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Recently, there has been growing interest in using quantum error correction in practical devices.
A central issue in quantum error correction is the initialization of quantum data into a quantum
error correction code. Most studies have concentrated on generating quantum codes based on
their encoding quantum circuits. However, this often leads to a large number of steps required in
the initialization, and hence this process can be prone to errors. The purpose of this work is to
demonstrate that permutation-invariant quantum error correction codes can be created with high
fidelity by exploiting their underlying symmetry. The code is initialized on multiple qubits that
mutually interact, or are themselves coupled to a quantum harmonic oscillator. We show that
the so-called selective resonant interaction is derivable on such physical systems. By utilizing the
selective resonant interaction, these highly symmetric codes may be rapidly generated with excellent
fidelity. We also discuss the potential of initializing permutation-invariant quantum error correction
codes based on the state-of-art experimental techniques.

I. INTRODUCTION

To unlock the powers promised by quantum technolo-
gies for either quantum communication, quantum sim-
ulation, or quantum computation, it is essential to reli-
ably initialize quantum information with protection from
the environment’s decohering effects. One way to make
quantum information more robust is to encode it into a
quantum error correction code (QECC). Once this quan-
tum information has been encoded, it becomes possible,
at least in principle, to mitigate the decohering effects
that the quantum information experiences. Ever since
of the proof of the possibility of quantum error correc-
tion [1–3], there has been extensive research on various
types of QECCs, such as the surface codes [4] and many
others too numerous to mention. However, initializing
quantum states in QECCs remains challenging in prac-
tical devices. In this paper, we address the possibility of
initializing QECCs with high fidelity.
Initializing quantum states in QECCs is necessary to

realize the potential of quantum error correction in mak-
ing quantum information more robust. For example, a
single qubit can be protected by introducing N − 1 addi-
tional qubits, and applying an operation that entangles
all the N qubits. If the now entangled qubits reside in a
QECC of distance 2t+1, any errors on any t of the qubits
can be corrected [5]. Most studies have concentrated on
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initializing quantum codes based on their encoding quan-
tum circuits, the circuits of which can be decomposed in
terms of single-qubit and two-qubit gates. However, the
number of these gates required often cannot be small [6–
9]. Since every gate invariably incurs some amount of er-
ror, over time, the error builds up, and this leaves the ini-
tialization of quantum code that require many gates to be
error-prone. This problem has motivated the use of dif-
ferent approaches to shorten the required evolution time
in the generation of multi-qubit entangled states. Re-
cently, a scheme based on ultrafast controlled phase gate
and the principle of pairwise cluster state generation has
been proposed, which utilizes ultrastrong qubit-resonator
coupling to implement single-qubit and two-qubit quan-
tum operations, and hence reduces the times required for
the generation of QECCs [10]. Others have also explored
special quantum operations to minimize the steps of evo-
lution needed for creating multipartite entangled states
[11–15].

Of the many QECCs that can be used, we focus our at-
tention on permutation-invariant QECCs, which remain
unchanged under the swapping of any of their underly-
ing subsystems. Such codes can have a distance that
grows as a square root of the number of underlying sub-
systems, and lie within the ground state space of any
Heisenberg ferromagnet. Because of this and the fact
that Heisenberg ferromagnets are naturally abundant in
nature and can be made via engineered exchange inter-
actions, these codes might be attractive for use in quan-
tum storage. Although considerable research has been
devoted to the construction of these codes and proving
their quantum error correction properties [16–21], much
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less attention has been paid to that of initializing states
within their codespace. Because permutation-invariant
QECCs do not have an obvious stabilizer structure, their
encoding quantum circuits remain unexplored.
In this paper, we investigate the initialization of a nine-

qubit permutation-invariant QECC that encodes a sin-
gle qubit and can correct any single qubit error. We
show how any qubit can be encoded into this code using
only a few steps of system evolution. This QECC can
be seen as a variant of Ruskai’s code [16]. The physics
of how our scheme works is based on a controllable in-
teraction which can be derived in two physical systems.
When the so-called large detuning constraint holds, our
scheme achieves a selective resonant interaction, which
effectively induces Rabi oscillations between pairs of cho-
sen basis states in the symmetric subspace. The natural
unitary dynamics can be induced by the system Hamil-
tonian describing qubit-qubit coupling or qubit-resonator
coupling. In view of the state-of-the-art techniques, our
QECC scheme is possibly implementable with supercon-
ducting charge qubits coupled by a common inductance
or embedded in a transmission line resonator.
This paper is organized as follows. In Sec. II, we

investigate a physical system with coupled qubits and
show that the system Hamiltonian leads to the selective
resonant interaction. In Sec. III, we investigate the gen-
eration of a nine-qubit permutation invariant quantum
code via a multi-step evolution of the system. In Sec.
IV, we discuss the effect of decoherence on the creation
of the 9-qubit QECC. In Sec. V, we present another
system Hamiltonian of qubit-resonator coupling and de-
rive a transformed Hamiltonian which also gives rise to
the selective resonant interaction, followed by the explo-
ration of the initialization of the 9-qubit QECC. Finally,
we conclude this paper with discussions in Sec. VI.

II. THE SELECTIVE RESONANT

INTERACTION FROM QUBIT-QUBIT

COUPLING

We consider a quantum system of N identical qubits
coupled to each other, where the system Hamiltonian is
of the following form,

H =
∑

i

~ǫ

2
σi
z +

∑

i

~∆

2
σi
x +

∑

i<j

~Ωσi
xσ

j
x (1)

where ǫ and ∆ are the parameters describing the energy
of each qubit, σi

x and σi
z describe Pauli matrices for i-th

qubit and Ω is the coupling strength between qubits i
and j.
Denote two states |+j〉 and |−j〉 of the j-th qubit,

where σj
x |+j〉 = |+j〉 and σj

x |−j〉 = − |−j〉. Define
|N,n〉 to be the Dicke state with n qubits in the ex-
cited state |+j〉 and N − n qubits in the ground state
|−j〉. One can easily show that |N,n〉 is an eigen-

state of
∑

i
~∆
2 σ

i
x +

∑

i<j ~Ωσ
i
xσ

j
x with energy En =

2n−N
2 ~∆ − ~Ω(N − 4n2 + 4Nn − N2). The energy gap

dn = En+1 −En between two adjacent energy levels can
be written as dn = ~∆ − 2~Ω(N − 2n − 1). By tuning
the parameters ∆ and Ω, one can adjust the values of
dn. We are interested in the regime where exactly one
of the energy gaps is zero and the remaining gaps are
non-zero, so that dn0

= 0 for some n0 and dn 6= 0 for all
n 6= n0. In this case, the effective coupling strengths of
the transitions |N,n〉 ⇆ |N,n + 1〉 for all n is given by

geffn = ~ǫ
√

(N − n)(n+ 1)/2 and can be tuned via the
parameter ǫ. When the energy gaps dn are much larger
than geffn for all n 6= n0, we say that the large detuning
constraint is satisfied, and the system’s evolution can be
described by the following selective resonant interaction,

Heff = geffn0

(

|N,n0〉〈N,n0 + 1|+ |N,n0 + 1〉〈N,n0|
)

, (2)

because, in this case, the other transitions corresponding
to n 6= n0 are dispersively coupled. This is the well-
known selective resonant interaction.
We numerically calculate the population of |N,n〉 by

taking N = 9 and n = 0, · · · , 9 as examples when the sys-
tem evolves from different initial states. The system pa-
rameters are selected in order to fulfil the large detuning
constraint. Specifically, Ω/2π = 500MHz and ǫ = 0.03Ω,
and ∆ is changing according to the initial states. As il-
lustrated in Fig. 1, there are almost perfect oscillations
between the neighboring states |9, n〉 and |9, n+ 1〉, and
nearly zero populations in the rest of the states.
Since our scheme requires the adjustment of ∆, one

practical problem is how this adjustment may change the
actual dynamics in the system via affecting the system’s
energy levels. The variation of energy levels is usually
described by Landau-Zener transitions in which the vari-
ation is expressed as a linear function of time [22]. Here
we suppose ǫ = ǫ0(1 − 2t/T ) where T is evolution time.
Since our scheme is based on the selective resonant in-
teraction, the required evolution time is proportional to
the inverse of geffn and depends on ǫ. In our prior analy-
sis, the energy levels are constant with respect to time,
and hence time-variations in the energy levels may ad-
versely affect our scheme. To resolve this issue, we ap-
proximately make the energy levels time-independent by
periodically adjusting ǫ0. To see how this works, first
recall that the time-dependent energy levels arise from
using a fixed ǫ0. Now we divide the entire required time
interval to many subintervals, and vary ǫ0 accordingly.
The time-dependent energy levels are described by a lin-
ear function of time, and can be approximated with a
piecewise continuous constant function, which is constant
on every time subinterval. By suitably adjusting ǫ0 at
the beginning of each time subinterval, the resultant en-
ergy level can approximate that of a continuous constant
function for the entire time period. We provide numerical
results when the system evolves initially from |9, 0〉 for a
time period of [0, π/(2geff0 )] by utilizing 10 subintervals
in Table I. We use the constant function to determine
evolution time and let the system evolve according to the
time-dependent Hamiltonian on every time subinterval.
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FIG. 1: Population of |9, n〉 (where n = 0, · · · , 9) with initial states prepared in (a) |9, 0〉, (b) |9, 1〉, (c) |9, 2〉, (d) |9, 3〉, (e)
|9, 4〉, (f) |9, 5〉, (g) |9, 6〉, (h) |9, 7〉, and (i) |9, 8〉, respectively by appropriately selecting parameters. Time t’s are dependent
on geffn where n = 0 for (a), n = 1 for (b), n = 2 for (c), n = 3 for (d), n = 4 for (e), n = 5 for (f), n = 6 for (g), n = 7 for (h),
and n = 8 for (i).

The numerical results show that the change of energy lev-
els only slightly affects our scheme by using the approx-
imation. It is reasonable to expect further improvement
if the number of subintervals is increased.

III. INITIALIZING A NINE-QUBIT

PERMUTATION INVARIANT QUANTUM CODE

With controllable parameters to implement the selec-
tive resonant interaction, a permutation-invariant QECC
can be generated. We now elaborate on the initialization
of the QECC which is a nine-qubit state. Let the system
evolve from |9, 0〉 according the following steps by fixing
the parameters Ω/2π = 500MHz and ǫ = 0.03Ω while
adjusting ∆.

Step 1. Initially, we prepare the system in the state |9, 0〉
and apply the Hamiltonian with ∆ = 16Ω to en-
sure selective resonance between the states |9, 0〉
and |9, 1〉. As shown in Fig. 1 (a) we obtain

nearly perfect oscillations between the states |9, 0〉
and |9, 1〉, and zero populations in the other states.
At t1 = π

3 /g
eff
0 = 2.33 × 10−7s, we obtain the

state |ψ1〉 = 1
2 |9, 0〉 − i

√
3
2 |9, 1〉 with a fidelity of

F1 = 0.9998.

Step 2. We set ∆ = 12Ω to ensure almost ideal selective
resonance between the states |9, 1〉 and |9, 2〉 as il-
lustrated in Fig. 1 (b). After t2 = π

2 /g
eff
1 = 2.62×

10−7s, we obtain the state |ψ2〉 = 1
2e

−iφ0,2 |9, 0〉 −
√
3
2 e

−iφ2 |9, 2〉 with a fidelity of F2 = 0.9992F1,
where φ0,2 = −18Ωt2 and φ2 = −22Ωt2.

Step 3. We next set ∆ = 8Ω to ensure selective reso-
nance almost exclusively between the states |9, 2〉
and |9, 3〉 as indicated in Fig. 1 (c). After t3 =
π
2 /g

eff
2 = 2.29 × 10−7s, we obtain the state |ψ3〉 =

1
2e

−iφ0,3 |9, 0〉+i
√
3
2 e

−iφ3 |9, 3〉 with a fidelity of F3 =
0.9994F2, where φ0,3 = φ0,2 and φ3 = φ2 − 12Ωt3.

Step 4. We subsequently set ∆ = 4Ω to ensure selective
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Population Without NA errors With NA errors

|9, 0〉 0.0001 0.0001

|9, 1〉 0.9997 0.9988

|9, 2〉 0.0002 0.0010

|9, 3〉 ≈ 0 ≈ 0

|9, 4〉 ≈ 0 ≈ 0

|9, 5〉 ≈ 0 ≈ 0

|9, 6〉 ≈ 0 ≈ 0

|9, 7〉 ≈ 0 ≈ 0

|9, 8〉 ≈ 0 ≈ 0

|9, 9〉 ≈ 0 ≈ 0

TABLE I: The effect of non-adiabatic (NA) errors on the
scheme when the system evolves initially from |9, 0〉 by ap-
proximating the varying energy levels to constant ones.

resonance almost strictly between the states |9, 3〉
and |9, 4〉 as demonstrated in Fig. 1 (d). After t4 =
π
2 /g

eff
3 = 2.14 × 10−7s, we obtain the state |ψ4〉 =

1
2e

−iφ0,4 |9, 0〉+
√
3
2 e

−iφ4 |9, 4〉 with a fidelity of F4 =
0.9994F3, where φ0,4 = φ0,3+18Ωt4 and φ4 = φ3−
6Ωt4.

Step 5. We set ∆ = 0 to ensure selective resonance between
the states |9, 4〉 and |9, 5〉 as exhibited in Fig. 1 (e).
After t5 = π

2 /g
eff
4 = 2.09 × 10−7s, we obtain the

state |ψ5〉 = 1
2e

−iφ0,5 |9, 0〉 − i
√
3
2 e

−iφ5 |9, 5〉 with a
fidelity of F5 = 0.9994F4, where φ0,5 = φ0,4+36Ωt5
and φ5 = φ4 − 4Ωt5.

Step 6. We finally set ∆ = −4Ω to ensure the approxi-
mately ideal selective resonance between the states
|9, 5〉 and |9, 6〉 as presented in Fig. 1 (f). After
t6 = π

2 /g
eff
5 = 2.14 × 10−7s, we obtain the state

|ψ6〉 =
1
2e

−iφ0,6 |9, 0〉 −
√
3
2 e

−iφ6 |9, 6〉 with a fidelity
of F6 = 0.9994F5, where φ0,6 = φ0,5 + 54Ωt6 and
φ6 = φ5 − 6Ωt6.

After the above six-step evolution which takes a time
of T =

∑6
i=1 ti = 1.36 × 10−6s, we obtain the state

|ψ6〉 = 1
2e

−iφ0,6 |9, 0〉 −
√
3
2 e

−iφ6 |9, 6〉 with fidelity F6 ≈
0.997. Note that |ψ6〉 lies within the code-space of a
permutation-invariant code that corrects a single-qubit
error, and corresponds to a local unitary transformation
of the Ruskai code [16]. In particular, any subspace
C spanned by the logical states |0L〉 = 1

2e
−iθ1 |9, 0〉 −

√
3
2 e

−iθ2 |9, 6〉 and |1L〉 =
1
2e

−iθ3 |9, 9〉 −
√
3
2 e

−iθ4 |9, 3〉 for
any real numbers θ1, θ2, θ3 and θ4 necessarily satisfies the
quantum error correction criterion for a single-qubit er-
ror. To see this, we compare the code C with the Ruskai

code that has logical codewords |R0〉 =
1
2 |9, 0〉+

√
3
2 |9, 6〉

and |R1〉 = 1
2 |9, 9〉 +

√
3
2 |9, 3〉 [16, 17]. To show that C

can correct a single-qubit error, it suffices to show that
the Knill-Laflamme quantum error correction criterion

[1] which holds for the Ruskai code also holds for C. This
in turn is true because the matrix elements 〈iL|P |jL〉 are
equivalent to 〈Ri|P |Rj〉 for all multi-qubit Pauli matrices
that affect up to two qubits. Using the selective oscilla-
tion between two neighboring Dicke states as shown in
Fig. 2, it is possible to achieve superpositions of Dicke
states with amplitudes of arbitrary magnitudes via a
multi-step system evolution. Therefore, a simple vari-
ation of the evolution times and the values of ∆ used
in our scheme can produce any state in the code-space
C of the form c0|0L〉 + c1|1L〉 for a priori known am-
plitudes c0 and c1. For arbitrary unknown amplitudes
c0 and c1, it is also possible to create any state in the
code-space C by resorting to a sequence of CNOT gates.
Suppose initially we have state c0|−〉+ c1|+〉. By adding
in eight ancillary qubits prepared in state |−〉, we have
c0|−−−−−−−−−〉+c1|+−−−−−−−−〉. Applying a
sequence of CNOT gates yields the state c0|9, 0〉+c1|9, 9〉.
The CNOT gates can be implemented based on Hamil-
tonian (1) as shown in Refs. [10, 23]. Hence, by apply-
ing the above sequence of selective oscillations between
neighboring Dicke states, we can obtain c0|0L〉 + c1|1L〉,
which is an arbitrary encoded state in the nine-qubit
QECC. Thus, we can in principle encode any qubit hold-
ing our quantum data into a nine-qubit permutation-
invariant code that corrects one error using the selec-
tive resonance interaction. Moreover, since our method-
ology can generate generic superpositions of Dicke states,
we can also initialize any permutation-invariant quan-
tum state in the code-space of any permutation-invariant
quantum error correction code, where N can be in gen-
eral larger than nine [17–20]. Although the minimum
number of qubits required for a permutation-invariant
code to correct one error is seven [21], we choose to
use a nine-qubit permutation-invariant quantum code
code to illustrate our methodology. This is because the
nine-qubit permutation-invariant quantum code exhibits
a robustness against phases appended onto the Dicke
states of the code’s logical codewords that the seven-
qubit permutation-invariant quantum code need not
have. In particular, when the phases for the seven-qubit
permutation-invariant quantum code are perturbed, the
resultant code may no longer be able to correct an arbi-
trary single-qubit error.

The implementation of our scheme can be possibly
achieved with superconducting charge qubits which have
been demonstrated to describe quantum spin models by
resorting to a mutual inductance, a capacitance, or a LC
resonator [24–28]. Given a system of identical charge
qubits coupled by a common superconducting induc-
tance, each charge qubit is a Cooper-pair box in which
a superconducting island is weakly coupled by two sym-
metric dc superconducting quantum interference devices
(SQUIDs) and biased by an applied voltage through a
gate capacitance, and each SQUID is pierced by a mag-
netic flux. Therefore each qubit is controllable by the
magnetic flux and the voltage applied via the gate ca-
pacitance. The system Hamiltonian is of the following
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Fidelity No noise γz = 10−3Ω γz = 2× 10−3Ω

F1 0.9992 0.859 0.75

F2 0.9972F1 0.753F1 0.597F1

F3 0.997F2 0.708F2 0.534F2

F4 0.9972F3 0.693F3 0.514F3

F5 0.997F4 0.689F4 0.508F4

F6 0.9972F5 0.693F5 0.514F5

TABLE II: The effect of qubit dephasing on the performance
of the generation of the 9-qubit QECC.

Fidelity No noise γ− = 10−3Ω γ− = 2× 10−3Ω

F1 0.9992 0.974 0.949

F2 0.9972F1 0.933F1 0.874F1

F3 0.997F2 0.913F2 0.837F2

F4 0.9972F3 0.899F3 0.812F3

F5 0.997F4 0.884F4 0.787F4

F6 0.9972F5 0.869F5 0.762F5

TABLE III: The effect of qubit relaxation on the performance
of the generation of the 9-qubit QECC.

form [26],

H =
∑

i

(~ǫσi
z − ~∆σi

x) +
∑

i,j

~Ωijσ
i
xσ

j
x. (3)

The qubit parameters and qubit-qubit coupling strength
in the Hamiltonian are adjustable. The Hamiltonian is
of a similar form to Hamiltonian (1) with controllable
parameters, and hence our scheme to initialize the QECC
may be implementable in the system.

IV. THE EFFECT OF DECOHERENCE

In practice, decoherence due to the coupling of the sys-
tem to the environment is inevitable. We discuss the per-
formance of the quantum operations based on selective
resonant interaction in the presence of noise. The evo-
lution of the system is governed by the following master
equation in the presence of noise,

dρ

dt
= −i[H, ρ] +

∑

k=z,−
γk

(

LkρL
†
k −

1

2
L†
kLkρ−

1

2
ρL†

kLk

)

(4)

where γz,− are the decay rates of qubit dephasing and re-

laxation respectively, and Lz =
∑9

j=1 σ
j
z , L− =

∑9
j=1 σ

j
−

where σj
− = 1

2 (σ
j
x − iσj

y).
Given the above master equation describing the deco-

herence process, we can quantify the fidelities Fi (i =
1, · · · , 6) of the generated states |ψi〉 using the selective

resonance transition in the presence of noise. The nu-
merical results are listed in Tables II and III for differ-
ent decay rates. The physical parameters are chosen as
Ω/2π = 5× 108Hz, ǫ = 0.06Ω, and ∆ is changing step by
step. We study how the dephasing and relaxation noise
affect the performance of our scheme individually. We
choose γ− = 0 but vary γz firstly, and numerical results
are shown in Table II. Next we select γz = 0 but vary γ−,
see Table III for details. It is illustrated by the numeri-
cal results that the gate fidelities are more robust against
qubit relaxation than qubit dephasing. When the decay
rates are increased, the gate fidelities are largely affected
by the noise as compared with the fidelities in the ab-
sence of decoherence. This suggests that our scheme is
vulnerable to large decay rates, which is expected from
a scheme based on selective resonant interaction. The
presence of the noise may affect the large detuning con-
straint and thereby result in imperfect selective resonant
interaction.

V. THE SELECTIVE RESONANT

INTERACTION FROM QUBIT-RESONATOR

COUPLING

Our scheme can also be implemented using a system
with N qubits coupled to a quantum harmonic oscillator
with resonance frequency ωr. The system’s Hamiltonian
is

H ′ =

N
∑

j=1

~ǫ

2
σj
z +

~∆

2
σj
x + ~ωra

†a+ ~g(a† + a)σj
x, (5)

where a and a† denote the bosonic ladder operators
for the resonator, ǫ and ∆ are the parameters de-
scribing the energy of each qubit, and g denotes the
coupling strength between each qubit and the res-
onator. For simplicity, we take every qubit to be iden-
tical. Upon conjugating H ′ by a unitary transformation

U = exp
(

− g
ωr

∑N
j=1

[

(a† − a)σj
x

]

)

, we obtain the trans-

formed Hamiltonian H = UH ′U † with decomposition
H = H0 + HI . Here H0 and HI denote Hamiltonians
with and without qubit-resonator couplings respectively,
where

H0 = ~ωra
†a+

N
∑

j=1

~∆

2
σj
x −

N
∑

j=1

j−1
∑

i=1

2~g2

ωr
σi
xσ

j
x,

HI =
~ǫ

2

N
∑

j=1

(

D(
2g

ωr
)
σj
z − iσj

y

2
+D(−

2g

ωr
)
σj
z + iσj

y

2

)

,

(6)

and D(α) = eα(a
†−a) denotes the displacement operator.

Denoting |∅〉 as the vacuum state of the resonator, one
can easily show that |N,n〉|∅〉 is an eigenstate of H0 with

energy En = 2n−N
2 ~∆ + ~g2

ωr
(N − 4n2 + 4Nn − N2).
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FIG. 2: Population of states |9, n〉|∅〉 (where n = 0, · · · , 9) with initial states prepared in (a) |9, 0〉|∅〉, (b) |9, 1〉|∅〉, (c) |9, 2〉|∅〉,
(d) |9, 3〉|∅〉, (e) |9, 4〉|∅〉, (f) |9, 5〉|∅〉, (g) |9, 6〉|∅〉, (h) |9, 7〉|∅〉, and (i) |9, 8〉|∅〉, respectively by properly choosing parameters.
Time t’s are dependent on gn,eff with n = 0 for (a), n = 1 for (b), n = 2 for (c), n = 3 for (d), n = 4 for (e), n = 5 for (f),
n = 6 for (g), n = 7 for (h), and n = 8 for (i).

The energy gap Dn = En+1 − En between two neigh-
bouring energy levels can be written as Dn = ~∆ +
4~g2

ωr
(N − 2n − 1). We consider case that Dn0

= 0
for some n0 and Dn 6= 0 for all n 6= n0, and in
this case the effective coupling strengths of the transi-
tions |N,n〉|∅〉 ⇆ |N,n + 1〉|∅〉 is of the following form

gn,eff = ~ǫ
√

(N − n)(n+ 1)e−2g2/ω2

r/2. Given the large
detuning constraint that the energy gaps Dn are much
larger than gn,eff for all n 6= n0, the system’s evolution is
nothing but the selective resonant interaction,

Heff = gn0,eff

(

|N,n0〉〈N,n0 + 1| ⊗ |∅〉〈∅|

+ |N,n0 + 1〉〈N,n0| ⊗ |∅〉〈∅|
)

, (7)

since the other transitions corresponding to n 6= n0 are
dispersive. In the following, we neglect the resonator
vacuum state since it can be decoupled from the qubit
state.
With controllable parameters to implement the selec-

tive resonant interaction, a permutation-invariant QECC
code may be generated in a broad coupling regime of

light-matter interaction, including the weak, strong, and
ultrastrong coupling regimes. In the following, we numer-
ically describe the performance of the selective resonant
interaction in the ultrastrong coupling regime. Let the
system evolve from different initial states by fixing the
parameters g = 1/8ωr, ǫ = 0.001ωr and ωr = 2π×1 GHz
while adjusting ∆. The numerical results are summarized
in Fig. 2. It is clearly demonstrated that we have ob-
tained nearly perfect oscillations between the neighbour-
ing states, and therefore the initialization of the QECC
can be achieved with excellent fidelities in the system.
We can obtain |ψ

′

i〉 with i = 1, · · · , 6 (which are different
from |ψi〉 in phases) numerically, and eventually obtain

|ψ
′

6〉 with a fidelity of F
′

6 ≈ 0.996 and total evolution time

T
′

= 6.7× 10−7s.

The Hamiltonian in Eq.(5) with adjustable ǫ and ∆
can be naturally implemented in the circuit QED sys-
tems with charge and flux qubits. The flux qubits, which
have been demonstrated to be capable of reaching the ul-
trastrong and deep strong coupling regimes [29–31], may
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require less gate operation time. However, it is hard to
implement our QECC scheme since the g and ∆ can-
not be individually adjusted to satisfy the large detuning
constraint [32, 33]. Nevertheless, it is possible to imple-
ment our QECC scheme in the circuit QED systems with
superconducting charge qubits working in the strong cou-
pling regime [33–35].
We consider the case with 9 charge qubits placed at the

antinodes of the magnetic field induced by the oscillating
supercurrent in the transmission line resonator (TLR),
as shown in Fig. 3. Each charge qubit comprises of a dc
superconducting quantum interference device (SQUID)
formed by a superconducting island connected to two
Josephson junctions. In this situation, the external mag-
netic flux threading the j-th dc-SQUID Φj

e is the sum of

the classically-applied magnetic flux Φj
e0 and the quan-

tized magnetic flux induced by the TLR Φj
r [33–35].

By expanding the Josephson energy to linear order in
πΦj

r/Φ0, where Φ0 = h/2e is the magnetic-flux quantum,
we attain the linear interaction between the charge qubits
and the quantized field of the TLR. The total Hamilto-
nian is then [33, 35]

H =
N
∑

j=1

Ej
C

4
(2nj

g − 1)σj
z − Ej

J cos

(

π
Φj

e0

Φ0

)

σj
x

+ ~ωra
†a+

N
∑

j=1

~gj(a† + a)σj
x, (8)

where Ej
C (Ej

J ) is the Coulomb (Josephson) energy of the
jth qubit, Φj

e is the external magnetic flux, nj
g = Cj

gV
j
g /2

is the bias charge number which can be controlled by
the gate voltage V j

g , and C
j
g is the gate capacitor. The

Pauli matrices of the j-th qubit σj
z =

∣

∣1j
〉 〈

1j
∣

∣−
∣

∣0j
〉 〈

0j
∣

∣

and σj
x =

∣

∣0j
〉 〈

1j
∣

∣+
∣

∣1j
〉 〈

0j
∣

∣ are defined in terms of the

charge eigenstates
∣

∣1j
〉

and
∣

∣0j
〉

, which denote 0 and 1
excess Cooper pair on the corresponding island, respec-
tively. The coupling parameter is [33, 35]

gj = π
Sj
0EJ

dΦ0

√

lωr

~L0
sin

(

π
Φj

e0

Φ0

)

, (9)

where Sj
0 is the enclosed area of the dc-SQUID, l is the

inductance per unit length, L0 is the geometric length
of the TLR, d is the distance between the qubit and the
transmission line. From Eq. (8), the free charge qubit
can be controlled by both the gate voltage and the exter-
nal magnetic fluxes. The coupling parameter gj is also
adjustable through the applied magnetic flux. For sim-
plicity and without loss of generality, we assume all the
charge qubits to be identical so that Cj

g = Cg, E
j
J = EJ ,

Ej
C = EC . We choose the following experimentally acces-

sible parameters [34–36]: S0/d ≈ 100 µm, EJ ≈ 110 µeV,
L0 ≈ 1.5 cm, l ≈ 2×10−6 Hm−1, ωr ≈ 2π×1 GHz, which
results in a maximized normalized coupling strength of
gmax/ωr = gjmax/ωr ≈ 0.0382.

L0

d

x=0 x

FIG. 3: Schematic of circuit QED design to generate the
permutation-invariant QECC code. An array of charge qubits
array are placed inside a transmission line resonator.

Since Eq. (8) has the same form as Hamiltonian
(5) with ǫ = EC

2 (2ng − 1), ∆ = −2EJ cos θ, and g =

gmax sin θ where θ/π =
Φj

e0

Φ0
, we can use the six-step

evolution mentioned earlier to create the QECC in this
physical system with strong qubit-resonator couplings by
choosing ǫ = 0.0004ωr, ωr = 2π × 1 GHz and varying θ.
We find |ψ

′′

i 〉 with i = 1, · · · , 6 (which are different from

|ψi〉 and |ψ
′

i〉 in phases) with the corresponding θ, and

thus |ψ
′′

6 〉 with a fidelity of F
′′

6 = 0.92 and total evolu-

tion time is T
′′

= 1.64× 10−6s. With the strong qubit-
resonator coupling, the required evolution time is slightly
increased and fidelity is reduced as expected. According
to our scheme, further increase in fidelity and decrease in
operation time is possible if ∆ and ǫ were to be tunable
with stronger qubit-resonator coupling. These improve-
ments that require achievable stronger qubit-resonator
coupling and adjustable parameters in Hamiltonian await
further theoretical and experimental advances.

VI. CONCLUSION

To summarize, we have presented a scheme to create a
nine-qubit permutation-invariant QECC in two physical
systems by resorting to the selective resonant interac-
tion. Firstly we considered a system of qubits coupled to
each other. It is possible to create the nine-qubit QECC
in nanoseconds with very high fidelity via six-step evo-
lution of the system. With the aid of single/two-qubit
operations, any state in the code-space C with unknown
amplitudes can be generated based on the selective res-
onant interaction. Our results pave a promising way to-
ward achieving fast generation of the multi-qubit QECC
and thus reduce the errors incurred at the level of creat-
ing QECC. The effect of decoherence on our scheme has
been explored and we found that our scheme is largely
affected when the decay rate of noise is increasing. To
ensure the excellent performance of our scheme, small
decoherences are preferred.
The selective resonant interaction can also be derived

in a system of qubits coupled to a quantum resonator.
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Upon a unitary transformation, the transformed system
Hamiltonian is just the selective resonant interaction. In
our scheme the large detuning constraint of the selective
resonant interaction is crucial and the constraint can be
fulfilled with controllable system parameters. With ad-
justable parameters to implement the selective resonant
interaction, the nine-qubit QECC may be initialized in
a broad coupling regime of light-matter interaction. In
the ultrastrong coupling regime, the evolution time can
be further reduced and fidelity can be improved as ex-
pected. These improvements await future advances in
both theory and experiment.
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