
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Repeater-enhanced distributed quantum sensing based on
continuous-variable multipartite entanglement

Yi Xia, Quntao Zhuang, William Clark, and Zheshen Zhang
Phys. Rev. A 99, 012328 — Published 17 January 2019

DOI: 10.1103/PhysRevA.99.012328

http://dx.doi.org/10.1103/PhysRevA.99.012328


Repeater-enhanced distributed quantum sensing based on continuous-variable
multipartite entanglement

Yi Xia1,∗ Quntao Zhuang3, William Clark4, and Zheshen Zhang2,1

1. College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
2. Department of Materials Science and Engineering,
University of Arizona, Tucson, Arizona 85721, USA

3. Department of Physics, University of California, Berkeley, California 94720, USA
4. General Dynamics Mission Systems, 8220 East Roosevelt Street, Scottsdale, AZ 85257

(Dated: December 10, 2018)

Entanglement is a unique resource for quantum-enhanced applications. When employed in sens-
ing, shared entanglement between distributed quantum sensors enables a substantial gain in the
measurement sensitivity in estimating global parameters of the quantum sensor network. Loss in-
curred in the distribution of entanglement, however, quickly dissipates the measurement-sensitivity
advantage enjoyed by the entangled quantum sensors over sensors supplied with local quantum re-
sources. Here, we present a viable approach to overcome the entanglement-distribution loss and
show that the measurement sensitivity enabled by entangled quantum sensors beat that afforded by
the optimum local resource. Our approach relies on noiseless linear amplifiers (NLAs) to serve as
quantum repeaters. We show that unlike the outstanding challenge of building quantum repeaters
to suppress the repeaterless bound for quantum key distribution, NLA-based quantum repeaters for
distributed quantum sensing are realizable by available technology. As such, distributed quantum
sensing would become the first application instance that benefits from quantum repeaters.

I. INTRODUCTION

Quantum information science gives rise to quantum
cryptography [1], quantum metrology [2, 3], and quan-
tum computing [4–6]. These new paradigms offer func-
tionalities beyond the reach of classical physics. For ex-
ample, Shor’s algorithm implemented on a quantum com-
puter is able to exponentially reduce the computational
processing of the best known classical algorithm for the
prime factorization problem [7]. Quantum computing
also allows for efficient simulation of quantum systems,
opening a revolutionary route for the discovery of new
materials [8]. Based on the quantum no-cloning theorem
and the Heisenberg uncertainty principle, quantum key
distribution (QKD) enables unconditionally secure com-
munication between distant parties. In a recent milestone
experiment, QKD between two continents mediated by
a low-earth-orbit satellite was achieved [9]. QKD pro-
tocols capable of gigabit-per-second secret-key rates at
metropolitan-area distances were also proposed [11] and
demonstrated [10]. However, the fundamental rate-loss
trade-off [12, 13] hinders QKD from obtaining gigabit-
per-second secret-key rates at a global scale. Using quan-
tum repeaters can mitigate the rate-loss trade-off, but
building a quantum repeater that beats the fundamental
QKD secret-key rates bound on a lossy channel, known
as the Pirandola-Laurenza-Ottaviani-Banchi bound, has
been a formidable task. For example, Ref. [14] shows that
an all-photonic quantum repeater would require millions
of ideal single-photon sources, something well beyond the
reach of state-of-the-art technology.
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Apart from quantum computing and quantum com-
munication, the principles of quantum information sci-
ence also promise measurement sensitivity beyond the
standard quantum limit [3]. Such an appeal has spurred
considerable research effort on building quantum sensors
that harness the quantum mechanical properties of light
to enhance the measurement sensitivity while minimiz-
ing the illuminating power. Such a feature is critical
for probing delicate objects such as biological samples
that are susceptible to photobleaching or damage. A re-
markable example is the application of the nonclassical
single-mode squeezed vacuum light in the Laser Inter-
ferometer Gravitational-Wave Observatory to beat the
standard quantum limit, i.e., the shot-noise level [15, 16].
Single-mode squeezed vacuum light, however, only con-
stitutes a subset of the class of nonclassical states of
light. In this regard, multimode nonclassical states, in
particular entanglement, are valuable resource for a va-
riety of quantum-enhanced sensing applications. Specifi-
cally, entanglement was employed in quantum-enhanced
microscopy [17], the estimation of an optical phase [18],
positioning systems and clock synchronization [19], and
magnetic field measurements [20]. More recently, broad-
band entangled photons were utilized to increase the
signal-to-noise ratio in interrogating the presence of a
target embedded in a highly lossy and noisy environment
that completely destroys the initial entanglement [21].
Such a result indicates that quantum-enhanced sensing
can be applied in practical scenarios.

To date, most entanglement-enhanced sensing exper-
iments have been dedicated to leveraging bipartite en-
tanglement to increase the measurement sensitivity at a
single sensor node. To fully unleash the power of en-
tanglement, recent theoretical studies explored the use
of entangled states in a distributed quantum sensing
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(DQS) setting [22–24]. Refs. [22] and [23] show that
discrete-variable multipartite entangled (DVMP) states
can substantially enhance the sensitivity of measuring
the weighted sum of an unknown parameter. DVMP en-
tangled states, however, are highly susceptible to loss,
casting doubts on their merits in practical situations.
In contrast, the quality of continuous-variable multipar-
tite (CVMP) entanglement degrades graciously in the
presence of loss. Indeed, Ref. [24] proved that the
measurement-sensitivity advantage enabled by CVMP
entanglement over nonclassical product states survives
inefficient detectors, indicating that CVMP entangle-
ment could empower robust quantum sensor networks
for a wide range of local applications such as tempera-
ture [25] and angular momentum [26] measurements in
cold-atom systems, probing pressure and stress induced
refractive-index shifts, and noninvasive biomedical imag-
ing [27]. Nevertheless, for nonlocal applications such as
long-baseline telescopes [28] and global-scale clock syn-
chronization [29], loss arising from the distribution of
CVMP entanglement to spatially separated sensor nodes
quickly diminishes the measurement-sensitivity advan-
tage over product-state DQS, because product states can
be prepared locally without suffering the entanglement-
distribution loss.

In this paper, we introduce a simple form of quan-
tum repeater, the noiseless linear amplifier (NLA), into
the nonlocal DQS regime to overcome the entanglement-
distribution loss. We show that spatially separated quan-
tum sensors sharing CVMP entanglement, in conjunction
with NLAs after entanglement distribution, are able to
beat the measurement sensitivity allowed by DQS en-
hanced by the optimum product states when both sce-
narios employ the same amount of probe power, but
no such measurement-sensitivity advantage can be at-
tained without NLAs. As such, NLAs used in CVMP-
entanglement-based DQS effectively serve as quantum re-
peaters to mitigate entanglement-distribution loss. The
proposed scheme would thus lead to the demonstration
of the first quantum-enhanced sensing application that
benefits from quantum repeaters.

The paper is organized as follows. In Sec. II, we
overview the building blocks for the proposed DQS
scheme. We first introduce CVMP-entanglement-based
DQS and highlight its measurement-sensitivity advan-
tage over DQS using the optimum product states. We
then briefly describe the principle of the NLA. The
main result of NLA-enhanced measurement-sensitivity
for CVMP-entanglement-based DQS will be presented in
Sec. III. The intuitions behind the main result will be
discussed in Sec. IV. Conclusion is presented in Sec. V.

II. TECHNICAL BACKGROUND

A. Distributed Quantum Sensing based on CVMP
Entanglement

A rule of thumb for sensing is that multiple measure-
ments on the same parameter improve the measurement
sensitivity. By averaging the measurement outcomes,
the root mean square (rms) estimation error, defined as
the square root of the measurement sensitivity, scales as
1/
√
M where M is the number of measurements. In a

quantum sensor network, the rms error in estimating a
global parameter by M quantum sensors also scales as
1/
√
M if only product probe states are utilized. The

1/
√
M rms estimation error scaling is known as the stan-

dard quantum limit. Shared entanglement by different
quantum sensors can be harnessed to beat the standard
quantum limit. Recent theory works [22, 23] show that
discrete-variable multipartite (DVMP) entangled states

give rise to a 1/
√
M improvement in the rms error in es-

timating a global parameter, e.g., the weighted sum of the
magnetic field strength at different sensor nodes. DVMP
entangled states, such as the GHZ-like states employed in
Ref. [22] and the two-Fock states discussed in Ref. [23],
have only been generated via post-selection, leading to
a success probability that is exponentially small in M .
Worse, DVMP entangled states are highly vulnerable to
loss; the elimination of a few photons would completely
destroy the entanglement and diminish the advantage
over using product states. As such, the implementation
of DVMP entanglement-based DQS is formidable in prac-
tical situations.

CVMP entangled states, by contrast, can be generated
deterministically via Gaussian operations [30]. More-
over, the quality of CVMP entangled states degrades
graciously in the presence of loss. Such nice proper-
ties of CVMP entangled states open a viable route to-
ward DQS with practical constraints. Ref. [24] analyzed
CVMP-entanglement-based DQS for the measurement of
field displacement at the sensor nodes, as illustrated in
Fig. 1. A squeezed vacuum state with mean photon num-
ber NS mixes with M − 1 vacuum modes on a lossless
M ×M beam splitter (BS) network. The output of the
BS network is a CVMP entangled state, whose each mode
serves as a sensor node to probe a uniform field displace-
ment represented by the operator D̂(α). The displaced
modes are subsequently measured by homodyne detec-
tors each with sub-unity quantum efficiency modeled by
a η-transmissivity channel. The measurement sensitiv-
ity of CVMP-entanglement-based DQS is compared with
that of the product-state DQS scheme in which each sen-
sor node is supplied with a single-mode squeezed vac-
uum state with mean photon number NS/M . The over-
all probe power for the CVMP-entanglement-based and
the product-squeezed vacuum-state schemes are identi-
cal. Ref. [24] shows that with ideal homodyne detec-
tors, i.e., η = 1, and per-mode mean photon num-
ber nS = NS/M � 1, the rms estimation error for



3

FIG. 1: Schematic of DQS based on CVMP entanglement. A
squeezed vacuum state is mixed with M − 1 vacuum modes
on a balanced beam-splitter network to create CVMP entan-
glement as the probe state employed in DQS. Each mode of
the entangled state is sent to a remote sensor node via a η-
transmissivity lossy channel. The physical parameter under
estimation is a field displacement imparted by the operator
D̂(α). Homodyne measurements are performed at each sensor
node, and their outcomes are averaged to obtain an estimate
for α.

the CVMP-entanglement-based DQS scheme scales as
δαEη=1 ' 1/(4M

√
nS), whereas the rms estimation er-

ror for product-squeezed vacuum-state quantum sensing
scales as δαPη=1 ' 1/(4

√
MnS). Evidently, the rms esti-

mation error for CVMP-entanglement-based DQS beats
the standard quantum limit.

Ref. [24] further proved the optimality of the CVMP
entangled state for DQS when the detection is re-
stricted to homodyne measurements and demonstrated
its measurement-sensitivity advantage over product-
squeezed vacuum-state DQS even in the presence of de-
tector inefficiency. Note that we will present in Appendix
A a general proof for the optimality of product-squeezed
vacuum-state DQS without assuming any specific mea-
surement scheme. Ref. [24] compared the measure-
ment sensitivities of CVMP-entanglement-based DQS
and product-CV-state DQS when the two scenarios are
subject to equal loss. However, since squeezed vacuum
states can be generated locally at each sensor node,
they do not need to be distributed over a lossy chan-
nel. Thus, the measurement-sensitivity advantage en-
joyed by CVMP-entanglement-based DQS over product-
squeezed vacuum-state DQS will diminish quickly in the
presence of entanglement-distribution loss. We will show
in Sec. III that NLAs are able to overcome entanglement-
distribution loss and regain the measurement-sensitivity
advantage enabled by CVMP entanglement. Let us first
brief review the principle of the NLA.

B. Noiseless Linear Amplifier

The no-cloning theorem prevents a quantum state of
light from being deterministically amplified without in-

troducing noise. The no-cloning theorem, however, does
not preclude non-deterministic noiseless amplifiers that
only succeed with a sub-unity probability. Ralph and
Lund first proposed a structured design for the noiseless
linear amplifier (NLA) [31] and showed that an input co-
herent states |α〉 can be noiselessly amplified, with a suc-
cess probability p, to a target coherent state |gα〉, where
g is the amplitude gain of the NLA. Critically, a suc-
cess event of the NLA is heralded so that the amplified
quantum state can be utilized in subsequent quantum
information processing units. Fig. 2 (top) illustrates a
structured realization of the NLA. A BS network first di-
verts an input quantum state ρ̂in into N spatial modes
with � 1 mean photons per mode. The quantum states

ρ̂
(i)
in ’s are amplified by N quantum scissors [32] followed

by a second BS network that coherently recombines all
N modes to generate the amplified quantum state ρ̂out at
the NLA output. The success of the NLA is heralded only
when all quantum scissors have succeeded and the single-
photon detectors placed at the remaining N−1 NLA out-
put modes register no photon. The ith quantum scissor,
as plotted in Fig. 2 (bottom), consists of two BSs and two
single-photon detectors. It operates on an input quan-

tum state ρ̂
(i)
in and an auxiliary single-photon state |1〉.

BS1 is unbalanced with transmissivity γ, and BS2 is bal-
anced with a 50% transmissivity. Now, let us consider a
coherent-state input |α〉 to an NLA with N � 1 quantum
scissors. After dividing into N modes, a weak coherent-

state ρ̂
(i)
in = |αi〉 〈αi|, i.e., |αi〉 = |α/

√
N〉 ' |0〉 + αi |1〉

and |αi|2 � 1, is at the input to the ith quantum scissor.
A success event of the quantum scissor is heralded when
either single-photon detector registers a click. Two differ-
ent paths may lead to a success event: 1) the photon click

originates from ρ̂
(i)
in , and the single-photon auxiliary state

is reflected on BS1; and 2) ρ̂
(i)
in is its vacuum portion, and

the single-photon auxiliary state transmits through BS1

and results in the photon click. If the two event paths are
made completely indistinguishable by perfectly matching
the temporal, spectral, polarization, and spatial profiles

of ρ̂
(i)
in and the auxiliary state, their corresponding out-

put quantum states, conditioned on a success event, need
to be coherently added up to generate the output state

ρ̂
(i)
out. For the input state ρ̂

(i)
in = |αi〉 〈αi|, a success event

yields the weak coherent state |α′i〉 ' |0〉 + gαi |1〉 at

the quantum scissor output, where g =
√

(1− γ)/γ The
input coherent state is thus amplified by an amplitude
gain of g. After combining the output states of all N
successful quantum scissors on a second BS network, the
input quantum state is successfully amplified if none of
the single-photon detectors at the output ports of the
BS network registers a click. A success event of an ideal
NLA with infinite number of quantum scissors gives

lim
N→∞

(
1 + g

α

N
â†
)N
|0〉 ∝ |gα〉 . (1)

Hence, an input coherent state |α〉 is noiselessly amplified
to an output coherent state |gα〉.
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FIG. 2: The principle of noiseless linear amplification. (top)
The schematic of an NLA comprised of N quantum scissors
(QSs) [31]. The input quantum state ρ̂in is mixed with N − 1
vacuum states on a N ×N balanced beam splitter (BS) net-
work. Each output mode of the BS network is individually
amplified by a QS. All modes are then combined on a second
N × N BS network. The output quantum state ρ̂out of the
NLA is successfully generated if all quantum scissors succeed
and all other output ports of the second BS network regis-
ter no photons; (bottom) Configuration of the ith quantum
scissor [32]. BS1 is an unbalanced beam splitter and BS2 is
a balanced beam splitter. The quantum scissor successfully

amplifies the input state ρ̂
(i)
in if either single-photon detector

(SPD) registers a photon click.

Because NLAs are capable of amplifying quantum
states of light without introducing noise, they are po-
tential building blocks for continuous-variable quantum
repeaters [33]. As a primitive, employing NLAs to distill
the entanglement carried by a two-mode squeezed state
have been both theoretically [34] studied and experimen-
tally [35] verified. Entanglement distillation using NLAs
enables increasing the secret-key rate of QKD [36] and
the construction of continuous-variable quantum error

FIG. 3: A NLA with gain g placed after a pure loss bosonic
channel with transmissivity η is equivalent to an effective NLA
with gain geff placed before an effective pure loss bosonic chan-
nel with transmissivity ηeff . g and geff is related by Eq. 2; η
and ηeff is related by Eq. 3.

correction codes [37, 38]. More generally, Ref. [39] shows
that a Gaussian channel with transmissivity η followed
by an NLA with gain g is equivalent to placing an effec-
tive NLA with gain

geff =
√

1 + (g2 − 1)η (2)

prior to an effective Gaussian channel with transmissivity

ηeff =
g2η

1 + (g2 − 1)η
. (3)

Eq. 3 indicates that for all g > 1, ηeff is always greater
than η, suggesting that channel loss is effectively reduced
by the NLA.

The ideal NLA operator gn̂, where n̂ is the number
operator, allows for noiseless phase-insensitive amplifica-
tion of a coherent state, viz. |α〉 → |gα〉, but it requires
infinite number of quantum scissors for its realization,
as indicated by Eq. 1, thereby hampered by zero success
probability. Apart from quantum scissors, other schemes,
such as photon catalysis [40], photon subtraction and ad-
dition [41], and thermal noise addition followed by pho-
ton subtraction [42], have also been proposed to serve as
building blocks for the NLA, but a fundamental trade-off
between the success probability and the deviation from
ideal noiseless amplification remains. In fact, the opti-
mum success probability in the high-fidelity input region
scales as g−2N [43], whereas the success probability scales
as (g2 +1)−N for quantum-scissor-based NLAs. As such,
the trade-off between the success probability and am-
plification fidelity must be accounted for in NLA-based
quantum information protocols.

III. DISTRIBUTED QUANTUM SENSING
ENHANCED BY NOISELESS LINEAR

AMPLIFIERS

For nonlocal applications of CVMP-entanglement-
based DQS, loss incurred in the distribution of en-
tanglement to spatially separated sensor nodes quickly
diminishes the measurement-sensitivity advantage over
product-state-based DQS. Using the framework de-
veloped in Ref. [24], one can easily show that the
measurement-sensitivity advantage degrades from 6 dB
to 0.5 dB in the presence of merely 2 dB entanglement-
distribution loss. Here, we introduce NLAs into CVMP-
entanglement-based DQS to tackle this problem.
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A. Distributed Quantum Sensing with Ideal NLAs

We first use ideal NLAs to illustrate the principle of
NLA-enhanced DQS. Ideal NLAs offer genuine noiseless
amplification, but suffer from zero success probability.
We will study practical NLAs for non-zero success prob-
abilities in Sec. III B. Consider the DQS scheme depicted
in Fig. 4 (left). At the source, a squeezed vacuum state
mixes with M−1 vacuum states on a M×M BS network
to generate the needed CVMP entanglement as the probe
state. The M modes of the CVMP entangled state are
delivered to the sensor nodes through M η-transmissivity
channels. Prior to the sensing attempts, the quantum
state received at each sensor node first undergoes an
ideal NLA with gain g. Using the result reported in
Ref. [39], the entanglement-distribution channel followed
by the NLA is equivalent to placing an effective NLA
with gain geff in front of an effective lossy channel with
transmissivity ηeff , where geff and ηeff are determined,
respectively, by Eqs. 2 and 3. To further move the NLAs
toward the source, we now prove that the ideal NLA op-
erator gn̂ commutes with the BS operator: starting with
the commutator

[gn̂a+n̂b , eθ(â
†b̂−âb̂†)] = [eln(g)(n̂a+n̂b), eθ(â

†b̂−âb̂†)], (4)

it is easy to show that [n̂a + n̂b, â
†b̂ − âb̂†] = 0, thus

completing the proof. Using the proven commutation
relation, we can now switch the order between the effec-
tive NLAs and the BS network, leading to an equivalent
DQS scheme illustrated in Fig. 4 (right). Because a vac-
uum state remains unchanged after being processed by
an ideal NLA, we can simply eliminate all the NLAs op-
erating on vacuum modes. We further note that an ideal
NLA acting on a squeezed vacuum state with mean pho-
ton number NS leads to an effective squeezed vacuum
state whose mean photon number NSeff

is related to NS
by [44] √

NSeff

NSeff
+ 1

= g2
eff

√
NS

NS + 1
. (5)

As such, the original DQS scheme with ideal NLAs
placed after the transmissivity-η channels is equivalent
to an effective DQS scheme over less lossy channels each
with transmissivity ηeff . This shows that NLAs are able
to reduce the loss induced in the distribution of entan-
glement to spatially separated sensor nodes.

We now consider the problem of estimating the quadra-
ture displacement, imparted by the displacement opera-
tor D̂(α) at all sensor nodes, in DQS using CVMP en-
tanglement and ideal NLAs. The estimator for this prob-

lem is defined as X̂α = 1
M

∑M
m=1 X̂m. Working with the

equivalent DQS scheme and utilizing Eq. 3 of Ref. [24],
the rms estimation error is readily derived to be

δαNLA = 1/2

√
ηeff

M(
√
NSeff

+ 1 +
√
NSeff

)2
+

1− ηeff

M
.

(6)

In comparison, the rms estimation error for CVMP-
entanglement-based DQS without NLAs reads

δαNLA = 1/2

√
η

M(
√
NS + 1 +

√
NS)2

+
1− η
M

. (7)

In the low brightness regime, i.e., NS < 1, NLAs with
gain g � 1 will work as desired as long as the input state

is not overamplified, requiring g2
eff

√
NS

NS+1 < 1, yielding

ηeff '
g2η

1 + g2η
≈ 1. (8)

This result is in consistency with the loss suppression
protocol introduced in Ref. [45]: to overcome the chan-
nel loss, the input quantum state is first noiselessly at-
tenuated before being sent through the quantum channel
and is then noiselessly amplified after transmission. In
our DQS scheme, noiseless attenuation on a squeezed vac-
uum state generates a weaker squeezed vacuum state. As
such, transmitting a CVMP entangled state with NS � 1
through a lossy channel followed by high-gain ideal NLAs
can compensate for large amount of loss. Ideal NLAs,
however, have zero success probability and are thus un-
physical. In the next Section we will discuss DQS with
practical NLAs and discuss the trade-off between their
success probability and the deviation from ideal NLAs.

B. Distributed Quantum Sensing Enhanced by
Practical NLAs

A practical NLA, one with finite success probability at
the cost of introducing a small amount of amplification
noise, is comprised of N quantum scissors that truncate
the Hilbert space. The practical NLA operator is writ-
ten as T̂ = Π̂Ng

n̂, where the projection operator Π̂N is
defined as

Π̂N =

(
1

g2 + 1

)N
2

N∑
n=0

N !

(N − n)!Nn
|n〉 〈n| . (9)

As the number of quantum scissors increases, a prac-
tical NLA approaches an ideal one. Applying a practical
NLA on an input quantum state yields the output quan-
tum state [33]

ρ̂out =
T̂ ρ̂inT̂

Tr(T̂ ρ̂inT̂ )
(10)

with a success probability

p = Tr(T̂ ρ̂inT̂ ). (11)

The measurement sensitivity of using the amplified state
ρ̂out as the probe is thus given by

Var(X̂α) = Tr(ρ̂outX̂
2
α)− Tr(ρ̂outX̂α)2. (12)



6

FIG. 4: Continuous-variable DQS enhanced by NLAs. (left) DQS over photon loss channel enhanced by NLAs with gain g.
Squeezed vacuum state with mean photon number NS ; η: channel transmissivity; (right) The effective DQS scheme in which
the effective NLAs are placed right after the entanglement source; ηeff : the transmissivity of the effective channel given by
Eq. 2. geff: the gain of the effective NLA defined in Eq. 3.
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The measurement sensitivity at different probe power
levels for four DQS scenarios, including CVMP entangle-
ment and ideal NLAs, CVMP entanglement and practi-
cal NLAs, CVMP entanglement without NLAs, and the
optimum product state, is plotted in Fig. 5. The probe
power for CVMP entanglement with ideal NLAs is given
by NP = NSeff

ηeff and for CVMP entanglement with-
out NLAs is given by NP = NSη. Here, we consider
a four-node DQS situation with NS = 0.04, and chan-
nel transmissivity η = 0.5. As shown in the figure, ideal
NLAs, despite having a zero success probability, allow for
the best measurement sensitivity (dash-dot curve) among
all four scenarios. To obtain a finite success probability,
we next analyze the measurement-sensitivity achieved by
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using practical NLAs each with two quantum scissors, in
lieu of an ideal NLA, at each sensor node. Due to the
excess noise of practical NLAs, their achieved measure-
ment sensitivity (solid curve) is worse than that enabled
by ideal NLAs, but still outperforms that of CVMP-
entanglement-based DQS without NLAs (dashed curve).
The three measurement-sensitivity curves are compared
to the one achieved by using the optimum product states,
i.e., M squeezed vacuum states, with the same probe
power (see Appendix A for a proof for the optimality of
product squeezed vacuum states). At a probe power level
between ∼ 0.18 and ∼ 0.58 photons, the measurement
sensitivity enhanced by CVMP entanglement in conjunc-
tion with practical NLAs beats the measurement sensi-
tivity achieved by the optimum product states, but no
such performance advantage is attainable without NLAs.
Thus, the NLAs provide the essential functionality de-
sired by quantum repeaters regeneration of entanglement
to enable performance superior to what the optimum lo-
cal protocol affords. As NP increases, more NLA gain
is needed, resulting in a degradation in the measurement
sensitivity at NP > 0.5. This suggests that more quan-
tum scissors are needed to reduce the excess noise intro-
duced during the high-NLA-gain amplification process.
However, the success probability will decrease exponen-
tially as it scales as ∝ ( 1

g2+1 )N , where N is the number

of quantum scissors.
As discussed at the outset, a fundamental trade-off be-

tween the success probability of practical NLAs and the
amount of excess amplification noise exists. Fig. 6 (top)
plots the success probability for the practical NLAs at
different gains, whose corresponding probe power is de-
picted in Fig. 6 (bottom). At a probe power level ∼ 0.2
photons, the measurement sensitivity advantage enjoyed
by CVMP entanglement with practical NLAs over that
achieved by the optimum product states is maximized.
The corresponding gain of each NLA is 2.2 and a prob-
ability of 10−5 for all NLAs to succeed. The bandwidth
for narrowband CVMP entangled states produced in op-
tical cavities is typically in the rage of a few hundred
mega Hertz to a few giga Hertz. Hence a 10−5 success
probability leads to a few thousand success events per
second.

IV. DISCUSSIONS

In general, practical NLAs provide an appreciable
measurement-sensitivity improvement in the low photon-
number regime, i.e., NS � 1, where the effective trans-
missivity becomes ηeff ∼ 0.86 at NLA gain g ∼ 2.5,
source brightness NS = 0.04, and η = 0.5.

In the large entanglement-distribution loss regime,
e.g., η < 0.4, the optimum product states afford a
comparable measurement sensitivity than that achieved
by CVMP entanglement and practical NLAs, because
product states can be generated locally without being
plagued by entanglement-distribution loss. In the low

entanglement-distribution loss regime, e.g., η > 0.7, the
quantum sensors receive more photons than they do in
the large entanglement-distribution loss regime. The suc-
cess probability for NLAs will consequently drop from
that in the high entanglement-distribution loss regime
when choosing the same gain, resulting in a limited mea-
surement sensitivity improvement. Also, the effective

channel transmissivity ηeff ≈ g2η
1+g2−1 = η for η ∼ 1.

In this case, practical NLAs do not offer a significant
measurement-sensitivity advantage over that obtained by
CVMP entanglement without NLAs.

The success probability of practical NLAs applied on
coherent states is upper bounded by 1/g2N in the high
fidelity input region [43]. The associated NLA operator

g−Ngn̂ P̂N , where P̂N determines the cutoff in the num-
ber basis. The success probability of the practical NLA
based on the projector operator defined in Eq. 9 is far be-
low Ref. [43]’s upper bound. To boost the success prob-
ability, Ref. [46] shows that injecting squeezed vacuum
states into the quantum scissors offers marginal improve-
ment. Ref. [47] proposed an NLA scheme with less physi-
cal resources based on a two-photon quantum scissor [48].
It shows improved fidelity of output state compared to
NLAs with two single-photon quantum scissors. Thus,
NLAs based on two-photon quantum scissors would be
useful for DQS due to the reduced resource overhead and
thus warrants further investigation. An open problem is
to explore the optimum NLA structures to approach the
success probability upper bound.

V. CONCLUSION

In summary, we have studied the use of NLAs
to improve the measurement sensitivity of CVMP-
entanglement-based DQS over lossy entanglement-
distribution channels. The trade-off between the
measurement-sensitivity improvement and the success
probability was studied. Our result shows that NLAs in
such a sensing scenario behave like quantum repeaters
that mitigate entanglement-distribution loss so that en-
tanglement enables a measurement-sensitivity advantage
over the DQS scheme based on the optimum separable
product states. The practical NLAs discussed in this
paper are realizable by available technology. As such,
the proposed scheme may lead to the first instance of
repeater-enhanced quantum sensing.
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Appendix A: Proof for the Optimum States for
Distributed Quantum Sensing

In this section, we show that in the absence of loss, (1)
the CVMP entangled state generated by equally splitting
a squeezed vacuum state is optimum and (2) the product
of single-mode squeezed state is the optimum product
state for DQS of displacements.

The displacement unitary operator Û (α) with α > 0

can be written as Û (α) = exp (−iαp̂), and ∂αÛ (α) =

−ip̂Û (α). The quantum Cramér-Rao bound [49–51]
gives the minimum rms error for estimating a single pa-
rameter α of a quantum state ρ̂ (α):

δαη ≥ δαCR ≡
√

1/IF [ρ̂ (α)], (A1)

where the quantum Fisher information is given by

IF [ρ̂(α)] ≡ lim
ε→0

8
{

1−
√
F [ρ̂(α), ρ̂(α+ ε)]

}
/ε2, (A2)

where F(σ̂1, σ̂2) ≡
[
Tr
(√√

σ̂1σ̂2

√
σ̂1

)]2
is the fidelity

between σ̂1 and σ̂2.
Suppose loss changes the joint state across all nodes to

ρ̂M,NS ,η =
∑
` c` |ψ`〉 〈ψ`|, where

∑
` c` = 1.

Because the sensing operation Û (α) is unitary, by the
convexity of quantum Fisher information we have

IF [ρ̂(α)] ≤
∑
`

c`IF [Û (α)
⊗M |ψ`〉]. (A3)

For a pure state, we can easily show that the

fidelity F(Û (α)
⊗M |ψ`〉 , Û (α+ ε)

⊗M |ψ`〉) =

| 〈ψ`|Û (ε)
⊗M |ψ`〉 |2, and thus taking derivatives

gives

IF [Û (α)
⊗M |ψ`〉] = 4var

(∑
k

p̂′k

)
|ψ`〉

, (A4)

where p̂′k is the momentum quadrature of the mode on
node k after loss. Combining Eq. A3, we have

IF [ρ̂(α)]/4 ≤

〈(∑
k

p̂′k

)2〉
ρ̂(α)

−
∑
`

c`

〈(∑
k

p̂′k

)〉2

|ψ`〉

≤ var

(∑
k

p̂′k

)
ρ̂(0)

, (A5)

where we have used the inequality
∑
` c`x

2
` ≥

(
∑
` c`x`)

2
and the invariance of quadrature variance un-

der displacement. Because the pure loss channel trans-
forms p̂′k =

√
ηp̂k +

√
1− ηp̂ek , where p̂ek , p̂k are the mo-

mentum quadrature of the environment and the mode
before loss, we immediately have

IF [ρ̂(α)]/4 ≤ ηvar

(∑
k

p̂k

)
+ (1− η)M, (A6)

where the variance is evaluated before loss. Combining
with ineq. A1 we have

δαCR =
1

2
√
ηvar (

∑
k p̂k) + (1− η)M

≥ 1

2

(
1

Mη
(√
NS + 1 +

√
NS
)2

+M (1− η)

)1/2

.

(A7)

We find that at η = 1, the new bound matches δαEη and
thus the CVMP entangled state is optimum in absence
of loss. However, when η < 1, the new bound deviates
from δαEη , so we expect it to be not tight.

Likewise, for the product-state case, we have derived
the bound

δαCR ≥

1

2

 1

Mη
(√

NS/M + 1 +
√
NS/M

)2

+M (1− η)


1/2

.

(A8)

We compare the above new bound with the performance
of the product state scheme δαPη and find them agree at
η = 1, thereby concluding that a product state comprised
of identical squeezed vacuum states is the optimum in the
absence of loss. When η < 1, the new bound deviates
from δαPη , so it is expected be be loose.

Note that the approach described in Ref. [52] gives the
same bounds for the minimum rms estimation error.
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