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We introduce a technique for recovering noise-free observables in noisy quantum systems by com-
bining the results of many slightly different experiments. Our approach is applicable to a variety
of quantum systems but we illustrate it with applications to quantum information and quantum
sensing. The approach corresponds to repeating the same quantum evolution many times with
known variations on the underlying systems’ error properties, e.g. the spontaneous emission and
dephasing times, T1 and T2. As opposed to standard quantum error correction methods, which have
an overhead in the number of qubits (many physical qubits must be added for each logical qubit) our
method has only an overhead in number of evaluations, allowing the overhead to, in principle, be
hidden via parallelization. We show that the effective spontaneous emission, T1, and dephasing, T2,
times can be increased using this method in both simulation and experiments on an actual quantum
computer. We also show how to correct more complicated entangled states and how Ramsey fringes
relevant to quantum sensing can be significantly extended in time.

I. INTRODUCTION

Quantum information science is rapidly evolving due
to advances in quantum computing, communication, and
sensing. Quantum computing, for example, has potential
for exponential speedup in areas such as prime number
factoring [1] and quantum chemistry [2], and quantum
sensing has potential to be far more sensitive than classi-
cal sensing [3]. In most cases, however, decoherence or in-
formation loss can impede progress. Quantum error cor-
rection can extend quantum information lifetime by en-
coding a single logical qubit into many physical qubits [4]
but introduces space and time overheads owing to addi-
tional physical qubits and gate operations. Furthermore,
it is unclear how standard quantum error correction could
be used in complicated quantum sensors.

Here, we describe a technique for recovering observ-
ables from a quantum evolution by repeating the evolu-
tion with slightly different noise characteristics and com-
bining those results to obtain an estimate of the noise-free
answer without need of additional quantum hardware.
Our approach bears similarities with interesting work by
Gambetta and coworkers [5, 6] as well as Benjamin and
coworkers [7, 8], involving one global noise parameter
(based on tunable error properties of gates) and Richard-
son extrapolation. It represents a multi-dimensional gen-
eralization not reliant on Richardson extrapolation that
can also use the underlying error properties of quantum
systems in cases where there is not a tunable, global noise
source and is thus applicable to a wider range of quan-
tum systems. We have recently used such a simple er-
ror model to develop a different error correction scheme
that requires the ability to signficantly reduce error on
individual qubits via, e.g., quantum error correction [9].
Our approach here does not rely on quantum error cor-
rection, but requires many, slightly different runs to be
completed; these can be done in time (repeating the evo-
lution many times in sequence) or in parallel (many sep-
arate systems simultaneously undergo evolution). Our
approach can be used in quantum algorithms, quantum

FIG. 1: Example of a ‘hypersurface’ fit to many
experiments with slightly different noise parameters, γ1
and γ2. Black points are measurements of an observable

with different noise rates. The ‘X’ is the noise-free
result. Blue (lower), orange (middle), and green (upper)

surfaces are first, third, and fourth order fits,
respectively. Many observable measurements are

outside the region displayed.

sensing, and general quantum experiments where deco-
herences times are too short to obtain high-quality sig-
nals. The only requirement is that the evolution can be
repeated with different, well-characterized noise sources.

II. METHOD

Consider a quantum system with one or more subsys-
tems (e.g., qubits), each undergoing one or more noise
processes. Let the set of all noise rates be {γi}. This
system repeatedly undergoes a given evolution, e.g. a se-
quence of quantum gates or interaction with a magnetic
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field, with varying values of noise rates. Combining all
results, we construct a hypersurface embedded in a space
where one axis represents the measurement results and
the other axes represent the noise rate parameters. The
form of the hypersurface is obtained via the Taylor ex-
pansion of the quantum system’s evolution operator (see
Appendix A) and yields an estimate of the noise-free ob-
servable, as well as information about the effect of each
noise rate.

For example, consider a single qubit with only ampli-
tude damping noise. We repeatedly apply an evolution,

each time with differing damping rates. Let γ
[j]
1 be the

damping rate for the jth repetition and 〈A〉[j] be the
corresponding measured observable. For a third order in
γ1 observable model, solving (via, e.g., standard least-
squares)
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1 . Here the hypersurface is just a cubic

curve with intercept A0 being the desired noise-free value.
The formalism extends to higher orders and to many
noise parameters, potentially from many qubits. For ex-
ample, using a single qubit with a spontaneous emission
rate, γ1 and pure dephasing rate, γ2, the jth row of our
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second order. Figure 1 displays hypersurfaces (now 2D
surfaces) for a system with two noise parameters. A red
‘X’ is the noise-free solution. As model order increases,
the surfaces better fit the data and extrapolate closer to
the noise-free limit.

III. RESULTS

A. Relaxation Time

We first demonstrate the method for a single qubit us-
ing a simple relaxation time experiment. We excite the
qubit into the |1〉 state, wait some time, and then measure
what state it is in; repeating many times yields the prob-
ability of remaining in (or fractional population of) the
excited state. Due to the amplitude damping noise, the
population will decay to zero with characteristic time T1
= 1/γ1. We first show how to recover the population in
simulation, where we select random γ1 values uniformly
in a range representing T1 times between 5 µs and 15 µs.
All simulations are numerical solutions of the Lindblad
master equation [10, 11] and utilize the high-performance
open quantum systems solver QuaC [12]. The results
are shown in Fig. 2a, where we present best, worst, and
average evolutions over 450 repetitions, and recovered

populations using Eq. (1), up to tenth order. The pro-
cedure is applied at specific times, with knowledge only
of the measured observables at that time. By recovering
at many different times t, we obtain the full evolution.
Every order shown is better than the best run and in-
creasing order increases recovery quality. For example,
at 60 µs the average population is 0.0045, i.e. the state
is almost all decayed away. First order recovery gives a
population of only 0.017. Tenth order recovery gives a
population of 0.90, nearly the noise-free result. If T1(n)
is the time the recovered evolution has population 1/e at
order n, we see T1(n) ≈ (n+ 1)T1(n = 0).

We also perform the relaxation time experiment on
Rigetti’s eight qubit chip, Agave [13, 14], a supercon-
ducting qubit quantum computer with a ring topology.
Each of the eight qubits has slightly different T1 and T ∗2
times, all approximately 10 µs. Furthermore, these noise
characteristics drift in time [6, 15]. These features pro-
vide the necessary variation in noise parameters for our
method. We first excite a single qubit using a Pauli-X
gate, wait some time, and measure the qubit state. This
is repeated for many different wait times. Each exper-
iment at a given wait time is averaged over 105 shots,
giving an average population. The T1 time and associ-
ated decay rate, γ1, is extracted by fitting an exponen-
tial to the data, weighted by the standard error of the
mean of each measurement. This process is repeated for
each qubit in the quantum computer, a few minutes are
allowed to pass, and then the full cycle is repeated, start-
ing from the first qubit. This generates many different
repetitions with varying noise parameters. The fitted γ1
parameters are used for the recovery. To obtain the error
bars for the experimental data, the least-squares fitting
procedure was replaced with a weighted least-squares fit-
ting procedure, taking into account the standard error
of the mean in the determination of the populations at
each separate wait time. This process does not, how-
ever, take into account the error on the fitted γ1 values.
In principle, this could also be included by using total
least-squares or orthogonal distance regression [16], but
this is a more involved procedure.

Just as in simulation, each wait time is recovered sep-
arately. A total of 45 different single qubit repetitions
are run with results shown in Fig. 2b. Both first and sec-
ond order recoveries result in a higher population than
the average, similar to the simulations. The recovery is
limited by noise sources not included in the model, such
as readout noise. Neither first nor second order recov-
ery reaches unity; instead, achieving ≈ 0.85, roughly the
average readout fidelity (0.84) of the qubits used in the
experiment. The inset of Fig. 2b also shows a compar-
ison between our Lindblad model for the qubit and the
experimental data. We ran 45 different repetitions us-
ing experimentally determined T1 times and shifted the
data down by 0.18 to account for the limited readout fi-
delity in the experimental runs. The model average and
experimental averages line up very well; the 1st order
recovery of the model and experimental data only agree
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in the short times. Since our recovery method can only
recover from noise sources that we experimentally de-
termine, this implies that there could be other, impor-
tant noise sources that were not included in the recovery.
These could include state preparation and measurement
errors, which were only roughly included by a shift of the
data. Other sources of error could include crosstalk [13]
or 1/f noise [17], which is generally non-Markovian in
nature and would not have been included in our simple
noise model. The difference between the model and the
experimental data implies that the simple T1, T2 noise
model is not entirely sufficient for describing the noise
of these qubits. Our recovery method allows one to in-
clude more noise sources, as long as they are quantifiable,
and can help identify which noise sources have weak or
strong effects on the resulting observable. In our experi-
ments, different qubits from the same device are used at
different times, minimizing potential differences between
each repetition. Combining repetitions from disparate
architectures, e.g., ion-trap and superconducting qubits,
would require non-trivial additions to the model.

As higher orders are used in the recovery, the error
bars also get larger; arbitrary order cannot be used with
a limited number of measurements. Sampling error ulti-
mately limits the highest order that can be used in the
recovery procedure. This is studied in detail in Ref. 8,
where it is shown that higher orders in a single param-
eter fit moves the mean but also increases the variance.
Rather than using a new repetition to achieve a higher
order fit, that data could have been used to reduce the
size of the error bars in a lower order fit.

With only one noise parameter the method is similar
to Richardson extrapolation, which is able to extrapolate
to the zero-noise limit in superconducting qubits [5, 6]; in
this case the methods differ only in choice of points and
fitting strategy, but the source of the variation in noise
differs greatly. The Richardson extrapolation technique
assumes a single global noise source, which has been im-
plemented by scaling the length of pulses while running
the quantum algorithm on the same set of qubits [6]
or otherwise increasing the noise [7]. The hypersurface
method allows for any number of noise sources and is a
multi-dimensional generalization utilizing natural varia-
tions in qubit properties. To show this, we use Ramsey
interferometry with no background magnetic field, a com-
mon technique for measuring T2 times [18]. This involves
applying a π/2 X rotation to |0〉, waiting some time, and
then applying another π/2 X rotation. Without noise
and in a rotating frame, the final state would be |1〉. As
opposed to the relaxation time experiment, both ampli-
tude damping and dephasing noise affect the result. Fig-
ure 3a shows simulated results of this experiment with
recovery up to 8th order. Spontaneous emission T1 and
pure dephasing T ∗2 times are independently, randomly
chosen between 5 µs and 15 µs with 450 simulations be-
ing run. Without recovery, the excited state population
associated with a given γ1 = 1/T1 and γ2 = 1/T ∗2 expo-
nentially decays with rate 1/T2 = γ1/2 +γ2. As with the
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FIG. 2: Population recovery in a relaxation time
experiment. (a) Simulated data from 450 simulations
with random T1 times. (b) Experimental results on

Rigetti’s 8 qubit quantum computer [13]. 45 repetitions
are made at each time with experimentally determined
T1 times. The inset shows the comparison between our
noise model run with the experimentally determined T1

times and the experimental data.

relaxation time experiments, first order recovery yields
a better evolution for most points compared with even
the best run of all the qubits. As ever higher orders are
considered, a unity excited state population is recovered
for longer periods of time.

B. Dephasing Time

We also carry out Ramsey experiments on Rigetti’s
eight qubit Agave quantum computer. To obtain correct
noise rates, γi, for a given repetition we first characterize
T1 using the relaxation time experiment discussed above.
We then perform a Ramsey interferometry experiment as
previously described. The results of this experiment are
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fit to an exponential to obtain T2. This allows determina-
tion of the pure dephasing rate via γ2 = 1/T2 − 1/(2T1).
Each wait time in both the T1 and T2 determinations is
averaged over 105 shots. With both rates determined,
the hypersurface method, Eq. (1), is used to recover the
excited state population at each wait time, using 12 repe-
titions (Fig. 3b). The first order correction clearly recov-
ers a fraction of the missing population and approaches
the readout fidelity limit at early times.

Characterization of the noise rates and a good un-
derstanding of the noise sources are imperative for our
method. For example, because of how γ2 is determined,
poor determinations of T1 and T2 can sometimes lead
to negative γ2; such unphysical repetitions are excluded
from the recovery analysis. Furthermore, each observ-
able measurement 〈A〉[j] is assumed to be measured at
a set of determined noise rates γ[j]. In superconducting
qubit systems, noise characteristics fluctuate over time
scales in the few minute range [6]. The total time to
determine 〈A〉[j] (which involves the average over shots)
must be significantly smaller than this time scale. In this
work, determination of T1 and T2 takes ≈ 1 s, which is
less than the time scale of the fluctuations. Given that
the time scale of the longest gate on the Rigetti Agave
quantum computer [13] is on the order of 100 ns (and
including the time to reinitialize the quantum computer
after a measurement is made), the total gate depth for
more complicated algorithms will be limited and T1 and
T2 would need to be characterized before each repetition
to ensure that the hypersurface equations have the cor-
rect noise sources. As qubit quality increases, we expect
the noise rates will become both much lower and much
more stable, allowing for longer circuits to be used in
this method. In both experiments on the Rigetti quan-
tum computer, the correct unity excited state population
could not be recovered. Instead, the method recovered
the readout fidelity limit.

The Ramsey experiments show the strength of this
method, compared to Richardson extrapolation with a
global noise parameter. These latter methods [5, 7] make
use of gate noise tuning allowing them to be used very ef-
ficiently in gate-based quantum computation. However,
in quantum systems with no ‘gates’ (e.g, quantum sen-
sors, quantum memories, and general quantum experi-
ments) or if increasing all noise sources (e.g., T1 and T ∗2 )
at the same rate is not easy, our approach can still be
used. In a situation where measurement of a single pulse
is important, as is the case for many sensing applications,
being able to use ‘space’, by having more sensors partici-
pating in the time-sensitive sensing, can increase sensitiv-
ity dramatically. In other situations, such as measuring
a background field, being able to use either space or time
offers flexibility in design of high-sensitivity devices.

By utilizing a single global noise source, Richardson ex-
trapolation requires only a few evaluations, even for thou-
sands of qubits. Furthermore, using gate noise, rather
than the underlying physical qubit noise, the methods
of refs. [5, 7] can be effectively applied to near-term,
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FIG. 3: Population recovery in Ramsey interferometry
with no background magnetic field. (a) Simulated data
from 450 simulations with random T1 and T ∗2 times. (b)

Experimental results on Rigetti’s 8 qubit quantum
computer [13]; 12 repetitions are included at each time,

with experimentally determined T1 and T ∗2 times.

noisy quantum computers [6]. The hypersurface method,
in contrast, requires more evaluations as the number of
quantum subsystems increases. The resource scaling is
defined by the truncation order of the Taylor series. The
number of unknowns is ≈ ml, where m is the number
of noise sources and l is the truncation order (see Ap-
pendix B for exact result). Even with this polynomial
scaling, the number of unknowns can still become large
with high order l or a large number of noise sources m. In
this case, an under-determined system, where the number
of repetitions is smaller than the number of unknowns,
could be solved using numerical techniques such as reg-
ularization [19], where we would introduce constraints
on the fit based on our knowledge of the physics of the
error channels. Nonetheless for systems where scaling a
global noise source is infeasible, the hypersurface method
offers error mitigation with tunable resource cost and ef-
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FIG. 4: Ramsey fringe recovery from using 350
simulations of three entangled qubits with random T ∗2

times.

fectiveness. The multiparameter Taylor expansion shown
in Appendix A gives some insight into the bound on
the remaining error in the observable after applying our
method; the remaining error, for truncation order l, is of
the order of the sum of all products of all error terms,
γi, such that there are l + 1 different γ terms in each
product. Ref. 5 derives a formal bound in the single
parameter case; a multiparameter generalization of this
would provide a more stringent bound for our method.

C. Ramsey Fringes

As a final example, we simulate Ramsey interferometry
with a background magnetic field, a common technique
used in quantum sensing of magnetic fields [3]. Both
single qubit and entangled arrays of qubits can be used
as sensors [20]. The system is first prepared in a su-
perposition state such as 1√

2
(|0〉+ |1〉) for a single qubit

and a GHZ state, 1√
2
(|00 · · · 0〉+ |11 · · · 1〉), for an entan-

gled array of qubits [3]. Single qubit superposition states
can be prepared with a Hadamard gate; GHZ states can
be prepared with a Hadamard gate and a sequence of
CNOT gates. The system then evolves in the presence
of a background magnetic field, causing it to pick up a
phase. The inverse entangling operation is then applied,
transferring the phase onto a single qubit, which is then
measured. The phase accumulated over the course of the
interaction depends on magnetic field strength and in-
teraction time. If the interaction time is much longer
than the coherence time, the useful information decays
away and the Ramsey fringes will not be visible. We
simulate this experiment using both a single qubit and
three entangled qubits. For each qubit, we select a ran-
dom T ∗2 times in the range of 0.5µs to 1.5µs, consistent
with parameters for nitrogen-vacancy centers [21]. The

characteristic T1 time is large enough to be ignored. We
set the background magnetic field to 10 µT and use a
total of 350 samples for both single qubit and entangled
qubit simulations. Figure 4 shows the recovery of Ram-
sey fringes from a three qubit GHZ state; the single qubit
case is plotted in Appendix C. In the three qubit case
we now have three noise parameters, one for each qubit.
The higher order recovery involves many cross terms, and
the resulting hypersurface is three-dimensional. Even in
this maximally entangled state, Ramsey fringes are still
recovered long after most of the individual fringes have
decayed away.

IV. CONCLUSION

The hypersurface method can be used to recover from
any incoherent errors. In this paper, we have demon-
strated recovery from both amplitude damping and pure
dephasing. Our method could also be applied to any
other incoherent error which can be parameterized by a
simple noise rate which is zero (or small) for the noise
free case. This includes multi-qubit noise and incoherent
noise from application of quantum gates. Determina-
tion of these more complex noise rates at the time an
algorithm is run is necessary; it is still an open ques-
tion how these might be measured efficiently. Coherent
errors, such as over-rotation during the application of a
gate, cannot be clearly translated into the hypersurface
method, as they are not describable by a simple noise
rate.

We presented a method to recover arbitrary quantum
observables by repeatedly measuring the observables with
differing noise rates and fitting a hypersurface to the rep-
etitions. Including more and more repetitions and in-
creasing hypersurface order, an increasingly good approx-
imation of noise-free observables of a general quantum
system can be recovered. For many quantum systems, T1
and T ∗2 noise are dominant noise sources and there are
many techniques for characterizing them. Our method
recovers a good approximation of the noise-free evolution
in these cases. As shown in this Letter, this method has
applications in quantum computing and quantum sens-
ing. Further study on ways to minimize the number of
repetitions needed for higher-order recovery of a large
number of coupled quantum systems is necessary to con-
trol the overhead of the method.
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Appendix A: Derivation

The Lindblad master equation for a general density
matrix ρ(t) evolved from an initial state ρ0 is defined as
(throughout, ~ = 1)

dρ

dt
= −i[H, ρ0] + L(ρ0), (A1)

where H is the Hamiltonian of the system, describing
coherent evolution and L is the Lindblad superoperator,
describing incoherent evolution, such as noise processes.
Both H and L can, generally, be time dependent. ‘Vec-
torizing’ the density matrix [22], ρ, allows us to write a
general solution of the Lindblad master equation as

ρ̃(t) = exp(−iH̃t+ L̃t)ρ̃0, (A2)

where ρ̃ is the vectorized density matrix, H̃ is the vec-
torized Hamiltonian, and L̃ is the vectorized Lindblad
superoperator. See Ref. 22 for more details about the
process of vectorization. Let Ũ(t) = exp(−iH̃t+ L̃t), the
superoperator propagator. We can decompose the super-
operator propagator in the solution, equation (A2), using
the Trotter decomposition [23]:

Ũ(t) = lim
n→∞

((
exp(−iH̃ t

n
) exp(L̃

t

n
)
)n)

(A3)

and take the Taylor expansion of the superoperator prop-
agator of the Lindblad

Ũ(t) = lim
n→∞

((
exp(−iH̃ t

n
)

∞∑
m=0

(L̃ t
n )m

m!

)n)
. (A4)

We now write the Lindblad superoperator as a sum of
many different Lindblad superoperators, each with its
own rate: L̃ =

∑
j γjL̃j and plug this into equation (A4),

giving

Ũ(t) = lim
n→∞

((
exp(−iH̃ t

n
)

∞∑
m=0

(
∑

j γjL̃j
t
n )m

m!

)n)
.

(A5)
Equation (A5) an infinite sum over m, a finite sum over
i, and is raised to an infinite power, n. Though this
equation has infinite terms, we can collect all terms that
have the same γ prefactors. For example, the collection
of all terms with only γj will include all terms from the
product that have one first order element from the Taylor
series expansion of L̃. Terms with γ2j will include prod-
ucts with two first order elements, as well as products
with one second order element. To provide a concrete
example, we truncate the Trotterization at third order,
the Taylor expansion at fist order, and include two noise
terms. Let U = exp(−iH̃ t

3 ) and Vj = L̃j
t
3 . With our

truncation, we rewrite equation (A5) as

Ũ(t) ≈
(
U(1 + γ1V1 + γ2V2)

)3
≈ UUU + γ1(UV1UU + UUV1U + UUUV1) + γ2(UV2UU + UUV2U + UUUV2)+

+ γ21(UV1UV1U + UUV1UV1 + UV1UUV1) + γ22(UV2UV2U + UUV2UV2 + UV2UUV2)

+ γ1γ2(UV1UV2U + UUV1UV2 + UV1UUV2 + UV2UV1U + UUV2UV1 + UV2UUV1).

(A6)

The generalization to higher order Trotterizations is
clear; the expanded sum will have many more terms (due
to each term having a smaller timestep, t

n ), but terms can
be grouped by their γj prefactors. For higher order Tay-

lor expansions of exp L̃, terms can still be grouped by
their γj prefactors. For example, take the γ21 term from
equation (A6). With a second order Taylor expansion,
the γ21 terms now contain contributions from V 2

i :

[γ21 terms] = UV1UV1U + UUV1UV1

+ UV1UUV1 + UV 2
1 UU

+ UUV 2
1 U + UUUV 2

1

(A7)

Combinging the generalizations to both higher order
Trotterization and higher order Taylor expansion is rel-
atively straightforward; the number of terms grows pre-
cipitously, but they can always be gathered by their γj
prefactors. Collecting all the terms for both the infinite
limits of Trotterization and the Taylor expansion leads
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to

Ũ(t) = lim
n→∞

((
exp(−iH̃ t

n
)
)n)

+
∑
j

γj [γj terms]

+
∑
j

∑
k

γjγk[γjγk terms] + · · · ,

(A8)

where we have used [γj terms] to represent the (infinite)
collection of terms all with γj as a prefactor. This repre-
sents the general (exact) evolution operator for our sys-
tem. Our density matrix at time t can now be written

ρ̃(t) = lim
n→∞

((
exp(−iH̃ t

n
)
)n)

ρ̃0

+
∑
j

γj [γj terms]ρ̃0

+
∑
j

∑
k

γjγk[γjγk terms]ρ̃0 + · · · .

(A9)

The first term of this expansion represents the noise-free
result. Other terms represent the effects of noise on the
evolution. Since this method directly corrects the density
matrix, ρ, it follows that it also corrects an arbitrary
observable,

〈A〉 = A0 +
∑
j

γjAj +
∑
j

∑
k

γjγkAjk + · · · , (A10)

where A0 is the noise-free observable value and Aj is the
effect of noise rate j on the observable. We define the
‘order’ of the combined Trotterization and Taylor expan-
sion by the number of γj terms included. The first order
terms, for example, are those with a single γj prefactor,
and include all possible ways that one (infinitesimal) er-
ror evolution can be included. The second order terms
include all possible ways that two (infinitesimal) error
evolutions can be included, and so on. We do not a pri-
ori know what the values of the effects of noise on the
observable (such as Aj) for any order are; however, we
can characterize γj for a given experiment. By taking a
sequence of experiments, varying γj , we can reconstruct
the unknown evolution terms by fitting a hypersurface
to the points. The coefficients of the hypersurface rep-
resent the effects (or, for the zeroth order term, the lack
of effects) of noise to a given order on the density matrix
(or an arbitrary observable). Equation (A10) generally
has effects up the infinite order; to make it tractable, we
truncate at some given order. As more orders are in-
cluded, the fit becomes more accurate, and, therefore, a
better approximation of the noise-free result is obtained.

Appendix B: Number of Terms in Expansion

Naively, the number of terms in a given order l would
be ml, where m is the number of noise terms (which

could be the number of qubits or a small factor times
the number of qubits). Since γj is a scalar, all γj will
commute, allowing us to fuse terms with the same set of
γ. For instance, given a second order expansion with two
noise terms, we would general have terms with prefactors
γ1γ1, γ1γ2, γ2γ1, and γ2γ2, but since γ1γ2 = γ2γ1, we can
reduce the number of fitted parameters by combining the
L̃1L̃2 and L̃2L̃1 terms. For a given order l and number
of noise terms m, the number of parameters n for that
order is the number of multinomial coefficients, which is
given by the formula

n =

(
l +m− 1

m− 1

)
. (B1)

For an expansion truncated at order l, the total number
of parameters, for all orders, is the sum of equation (B1)
for each order up to, and including, l. To provide an
explicit example of the polynomial scaling, we will take
the example of four qubits with one noise term each (m =
4) and truncate at first order (l = 1). In this case, we
have to sum the terms from order 0 and 1, giving n =(
3
3

)
+
(
4
3

)
= 5 ≈ 41 unknowns. Following equation (1) in

the main text, and using the same number of repetitions
as unknowns, our hypersurface equations become


1 γ

[1]
1 γ

[1]
2 γ

[1]
3 γ

[1]
4

1 γ
[2]
1 γ

[2]
2 γ

[2]
3 γ

[2]
4

1 γ
[3]
1 γ

[3]
2 γ

[3]
3 γ

[3]
4

1 γ
[4]
1 γ

[4]
2 γ

[4]
3 γ

[4]
4

1 γ
[5]
1 γ

[5]
2 γ

[5]
3 γ

[5]
4



A0

A1

A2

A3

A4

 =


〈A〉[1]
〈A〉[2]
〈A〉[3]
〈A〉[4]
〈A〉[5]

 . (B2)

As long as the set of noise parameters for each repeti-
tion are different, any values can be chosen. One specific
choice is to have all of the noise parameters take some
small value γLi and to increase the noise parameter of
each qubit independently to some high value γHi . In this
case, the hypersurface equations become


1 γL1 γL2 γL3 γL4
1 γH1 γL2 γL3 γL4
1 γL1 γH2 γL3 γL4
1 γL1 γL2 γH3 γL4
1 γL1 γL2 γL3 γH4



A0

A1

A2

A3

A4

 =


〈A〉[1]
〈A〉[2]
〈A〉[3]
〈A〉[4]
〈A〉[5]

 . (B3)

This case, of independently changing each qubits’ noise
properties one at a time, represents an independent linear
extrapolation along each dimension of the hyperspace.
The hypersurface equations are much more flexible than
this, however. If all of the noise parameters changed be-
tween runs, the solution would still be able to fit linear
extrapolations along each dimension from the simultane-
ously changed data. This could be useful for solving the
system in an underdetermined fashion, where the number
of repetitions is smaller than the number of unknowns.
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FIG. 5: Single qubit Ramsey interferometry. 350
simulations with random T ∗2 times are used.

Appendix C: Recovery of Single Qubit Ramsey
Fringes

Figure 5 shows the recovery of Ramsey fringes for a
single qubit. In this single qubit case, there is only one
noise parameter, γ2, as γ1 � γ2, in contrast to the Ram-
sey interferometry in the superconducting qubit system,
where γ1 ≈ γ2. We set the background magnetic field
to 10 µT and combine the results of 350 experiments.
As the order of the recovery is increased, more and more
fringes are recovered; at tenth order, the fringes extend
are recovered even when the best single qubit run has
no clearly visible fringes. Without correction, the fringes
decay with the characteristic T2 time [18].
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