)p(ρ(x)|δ)dx. (9)

While the terms in the integrand depend on the parametrizationX used for ρ(x), the integral itself is indepen-
dent of the parametrization, if Pr(ρ|δ) is held fixed. If instead p(ρ|δ) is fixed, changing the parametrization
may change Pr(ρ|δ) (see comments following (8)) and alter ρ̂BME. Evaluating the integral (9) numerically
can be cumbersome as for n qubits X consists of 22n − 1 variables.

3.2 MAP estimate

The maximum a posteriori probability (MAP) estimate ρ̂MAP, is the density operator ρ for which the
posterior probability density is maximum. Its advantage is that in many cases it can be easily computed.
When the data set is large, one expects for a suitable prior that ρ̂BME and ρ̂MAP are close.

Maximizing p(ρ|δ) is equivalent to maximizing log p(ρ|δ), and since k is independent of ρ it follows from
(8) that

ρ̂MAP = argmax
ρ∈S

[log Pr(δ|ρ) + log p(ρ)]. (10)

Notice that for a given Pr(ρ), and thus Pr(ρ|δ) as given by (6), ρ̂MAP will depend on the parametrization X
for ρ(x). See the comments above in connection with (7). Conversely, if p(ρ), and thus p(ρ|δ) as given by
(8), is held fixed, changing the parametrization may change Pr(ρ) and Pr(ρ|δ) without altering ρ̂MAP.

It is often the case in quantum tomography that log Pr(δ|ρ) is concave in ρ (see Eq. (2) for an example).
If in addition, as is the case for a number of priors (see below), log p(ρ) is a concave function of ρ then the
same is true for the objective function on the right hand side of (10), and ρ̂MAP can be efficiently computed
using tools of convex optimization.

If one knows that ρ belongs to a discrete set of possibilities, the above discussion is modified in an obvious
way; ρ̂BME is the weighted average of finitely many density operators computed with respect to the left side
of (6), and ρ̂MAP is the density operator for which the left side of (6) is maximum.

The MLE, HMLE, and MLME estimators can be viewed as MAP estimators using suitable prior proba-
bility densities. The maximum likelihood estimate (MLE)

ρ̂MLE = argmax
ρ∈S

log Pr(δ|ρ), (11)

coincides with ρ̂MAP in (10) when the prior probability density p(ρ) is independent of ρ. While MLE and
the MAP estimate are the same for this special choice of prior, note that: the former is the density operator
for which the data is most likely, and the latter is the most probable density operator given the data and
the prior probability density.
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The hedged maximum likelihood estimate (HMLE)

ρ̂HMLE = argmax
ρ∈S

{log Pr(δ|ρ) + log[det(ρ)]β}, β > 0, (12)

is of the MAP form, where the prior p(ρ) ∝ [det(ρ)]β is called the hedging function; it guarantees a full rank
estimate. When β is an integer, this prior probability density can be viewed as a special case of an induced
measure (see Eq. (3.5) in [19]) obtained by choosing an ancillary system of dimension k = β + d, defining
the Haar measure on a d × k dimensional Hilbert space, then tracing out the ancillary system to induce a
distribution on the space of d dimensional density operators. The function log[det(ρ)]β is concave in ρ for
β > 0, and when log Pr(δ|ρ) is concave the HMLE can be efficiently computed.

The maximum likelihood maximum entropy (MLME) estimate

ρ̂MLME = argmax
ρ∈S

[log Pr(δ|ρ) + λS(ρ)], λ ≥ 0, (13)

is a MAP estimate with a prior which is exponential in the von-Neumann entropy S(ρ) = −Tr(ρ log ρ).
Since S(ρ) is concave in ρ, when Pr(δ|ρ) is concave the MLME can be efficiently computed. Other possible
advantages of the MLME estimator have been discussed in [3].

3.3 MAP and Quantum Process Tomography

Let Ha,Ha′ and Hb be finite dimensional Hilbert spaces with dimensions da = da′ = d and db, respectively.
Let N : L(Ha′) 7→ L(Hb) be a quantum channel, and Ia : L(Ha) 7→ L(Ha) be the identity map on
operators. Let {|ai〉} and {|a′i〉} be orthonormal basis of Ha and Ha′ respectively, and |φ〉 =

∑
i |ai〉|a′i〉/

√
d

be a maximally entangled bipartite state. The channel N can be completely characterised by a bipartite
quantum state, sometimes called the Choi matrix or the dynamical operator:

Υ = (I ⊗N )|φ〉〈φ|, Υ ∈ L(Hab). (14)

The channel N is completely positive if and only if the operator Υ is positive semi-definite ( [20], see [21]
for a diagrammatic proof), and N is trace preserving if

Trb(Υ) = Ia/d, (15)

where Trb is the partial trace over Hb, and Ia is the identity operator on Ha. For any A ∈ L(Ha′), one can
show that

N (A) = dTra[(AT ⊗ Ib)Υ], (16)

where AT denotes the transpose of A in the {|ai〉} basis. So N is determined by the Choi matrix Υ. Equation
(14) gives a one to one correspondence between Mab: the convex set of quantum channels mapping L(Ha)
to L(Hb), and Tab: the convex set of density operators in L(Hab) with partial trace on Hb equalling Ia/d.
This correspondence can be used to construct a MAP estimator for a quantum channel as follows.

Suppose measurements are performed with the aim of characterising the quantum channel N (see [22,23]
for examples) and data δ is collected. As in Sec. 3.2, let p(Υ) be a prior probability density on Tab, and
Pr(δ|Υ) the probability of obtaining δ given Υ. The MAP estimator for the Choi matrix

Υ̂MAP = argmax
Υ∈Tab

[log Pr(δ|Υ) + log p(Υ)], (17)

becomes a MAP estimate N̂MAP for the quantum channel when Υ̂MAP is inserted in Eq. (16). When the
objective function on the right hand side of Eq. (17) is concave in Υ, Υ̂MAP can be efficiently computed
using tools of convex optimization.

4 Modelling Noise

Noise is present in any experimental setup. If its effect upon a tomographic measurement can be modeled
by assuming a known noisy channel N (whose parameters have been determined by previous calibration
measurements) preceding the final measurement as in Fig. 1, Bayesian estimators for ρ can be obtained by
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Figure 1: Schematic diagram of a quantum state ρ passing through a quantum channel N prior to being
measured.

replacing Pr(δ|ρ) with Pr(δ|N (ρ)) in (6) and (8). The MAP estimate in (10) becomes

ρ̂MAP = argmax
ρ∈S

[log p(δ|N (ρ)) + log p(ρ)], (18)

In addition the MAP estimate of the state coming out of the channel can be shown to be,

σ̂MAP = N (ρ̂MAP). (19)

The above construction is quite general. There is no restriction on N , the form of Pr(δ|ρ), p(ρ), or the size
of the quantum system d. Because N is a linear map, if log Pr(δ|ρ) is concave in ρ so is log Pr(δ|N (ρ)). Thus
when the tools of convex optimization allow an efficient calculation of the MAP estimate in (10) the same
will be true of (18). Since the MLE, MLME, and the HMLE are special cases of MAP, they can likewise be
adapted to the the noisy setting.

Note that the Gaussian noise models considered in [17, 18] are quite different: they are not based on a
noisy channel, but instead on a special form of Pr(δ|ρ).

4.1 Example

Let {σs}s∈{x,y,z} be the Pauli matrices. A qubit density operator can be expressed in the Bloch parametriza-
tion,

ρ(r) =
1

2
(I + r.~σ) :=

1

2
(I + rxσx + ryσy + rzσz), (20)

where the Bloch vector r = (rx, ry, rz), with norm |r|, belongs to the set of real variables R = {r ||r| ≤ 1}
called the Bloch ball. For doing tomography suppose 3N measurements, N each in the eigenbasis {|+〉s, |−〉s}
of {σs}s∈{x,y,z}, are performed on identically prepared quantum systems, each described by the density
operator ρ. The probability of observing |+〉s,

ps = Tr(ρ[+]s) = (1 + rs)/2, s ∈ {x, y, z}, (21)

where [+]s denotes the projector on |+〉s. The measurement data set δ = {ns, N − ns}s∈{x,y,z}, where ns
denotes the number of times |+〉s is observed, has a probability

Pr(δ|ρ) = Cδ
∏

s∈{x,y,z}

pns
s (1− ps)N−ns , (22)

where Cδ = (3N)!/(
∏
s ns!(N − ns)!). Using (11) and (20), a simple MLE estimate

ρ̂MLE = argmax
r∈R

log Pr(δ|ρ(r)) (23)

can be obtained. However most tomography setups have noise. For example, when discussing noise in a
nuclear magnetic resonance (NMR) experiment [24–26] one may use the model described in Fig. 1, where
the channel N , acting over time t represents the combined action of two channels, the generalized amplitude
damping (T1) channel,

A(ρ) =
∑
i

AiρA
†
i , (24)

where,

A0 =
√
p

(
1 0
0
√

1− γ

)
, A1 =

√
p

(
0
√
γ

0 0

)
, A2 =

√
1− p

(√
1− γ 0
0 1

)
, A3 =

√
1− p

(
0 0√
γ 0

)
, (25)
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p ∈ [0, 1], is the probability of finding the qubit in the |0〉 state as t 7→ ∞, γ = 1 − e−t/T1 , T1 is a time
constant, and the phase damping (T2) channel,

B(ρ) =
∑
j

BjρB
†
j , (26)

where,

B0 =

(
1 0

0
√

1− λ

)
, B1 =

(
0 0

0
√
λ

)
, (27)

λ = 1− e−t/T2 , and T2 is a time constant, and N = A ◦ B = B ◦ A ∗.
A MAP estimate which accounts for the noise, assuming a prior probability density independent of

r (under this probability density function, equal volumes of the Bloch ball have equal probability), can be
obtained by using (18) and (20),

ρ̂MAP = argmax
r∈R

log Pr(δ|N (ρ(r))). (28)

We perform numerical simulations to test performance of MLE and MAP in (23) and (28) respectively.
There is no unique metric to assess how close an estimate ρ̂ is to the actual ρ. The fidelity F(ρ, ρ̂) ≡
Tr(
√√

ρρ̂
√
ρ) and trace distance D(ρ, ρ̂) ≡ 1

2 ||ρ − ρ̂||1 are, however popular choices. Various parameter
choices for A and B are used in the simulation by fixing p = 1/2, T1/T2 = 10 [26], t = kT2 and varying
k ∈ {0.25, .5, .75, 1.0, 1.5, 2.0, 2.5}. For any fixed k, we choose 2.5× 103 qubit states uniformly in the Bloch
ball. For each state we simulate the construction of the MLE and MAP estimates for various N values.
By averaging over all qubit states we arrive at the average log-infidelity (log10[1 − F(ρ, ρ̂)]) and log-trace
distance (log10[D(ρ, ρ̂)]) of the MAP and MLE estimators (see Appendix for numerical techniques). For a
fixed k, under both log-infidelity and log-trace distance, the behaviour of MAP and MLE estimators with the
number of measurements (3N) is shown in Fig. 2. Under both metrics, MAP and MLE show qualitatively

Figure 2: (Color online) Plot of the average log-infidelity and log-trace distance between the true and
estimated state, against the number of measurements at k = 0.5. The error bars represent one standard
deviation. If the quantum channel N was perfect and the number of measurements was infinite, the log
infidelity and log trace distance would be negative infinity for MAP and MLE. As the ordinate of the graph
increases the performance of the estimator becomes worse.

different behaviour. As the number of measurements increases from a small value, for both metrics, the
average MAP value decreases and the average MLE value decreases but settles to a fixed number. Thus, on
average the MAP estimate always improves with the number of measurements while the MLE improves up
to a point and then ceases to change. N becomes more noisy as k increases and this causes both the MAP
and MLE curves in each of the plots in Fig. 2 to shift upwards. The upward shift implies that for a fixed N
with increasing k, on average the MAP and MLE estimates become worst under both metrics. In the case of
MAP this effect of increasing k can be mitigated by increasing the number of measurements which on average

∗In general, a quantum channel obtained by first applying some quantum channel A and then some channel B is different
from the one obtained by applying B first and then A. However, in this special case where A is the qubit amplitude damping
and B is the qubit phase damping channel, changing the order has no effect.
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improves the estimate, however this is not always possible for MLE whose average value, under both metrics
becomes fixed beyond a certain number of measurements and this fixed value also increases with k. Under
both metrics and for all k values tested, when the number of measurements is modestly large (roughly greater
than 300 in our case), on average MAP outperforms MLE. As the number of measurements increases further
the average MAP value becomes an order of magnitude better than average MLE value, and eventually the
error bars (one standard deviation about the average value) on the MAP and MLE curves cease to overlap.
Thus numerical evidence on qubits shows, that except when the number of measurements are low, on average
there is an advantage of using a MAP estimator which accounts for noise over a standard MLE.

5 Conclusion

The maximum a posteriori probability (MAP) estimation framework for quantum state and process tomog-
raphy introduced here combines a number of previous quantum state estimators, in particular the maximum
likelihood, hedged maximum likelihood, and the maximum likelihood-maximum entropy estimator, in a
single framework using Bayesian methodology. In several cases of interest to quantum state tomography
the MAP estimator becomes a convex optimization problem which should be numerically more tractable
than the Bayes’ Mean Estimator. Using the Choi-Jamio llkowski isomorphism, MAP estimation of quantum
states can be extended to quantum channels, and the extension is expected to have similar advantages as
the MAP estimate for quantum states. When the experimental noise can be represented by a known noisy
channel preceding the measurement, the MAP estimator can be modified to take it into account and can be
computed efficiently as long as the posterior probability density is log concave. Numerical results on qubits
indicate that on average, such modifications can vastly improve estimates. Having a measure of reliability
for any estimate is of significant value, and it would be interesting to construct such measures for the MAP
estimate.
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A Appendix. Convex Optimization over qubit density operators

Projected gradient descent is a very general iterative algorithm, used extensively for minimizing functions
defined over convex sets. When the function is convex, successive function values obtained during the
algorithm approach the global minimum. For some special convex sets, tools from convex analysis can be
used to compute a bound on how close a given function value is to the global minimum. We provide an
exposition of the projected gradient descent algorithm for minimizing any differentiable convex function over
the set of qubit density operators, and illustrate a technique for checking how far a given function value is
from the global minimum. Let f : R 7→ R be a differentiable convex function, then

f(x∗) = f∗ = min
x∈R

f(x), (29)

is called the optimization problem, with objective function f , optimal x∗ and optimum value f∗. Projected
gradient descent begins with some point inside R, then iteratively takes steps to move to a new point with
a lower function value. The algorithm halts when some stopping criterion is met. New points are chosen by
moving along the negative gradient direction by an amount called the step size, such movements may take
one outside the set R, in which case we project onto the boundary of the set. If x is a vector in R3 then its
projection onto R,

PR(x) =

{
x/|x| if |x| > 1

x otherwise
. (30)

A pseudo code for projected gradient descent is given in algorithm 1.
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Algorithm 1: Projected gradient descent

Input : x ∈ R
Output: x̃ and f̃

1 while not stopping criterion do
2 d = ∇f(x)
3 yt = x− td
4 x+(t) = PR(y(t))
5 Choose step size t∗

6 x = x+(t∗)

7 end
8 return x, f(x)

There are several different ways of choosing a step size and a stopping criterion. We select the step size
by using a method called backtracking line search. Let

Gt(x) ≡ (x− x+(t))/t (31)

be the generalized gradient at x for step size t. A pseudo code for backtracking, to be used as a subroutine
in algorithm 1 is provided in algorithm 2.

Algorithm 2: Backtracking line search

Input : β ∈ (0, 1)
Output: t∗

1 Let t = 1
2 while f(x+(t)) > f(x)− t〈d, Gt(x)〉+ t

2 |Gt(x)|2 do
3 t = βt
4 end
5 return t

Backtracking line search ensures that the function decreases by at least t∗|Gt∗(x)|2/2 in each iteration [29].
One possible stopping criterion is to check whether the function hasn’t decreased appreciably over the past
few iterations or |Gt∗(x)| is greater than a small constant. At any point x ∈ R, the surrogate duality gap [30]

g(x) = max
r∈R
〈∇f(x),x− r〉 (32)

upper bounds |f(x)−f∗| and provides a measure of how close a function value at x is to the global minimum
value. Due to the simple structure of the set of qubit density operators, the surrogate duality gap can be
easily computed. Let ∇F (x) = ∇f(x).~σ be a matrix, λmin(∇F (x)) be its smallest eigenvalue, then

g(x) = 〈∇f(x),x〉 − λmin(∇F (x)). (33)

Given the ease of computing g(x), checking whether its value is greater that a small constant also serves as
a good stopping criterion. Once algorithm 1 converges and returns some (x̃, f(x̃)), computing g(x̃) gives an
estimate of how far f(x̃) is from f∗.

The projected gradient algorithm discussed above can be used to solve optimization problems in Eq. (23)
and (28) to obtain ρ̂MLE and ρ̂MAP respectively. The gradient of the objective function in these optimization
problems can be computed analytically. Let r = (rx, ry, rz) be a Bloch vector for a qubit density operator
ρ, then upto local unitaries at the input and output of a qubit channel N , the Bloch vector r′ for N (ρ) can
always be written as r′ = (lxrx + tx, lyry + ty, lzrz + tz) [31]. When N = I

ls = 1, ts = 0, s ∈ {x, y, z}, (34)

when N = A ◦ B (see Eq. (24) and (26))

lx = ly =
√

(1− λ)(1− γ), lz = 1− γ, tx = ty = 0, and tz = γ(2p− 1). (35)

The gradient of the function on the right hand side in Eq. (28) can be obtained using

∂

∂rs
log Pr(δ|N (ρ(r))) =

ls
2

(ns
ps
− N − ns

1− ps
)
, s ∈ {x, y, z}. (36)
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Choosing N = I gives the gradient of the function in the right side of Eq. (23). A python implementation
of projected gradient descent and surrogate duality gap computation over qubits, including a code that
simulates the tomography reconstruction and generates plots for Fig. 2 is publicly available [32].
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