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We present a quantum algorithm for simulating the wave equation under Dirichlet and Neumann boundary
conditions. The algorithm uses Hamiltonian simulation and quantum linear system algorithms as subroutines. It
relies on factorizations of discretized Laplacian operators to allow for polynomially improved scaling in trunca-
tion errors and improved scaling for state preparation relative to general purpose quantum algorithms for solving
linear differential equations. Relative to classical algorithms for simulating the D-dimensional wave equation,
our quantum algorithm achieves exponential space savings and achieves a speedup which is polynomial for
fixed D and exponential in D. We also consider using Hamiltonian simulation for Klein-Gordon equations and
Maxwell’s equations.

I. INTRODUCTION

Here we present a quantum algorithm for simulating
the wave equation, subject to nontrivial boundary condi-
tions. In particular, the algorithm can simulate the scat-
tering of a wavepacket off of scatterers of arbitrary shape,
with either Dirichlet or Neumann boundary conditions.
The output of the simulation is in the form of a quan-
tum state proportional to the solution to the wave equa-
tion. By measuring this state one obtains a sample from
a distribution proportional to the square of the amplitude,
which in this case can be interpreted as the intensity of
the wave.

Compared to classical algorithms, our method uses a
number of qubits that scales only logarithmically with
the number of lattice sites, whereas classical methods
require a number of bits scaling linearly with the num-
ber of lattice sites. Additionally, for simulating the wave
equation in a region of diameter ` in D-dimensions, dis-
cretized onto a lattice of spacing a, our quantum algo-
rithm has a state-preparation step with time complex-
ity Õ(D5/2`/a) and a Hamiltonian simulation step with
time complexity Õ(T D2/a), where T is the evolution
time for the wave equation. In contrast, all classi-
cal algorithms outputting a full description of the field,
whether based on finite difference methods or finite el-
ement methods, must have time complexity scaling at
least linearly with the number of lattice sites, i.e. as
Ω((`/a)D).

Several prior works give quantum algorithms for re-
lated problems. Berry gave an algorithm for first order
linear differential equations that encodes a linear multi-
step method into a linear system which is then solved
using a quantum linear system algorithm [1]. This algo-
rithm was recently improved upon in [2] which gives an
algorithm that scales better than the algorithm of [1] with

respect to several system parameters. Through standard
transformations, the wave equation in a region of diam-
eter ` can be discretized onto a lattice of spacing a and
transformed into a system of linear first order differen-
tial equations, which could then in general be solved by
the quantum algorithms of [1, 2] with complexity of or-
der (`/a)2. (See §XI.) The complexity the quantum al-
gorithm that we present here scales linearly with (`/a).
This quadratic improvement is achieved in exchange for
being specialized for solving wave equations rather than
general linear differential equations. At even greater gen-
erality, Leyton and Osborne proposed an algorithm for a
class of nonlinear initial value problems [3]. This greater
generality comes at a further cost in performance in that
the complexity of the quantum algorithm scales exponen-
tially with the evolution time. Related work on quantum
algorithms for solving the Poisson equation can be found
in [4].

The improved scaling of our algorithm relies on higher
order approximations of the Laplacian operator and their
factorizations using hypergraph incidence matrices. We
describe how to find these operators and their hyper-
graph incidence matrices, and we provide numerical val-
ues for up to tenth order. (Throughout this manuscript
we use the term kth order Laplacian to mean a dis-
cretization of the Laplacian which, when used on a lat-
tice of spacing a, has leading error term of order ak.)
To our knowledge, these hypergraph incidence matrix
factorizations do not appear elsewhere in the literature.
These higher order Laplacians also allow us to improve
how errors scale with respect to lattice spacing at the
cost of simulating more complex (less sparse) Hamil-
tonians. In particular, using a s-sparse Hamiltonian
to simulate the wave equation for a volume of diam-
eter ` in D dimensions produces error on the order of
Ta2(s/D)−2, so a scales as (ε/T )D/2(s−D) (where ε is the



error in the state output by the algorithm). Expressing
the time complexity of our algorithm in terms of ε and s
, we find that the state preparation has time complexity
Õ(sD3/2`(T /ε)D/2(s−D)) and the Hamiltonian simula-
tion has time complexity Õ(sDT (T /ε)D/2(s−D)). Gen-
erally s is an integer multiple of D, so these complexities
scale polynomially in D even though D appears in an ex-
ponent.

In [5], Jacobs, Clader, and Sprouse proposed a quan-
tum algorithm for calculating electromagnetic scattering
cross-sections that is based on solving boundary value
problems in the special case of monochromatic waves.
This monochromaticity assumption allows separation of
variables thereby reducing the calculation to a time-
independent problem.

Rather than finite-difference methods, as discussed
here, it is also possible to obtain approximate solutions
to the full time-dependent wave equation through finite
element methods such as the Galerkin method. In [7]
Montanaro and Pallister analyze, in a general context, the
degree to which quantum linear algebra methods such as
[8, 9] allow speedup for finite element methods. Detailed
analysis of how this can be applied to the wave equation
specifically, particularly with the aid of preconditioners,
is a complex subject which we defer to future work.

Following [5] we consider as our primary application
the simulation of scattering in complicated geometries
[24], as illustrated in figure 1. In this case, the initial con-
dition at time zero is a localized wavepacket and its time
derivative, and the final output of the simulation algo-
rithm is an estimate of the intensity of the wave at a later
time t within some region of space occuppied by the de-
tector. After discretizing space, the scatterer can be mod-
eled as a hole in the lattice where some points have been
removed. Dirichlet or Neumann boundary conditions can
be imposed on the boundary of this hole, as discussed in
§III. In §IV we describe how to accommodate various
initial conditions in our approach. In §V we provide nu-
merical evidence that our approach accurately simulates
the wave equation with appropriate behavior at bound-
aries. In §VI and §VII we describe higher order approx-
imations of the Laplacian operator which allow for more
precise approximations. In §VIII we provide numerical
confirmation that higher order Laplacians improve how
errors scale. In §X we discuss the post-processing step
which follows Hamiltonian simulation. In §XI we com-
pare our approach to other quantum algorithms for the
wave equation. In §XII and §XIII we address the use of
Hamiltonian simulation for simulating the Klein-Gordon
equation and Maxwell’s equations, respectively.

scatterer

wavepacketdetector

FIG. 1. For a given initial wavepacket and a given scatterer,
we would like to estimate the resulting spatial distribution of
wave intensity resulting at some later time t. In particular, one
may wish to know the total intensity captured by a detector oc-
cuppying some region of space. This can be estimated using a
quantum simulation in which the wavefunction directly mim-
ics the dynamics of the solution to the wave equation. The final
intensity in the detector region is equal to the probability asso-
ciated with the corresponding part of the Hilbert space, which
can be estimated from the statistics resulting from a projective
measurement.

II. ALGORITHM

In any number of dimensions, the wave equation is

d2

dt2 φ = c2
∇

2
φ . (1)

To avoid cumbersome notation, in the rest of this paper
we will take the wave propagation speed to be c = 1. For
a given initial condition specifying φ (~x, t) and dφ (~x,t)

dt at
t = 0, our goal is to obtain a quantum state encoding the
solution φ (~x,T ) determined by (1) at some later time t.

To achieve this, we will first discretize space. We
can then think of ∇2 as a matrix acting on a vector φ

whose entries encode the value of the field at each point
in discrete space (with appropriate boundary conditions).
Discrete approximations of the Laplacian operator have
been thoroughly studied in both spectral graph theory
and quantum chemistry, and we draw upon this previ-
ous work. In the simplest case, we can discretize a fi-
nite region of Rn onto a cubic grid of lattice spacing a.
The resulting points can be thought of as a graph Ga,
with edges between nearest neighbors. The correspond-
ing graph Laplacian L(Ga) is the square matrix whose
rows and columns index the vertices of this graph, and
whose off-diagonal matrix elements are minus one for
connected vertices and zero otherwise. Each diagonal
matrix element is equal to the degree of the correspond-
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ing vertex, i.e. the number of other vertices it is con-
nected to. The operator − 1

a2 L(Ga) approximates ∇2 in
the limit a→ 0. For example, in one dimension:

− 1
a2 [L(Ga)φ ] j =

φ j−1−2φ j +φ j+1

a2 , (2)

which becomes the second derivative of φ in the limit
a→ 0. At finite a the truncation error is O(a2).

After discretization, we are faced with the task of sim-
ulating

d2

dt2 φ = − 1
a2 Lφ . (3)

To this end, consider a Hamiltonian of the following
block form, which by construction is Hermitian indepen-
dent of the specific choice of matrix B.

H =
1
a

[
0 B

B† 0

]
. (4)

Schrödinger’s equation then takes the form

d
dt

[
φV
φE

]
=
−i
a

[
0 B

B† 0

][
φV
φE

]
(5)

which implies

d2

dt2

[
φV
φE

]
=
−1
a2

[
0 B

B† 0

]2 [
φV
φE

]
(6)

=
−1
a2

[
BB† 0

0 B†B

][
φV
φE

]
(7)

So, if BB† = L then a subspace of the full Hilbert space
evolves according to a discretized wave equation.

For any graph, weighted or unweighted, and with or
without self-loops, BBT = L is achieved by taking B to
be the corresponding signed incidence matrix, defined
as follows. For a given graph with |V | vertices and
|E| edges, B is an |V | × |E| matrix with rows indexed
by vertices and columns indexed by edges. One starts
by arbitrarily assigning orientations to the edges of the
graph. This arbitrary choice affects B but does not af-
fect BBT , which always equals the Laplacian of the undi-
rected graph. The general definition of the incidence ma-
trix for a graph where edge j has weight Wj is

Bi j =


√

Wj if j is a self-loop of i√
Wj if j is an edge with i, as source,
−
√

Wj if j is an edge with i as sink,
0 otherwise.

(8)

In the special case that the graph is unweighted, Wj = 1
for every edge.

From the above, one sees that the Hilbert space asso-
ciated with the graph is

H = HV ⊕HE , (9)

where HV is the vertex space (where φV is supported)
and HE is the edge space (where φE is supported). The
dynamics on the vertex space obeys the discretized wave
equation. The amplitudes associated with the edges are
extra variables that necessarily arise when converting
second order differential equations into first order differ-
ential equations.

Simulating the time evolution according to (5) can
be achieved using state of the art quantum algorithms
for simulating the dynamics induced by general sparse
Hamiltonians. One sees that the dimension of the Hilbert
space H is equal to the number of vertices of the graph
plus the number of edges: |V | + |E|. In particular, for
a cubic region of side-length l in D-dimensions, dis-
cretized into a cubic grid of lattice spacing a, one has
|V | = (l/a)D and |E| = D(l/a)D. Thus, the number of
qubits needed is log2

[
(1+D)(l/a)D

]
. The largest ma-

trix element of H has magnitude 1/a, and the number of
nonzero matrix elements in each row or column of H is
at most 2D.

Using the method of [10] we can approximate the uni-
tary time evolution e−iHt to within ε using a quantum
circuit of

g = O
[

τ

[
n+ log5/2 (τ/ε)

] log (τ/ε)

log log (τ/ε)

]
, (10)

gates, where τ = s‖H‖max t, where ‖H‖max is the largest
matrix element of H in absolute value, s = sparsity of H
and n = number of qubits. For the Hamiltonian of (4),
s = 2D, ‖H‖max = 1/a, and n = log2

[
(1+D)(l/a)D

]
,

and therefore the total complexity of simulating the time-
evolution is

g = O

[
Dt
a

(
log
(
(1+D)(l/a)D)+ log5/2

(
2Dt
aε

))
log
( 2Dt

aε

)
log log

( 2Dt
aε

)]

= Õ
[

tD2

a

]
, (11)

where the notation Õ indicates that we are suppress-
ing logarithmic factors. The table below compares the
asymptotic runtime and memory usage of our algorithm
against standard classical numerical methods for solving
differential equations.

Classical Quantum

Time Ω
[
T (l/a)h

]
Õ
[
tD2/a

]
Space (l/a)h D log(l/a)

The remaining considerations are the implementation
of desired boundary conditions, the preparation of an
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initial state implementing the desired initial conditions,
errors induced by discretizing the wave equation, and
the relative probability to obtain samples from the ver-
tex space versus the edge space at the end of the com-
putation. In the following sections we address each of
these issues in turn. These considerations motivate vari-
ous improvements and extensions to the above algorithm,
which we introduce along the way, in particular the use
of higher order discretizations of ∇2.

III. BOUNDARY CONDITIONS

Here we will consider how to implement two com-
monly used boundary conditions: Dirichlet and Neu-
mann. With Dirichlet boundary conditions φ = 0 at the
boundary. With Neumann boundary conditions ∇φ · n̂ =
0 at the boundary, where n̂ is the unit vector normal to
the boundary. For any shape of boundary and in any
number of dimensions our prescription is as follows. To
implement Neumann boundary conditions use the ordi-
nary graph Laplacian of the graph obtained by starting
with the cubic grid and removing the vertices interior to
the scattering object. To implement Dirichlet boundary
conditions one must add weighted self-loops to each of
the vertices on the boundary with weights equal to the
number of edges that are missing relative to interior ver-
tices. (This ensures that the diagonal matrix elements of
the resulting graph Laplacian are all equal.) See figure 2
for an illustration. For pedagogical reasons, we give two
derivations of the Laplacians implementing these bound-
ary conditions, using the one dimensional path graph as
an example. One derivation is based on discretization
of derivatives, and the other is by linear algebra on an
already-discretized system.

Neumann Boundary Conditions by Discretization

Consider the line segment [0,1]. Within this, the sec-
ond derivative discretizes to

d2φ

dx2 = lim
a→0

dφ

dx (x+ a/2)− dφ

dx (x−a/2)
a

(12)

= lim
a→0

φ (x+a)−φ (x)
a − φ (x)−φ (x−a)

a
a

.

This yields at internal vertices the familiar form of a dis-
crete Laplacian.

d2φ

dx2 (x) = lim
a→0

φ (x+ a)−2φ (x)+φ (x−a)
a2 (13)

FIG. 2. To implement Dirichlet boundary conditions in a dis-
cretize square region with a square hole, one adds self-loops as
illustrated above. The thick red self loops at the corners have
weight two. All other edges (self-loops and otherwise) have
weight one. This prescription was used in the numerical exam-
ples of §V. To implement Neumann boundary conditions one
omits all self-loops.

With Neumann boundary conditions, dφ

dx = 0 at the
boundaries. Thus, at the leftmost vertex we have:

d2φ

dx2 (0) = lim
a→0

dφ

dx (a/2)− dφ

dx (−a/2)
a

(14)

= lim
a→0

dφ

dx (a/2)
a

= lim
a→0

φ (a)−φ (0)
a2 .

Similarly, dφ

dx (x+ a/2) vanishes at the rightmost ver-
tex. For example, if we discretize the segment [0,1] into
five lattice sites we would have

− 1
a2 LNeumannφ =

1
a2


−1 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1




φ (0)
φ (a)

φ (2a)
φ (3a)
φ (4a)

 .

(15)
LNeumann is recognizable as the ordinary graph Laplacian
for the path graph of five vertices:

.

This holds more generally; the ordinary graph Laplacian
on discretized regions of any shape in any number of di-
mensions yields Neumann boundary conditions. Note
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that in the above example discretizing the unit interval
with five vertices, one should take a = 1/5 because each
of the four edges in the graph corresponds to a distance
of a, but as we see from the above argument, the bound-
ary conditions correspond to dφ/dx = 0 at x = −a/2
and x = 1+ a/2.

Dirichlet Boundary Conditions by Discretization

In the Dirichlet case, we have φ = 0 at the leftmost
and rightmost vertices. Thus, at the leftmost point, the
discretized second derivative becomes

d2φ

dx2 (a) =
φ (0)−2φ (a)+φ (2a)

a2 =
φ (2a)−2φ (a)

a2
(16)

and similarly we take φ (x+a) = 0 at the rightmost point.
On a discretization of the interval [0,1] this would yield

− 1
a2 LDirichletφ =

1
a2


−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2




φ (a)
φ (2a)
φ (3a)
φ (4a)
φ (5a)

 .

(17)
LDirichlet is recognizable as the Laplacian of the path
graph with weight-one self-loops on the endpoints:

.

For a region of arbitrary shape in D dimensions, Dirich-
let boundary conditions are achieved by adding weighted
self loops to the boundary vertices such that the diago-
nal matrix elements in the Laplacian are all equal. In
particular, for a cubic lattice in D dimensions, we take
LDirichlet = 2D1−A(G) where A(G) is the adjacency ma-
trix of the lattice.

One should think of the above example as a seven-
vertex six-edge discretization of the interval [0,1] where
we have ignored the variables φ (0) and φ (6a) as they
are permanently equal to zero. In other words, the above
5× 5 matrix, if thought of as a discretization of d2

dx2 on
[0,1] should have a = 1/6.

An alternative way to derive these boundary condi-
tions is to start with an infinite lattice and then fix some
variables to zero (in the Dirichlet case) or some variables
to be equal to each other (in the Neumann case), as we
now discuss.

Neumann Boundary Conditions, Algebraic Derivation

We first consider the Laplacian L for an infinite path
graph with vertices labeled by Z, which is a tridiagonal
matrix with 2 on the diagonal and -1 on the off-diagonals.
It suffices to consider imposing the boundary conditions
at the left end of the interval, which we assume corre-
sponds to the vertex 0 in our discrete space. Then for
Neumann boundary conditions the field φ is constant on
all vertices v∈Z−, that is φv = φ0. Then consider how L
acts on the field in the neighborhood of 0. We represent
this as

L~φ =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




φ−2
φ−1
φ0
φ1
φ2

 (18)

7→ LNeumann~φ =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




φ0
φ0
φ0
φ1
φ2

 (19)

=


0
0

φ0−φ1
2φ1−φ0−φ2

. . .

 (20)

=


0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 2




φ0
φ0
φ0
φ1
φ2

 (21)

So we see that imposing Neumann boundary condi-
tions allows us to ignore the vertices labeled by negative
numbers. To give a finite example, if we restrict to the
vertices 0,1,2,3 (i.e. impose Neumann boundary condi-
tions for vertices to the left of 0 and to the right of 3) then
the Laplacian we produce is

L =

 1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , (22)

which is exactly the graph Laplacian for the path graph
on 4 vertices.
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Dirichlet Boundary Conditions, Algebraic Derivation

We use similar arguments to show how to impose
Dirichlet boundary conditions. Consider imposing φ = 0
to the left of 0. Then L acts as

L~φ =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




φ−2
φ−1
φ0
φ1
φ2

 (23)

7→ LDirichlet~φ =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




0
0
φ0
φ1
φ2

 (24)

=


0
−φ0

2φ0−φ1
2φ1−φ0−φ2

. . .

 (25)

=


0 0 0 0 0
0 0 −1 0 0
0 0 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




0
0
φ0
φ1
φ2

 (26)

Since we are only concerned with how the Laplacian
acts on vertices 0,1,2 . . . and not on −1 we can ignore
the fact that (L~φ )−1 = −φ0. Another way to motivate
this is that by restricting the wave equation to act on ver-
tices 0,1,2 . . . we do not provide a dynamical equation
for φ−1, so it will remain 0.

To compare this with the Neumann case, if we restrict
to the vertices 0,1,2,3 then the Laplacian we produce is

L =

 2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 , (27)

which differs from the Neumann Laplacian in the upper-
left and lower-right entries.

IV. INITIAL CONDITIONS

The first step in our quantum algorithm is to prepare
a quantum state [φV ,φE ] corresponding to desired initial
conditions φ (x) and ∂φ

∂ t (x) at t = 0. Our method for
preparing the initial state and its complexity varies de-
pending on the specific type of initial conditions.

As a first example, consider a line-segment with
Dirichlet boundary conditions, discretized into four lat-
tice sites. In this case, by (4) and (8), we have

H =
1
a



0 0 0 0 1 1 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
1 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0


. (28)

This can be viewed as a discretization of

H =

[
0 d

dx
− d

dx 0

]
(29)

where we use the forward difference to approximate d
dx

and the backward difference to approximate − d
dx . More

generally, in an arbitrary number of dimensions, the
Hamiltonian (4) can be seen as a discretization of

H =

[
0 ~∇T

−~∇ 0

]
. (30)

(We here view φE as describing a vector field, where the
value associated with a given edge in the graph is the vec-
tor component along the direction that the edge points.)
Consequently, for an arbitrary initial condition specified
by φ0(x) and d

dt φ0(x) one must prepare a corresponding
initial quantum state that is a solution to

φV = φ0

~∇ ·~φE = i
d
dt

φ0. (31)

In more than one dimension, the equation (31) does not
uniquely determine φE since ~∇×~φE is unspecified. (In
one dimension φE is determined up to an additive con-
stant.) In the remainder of this section we consider how
to compute a solution to (31) and how to prepare the ini-
tial state [φV ,φE ] on a quantum computer in various cases
of interest.

A. Static Initial State

The simplest case is to prepare a state with d
dt φ uni-

formly equal to zero. Then, one can use φE = 0 as
an initial quantum state. The state preparation prob-
lem then reduces to preparing φV ; however, this is not
necessarily efficient for arbitrary φV . Preparation of a
completely arbitrary quantum state in an N-dimensional
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Hilbert space has complexity of order N, i.e. exponential
in the number of qubits. Specifically, suppose one were
given an oracle, which when queried with a bit string
x returned a corresponding amplitude ψ(x) written (to
some number of bits of precision) into an output register.
One wishes to prepare the corresponding quantum state
|ψ〉 = ∑x∈{0,1}n ψ(x) |x〉. The worst-case complexity of
this task is Θ(

√
N) [11]. In many cases of interest, the

complexity for preparing the initial state may be much
lower. In particular, as was originally shown in [12], a
state of the form

∑
x∈{0,1}n

√
p(x) |x〉 (32)

can be prepared in poly(n) time on a quantum computer
provided that each of the conditional probabilities

p(x1x2 . . .xr|xr+1xr+2 . . .xn) r = 1,2,3, . . . (33)

can be efficiently computed. As discussed in [13], these
conditional probabilities can be efficiently computed for
all log-concave probability distributions.

B. Rigidly Translating Wavepacket

In one spatial dimension, for any twice-differentiable
wavepacket shape w,

φ (~x, t) = w(x− ct) (34)

is a solution to the wave equation d2

dt2 φ = c2∇2φ . (In this
manuscript we will generally take c = 1.) From (29) one
sees that the quantum state[

φV
φE

]
=

[
w(x− t)
iw(x− t)

]
(35)

represents this solution in the continuum limit. For
a lattice with Neumann or Dirichlet boundary condi-
tions, the vertex and edge Hilbert spaces have dif-
ferent dimensions, so the initial state is not merely
(|0〉+ i|1〉)|w(0)〉/

√
2 where |w〉 ∝ ∑x w(x) |x〉. This

can be overcome by instead preparing (|0〉|w(0)V 〉+
i|1〉|w(0)E〉)/

√
2 where |w(0)V 〉 ∝ ∑ j∈V w( ja) | j〉 and

|w(0)E〉 ∝ ∑( j,k)∈E w(( j + k)a/2) |( j,k)〉. So if the
quantum state ∑x w(x) |x〉 (suitably discretized in each
Hilbert space) can be prepared in polynomial time then
so can the state (35). More generally, in an arbitrary
number of dimensions, one can obtain an analogous ini-
tial state proportional to[

φV
~φE

]
=

[
w(x)

i~vw(x)

]
(36)

with |~v| = c. This initially represents a wavepacket
traveling with velocity ~v, but unlike in the one dimen-
sional case, the wavepacket will evetually suffer disper-
sion rather than simply translating rigidly.

C. General Case

In the general case we may imagine that we are given
efficient quantum circuits preparing the states |φ0〉 =
∑~x φ (~x,0) |~x〉 and |φ̇0〉 ≡ ∑~x

∂φ (x,t)
∂ t

∣∣∣
t=0
|~x〉. The discrete

analogue of (31) is, via our incidence-matrix discretiza-
tion:

φV = φ0 (37)

− i
a

BφE = φ̇0. (38)

In two and higher dimensions, the solution to i
a BφE = φ̇0

is non-unique in general since the number of edges in
the graph Ga exceeds the number of vertices. Thus, the
number of columns of B exceeds the number of rows by a
factor of order D, the number of spatial dimensions. One
valid solution is to use as our quantum initial state[

φV
φE

]
∝

[
φ0

iaB+φ̇0

]
(39)

where B+ denotes the Moore-Penrose pseudoinverse of
the matrix B. A Moore-Penrose pseudoinverse has the
property that the image of B+ is the orthogonal comple-
ment of the kernel of B. Recall that B is a map from
HE → HV . For the case of the standard 2nd order Lapla-
cian, the corresponding B is the signed incidence matrix
of a graph. In this case B can be interpreted in the con-
tinuum limit as a divergence. The Helmholtz decompo-
sition theorem says that any twice-differentiable vector
field can be decomposed into a curl-free component and
a divergence-free component, the latter of which corre-
sponds to the kernel of B in the continuum limit. Thus,
φE =−iaB+φ̇0 corresponds in the continuum limit to the
solution to the following system of equations.

~∇ ·~φE = −iφ̇0 (40)
~∇×~φE = 0. (41)

To construct the state (39) we can use the quantum
linear systems algorithm of [9]. Specifically, we wish to
prepare the state proportional to the solution to Ax = b
where

A =

[
1 0
0 ia−1B

]
(42)

b =

[
φ0
φ̇0

]
(43)
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This can be done using the quantum linear systems algo-
rithm of [9], whose time complexity is Õ(κ), where κ is
the condition number of A, which in this case is equal to
the condition number of the incidence matrix B.

Using the state (39) restricts the classes of solutions
which our algorithm simulates. This is because B+φ̇0
does not have support in the kernel of B. This is sig-
nificant for Neumann boundary conditions because the
kernel of B (and of the Laplacian) is the all-ones vec-
tor, whereas for Dirichlet boundary conditions the ker-
nel is trivial. This means that, even if φ̇0 had support in
the space spanned by the all-ones vector, the algorithm
will simulate the system with the modified initial condi-
tion where φ̇0 does not have support in this space. This
restriction may seem artificial, but it is a natural conse-
quence of the unitarity of Hamiltonian dynamics. If the
uniform support of φ̇0 were not projected out, then our al-
gorithm would be able to simulate the solution φ (~x, t) ∝ t
(with no dependence on~x) for which φ̇ is constant. This
would result in the norm of the quantum state changing
in time, in contradiction to unitarity.

In more detail, an algorithm from [9] can perform the
transformation φ̇0 →−iaB+φ̇0 using a number of gates
that scales as Õ(sκ logN) where s is the sparsity of B,
κ is the condition number of B and N is the dimen-
sion of the Hilbert space. The condition number of B
is the square root of the condition number of the graph
Laplacian L. L has norm O(D) and smallest eigenvalue
O(`2/a2), independent of D, where the volume under
consideration is `× `× . . .× ` which discretized onto a
grid of spacing a. Thus κ ∼

√
D`/a. The sparsity of

B is s ∼ D for any fixed order of discretization, and the
Hilbert space dimension is N ∼ (`/a)D. Putting this to-
gether yields an overall complexity of Õ(D5/2`a−1) for
state preparation in this case (neglecting log factors).

V. NUMERICAL EXAMPLES

The above analysis can be confirmed by numerical ex-
amples, as shown in this section. In all cases one sees that
the dynamics and implementation of initial conditions
and boundary conditions are consistent with theoretical
expectations. Our quantum algorithm is implemented on
a gate model quantum computer, and time evolution is
disretized into a sequence of elementary gates through
the method of [10]. The error induced by this time dis-
cretization is rigously upper bounded in [10]. Thus the
focus of our numerical study is to investigate the errors
induced by spatial discretization and verify the imple-
mentation of boundary conditions and initial conditions.
To this end, we use the Dormand-Prince method[25] [20]
(a variant of Runge-Kutta) to solve Schrödinger’s equa-

tion with Hamiltonians arising from our incidence matrix
prescription.

As we know from [19] there is a relation between the
timestep and the lattice spacing that is necessary, but
not sufficient, to keep the numerical simulations stable,
which is

∆t < a,

because of that we used this relation in all our numeri-
cal analyses.In small examples we verified the accuracy
numerical solution to the differential equations by com-
paring against direct computation of the entire unitary
operator e−iHt applied to the initial state vector.

a)

b)

FIG. 3. Shape preserving on line segment Dirichlet. Here
we consider the case of a rigidly-translating wavepacket as de-
scribed by (35). We can see two different views of the same
wave packet starting in the middle point in a box with size 20,
where space is represented by the x-axis while in the y-axis we
have the time and the units are meters and seconds respectively.
We can see the packet going back and forward between the ex-
tremes of the box. Although its wave amplitude is preserved in
time, when the wave packet arrives at the end points the ampli-
tude reflects simultaneously with the propagation’s direction.
The red color gives us the positive amplitude against the blue
one with negative value. In figure b the amplitude height is
plotted in the z=axis and its units are meters. In this example
we choose lattice spacing a = 0.2469 and gaussian wavepacket
of width σ = 1.6.

VI. HIGHER ORDER LAPLACIANS

As we have seen, the graph Laplacian is related by a
multiplicative constant to the first order approximation

8



a)

b)

FIG. 4. Spreading wave on line segment Dirichlet. In these
figures we kept with the same parameters used for the previous
plots, changing only the initial condition for ~φE . Now we can
see the wave spreading equally for the both sides, reflecting in
the boundary and then meeting themselves again in the center,
but with the amplitude inverted. The units are the same used in
the previous plots, meters and seconds.

of the continuous Laplacian operator; however, higher
order approximations might be desired to improve accu-
racy. In [14] the authors give an expression for a finite
difference approximation of the Laplacian operator that
is based on the Lagrange interpolation formula and can
be taken to arbitrarily high orders of accuracy.

The Lagrange interpolation formula is an exact for-
mula for fitting a polynomial to a set of points
{xi, f (xi) = fi}. For 2N + 1 values of x j labelled by
j ∈ {−N,−N + 1, . . .N}, the formula is

f (x) =
N

∑
k=−N

f (xk)
N

∏
l=−N,l 6=k

(
x− xl

xk− xl

)
. (44)

Taking the second derivative of this formula gives
an interpolation formula for an approximation of the
Laplace operator. Assuming the values x j are taken from
a uniform lattice (i.e. x j = ja for j ∈Z), we can approx-
imate the Laplacian of f at x0 using

f ′′(x0) =
−1
a2

(
2 f (x0)

N

∑
l=1

1
l2 −

N

∑
k=1

f (xk)+ f (x−k)

k2

N

∏
l=−N,l 6=k

l2

l2− k2

)
.

(45)

If we truncate this expression at N = 1 then we recover
the standard second order Laplacian approximation. (Re-

a)

b)

FIG. 5. Standing wave. Here we consider a stand-
ing wave, which can be described analytically by φ (x, t) =
cos (ωt) sin (πx). This can be simulated by Schrödinger’s
equation if we work with ~φ0 = sin (πx) and d~φ0/dt = 0 as
long as we start with t = 0. The units are the same ones used
in the previous figures.

call that we define kth order to mean leading error term
O(ak) on a lattice of spacing a.)

The next higher order (N = 2) approximation of
f ′′(x0) is

f ′′(x0) =
−1
a2

(
5
2

f (x0)−
4
3
( f (x1)+ f (x−1))+

1
12

( f (x2)+ f (x−2))

)
.

(46)

Assuming the lattice has periodic boundary condi-
tions, then similar formulas hold at points other than x0.
In particular, we can write the fourth order Laplacian for
a periodic lattice as

L = (−1/a2)((5/2)1− (4/3)(S+ S†)+ (1/12)(S2 +(S†)2)).
(47)

Here S is the matrix representation of the cyclic per-
mutation (12 . . .N), i.e., it has entries Si, j = δi, j+1 mod N .

9



a)

b)

c)

d)

FIG. 6. Wave packet in a cavity. Here the initial state is
a Gaussian wave packet, but now in a two dimensional region
with nontrivial boundary. Specifically, we simulate scattering
of the wavepacket off a square object with Dirichlet boundary
conditions. This is implemented as a square hole in the under-
lying discrete lattice. These four views represent the same wave
packet in different time instants, where ta > tb > tc > td . As in
the one dimensional example, we worked with Dirichlet bound-
ary conditions; however, the shape is not preserved. Here, the
box has size ten in both axes, and we choose a = 0.1563 and
σ = 0.4.
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VII. BOUNDARY CONDITIONS FOR HIGHER
ORDER LAPLACIANS

We can accomodate Neumann and Dirichlet boundary
conditions by modifying Laplacians for periodic bound-
ary conditions. In particular we follow the algebraic
derivation described in Sec. III.

A. Dirichlet Boundary Conditions

As before, we consider a small neighborhood of ver-
tices around 0. By imposing that φ j = 0 for all j ∈Z−,
we modify the Laplacian as below.

L~φ =


5/2 −4/3 1/12 0 0
−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2




φ−2
φ−1
φ0
φ1
φ2



→


0 0 0 0 0
0 0 0 0 0
0 0 5/2 −4/3 1/12
0 0 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2




0
0
φ0
φ1
φ2


(48)

So imposing Dirichlet boundary conditions simply
amounts to taking a principle submatrix.

B. Neumann Boundary Conditions

To account for Neumann boundary conditions, impose
φ j = φ0 for all j ∈ Z−. The Laplacian is modified as
below.

L~φ =


5/2 −4/3 1/12 0 0
−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2




φ−2
φ−1
φ0
φ1
φ2

 (49)

7→


5/2 −4/3 1/12 0 0
−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2




φ0
φ0
φ0
φ1
φ2

 (50)

=


0

(5/2−4/3−4/3+ 1/12)φ0 +(1/12)φ1
(5/2−4/3+ 1/12)φ0− (4/3)φ1 +(1/12)φ2

. . .

 (51)

=


0 0 0 0 0
0 0 −1/12 1/12 0
0 0 5/4 −4/3 1/12
0 0 −5/4 5/2 −4/3
0 0 1/12 −4/3 5/2




φ0
φ0
φ0
φ1
φ2

 (52)

Note that this is not a symmetric approximation of
the Laplacian, not even when restricted to vertices 0,1,
and 2. However the decoupled second order dynamics of
Eqn. 7 require symmetric operators since BB† is Hermi-
tian by construction, so our algorithm cannot use higher
order Laplacians for simulating dynamics with Neumann
boundary conditions.

C. Hypergraph Incidence Matrices

Now that we’ve seen how to impose Dirichlet bound-
ary conditions on higher order Laplacians, we should
consider how to generate their incidence matrices. Re-
call that the fourth order Laplacian with periodic bound-
ary conditions is

L = (−1/a2)((5/2)1− (4/3)(S+ S†)

+ (1/12)(S2 +(S†)2)),

which is a sum of circulant matrices. This suggests that
a reasonable ansatz for the incidence matrix is cS− (c+
b)1+bS†. By construction this ansatz has zero sum rows
which guarantees that the Laplacian matrix acting on a
vector whose entries all have the same value will evaluate
to 0 (which is consistent with the fact that the Laplacian
operator acting on a constant function evaluates to 0).

From this ansatz we arrive at the following system of
degree 2 polynomial equations in b and c.

2(c2 + b2 + cb) = 5/2 (53)
cb = 1/12 (54)

(c+ b)2 = 4/3 (55)

Once any two of these is satified the third will also
be satisfied since the row sums of the matrix must all
be zero. The middle equation gives us b = 1/12c,
which substituted into the last equation gives 4/3 =
c4− (7/6)c2 + (1/144) which has solutions satisfying
c2 = (7/12)±

√
1/3. This gives values of c ≈ 1.07735

and b ≈ 0.07735 (switching their values gives another
solution).

D. 2 Dimensions and Beyond

The continuous Laplacian in 2 dimensions can be writ-
ten as ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 , i.e. the sum of the one dimen-
sional Laplacians in the x and y directions (note that each
of these is basis dependent although the total Laplacian
is not). Discrete Laplacians in 2 dimensions are similarly
constructed.
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We discretize space into a square lattice and remove
some edges and vertices according to boundary condi-
tions. The resulting graph (V ,E) is a subgraph of the
square lattice, so we can separate its edge set into vertical
edges, Ey, and horizontal edges, Ex. The subgraphs asso-
ciated with this partition, Gx = (V ,Ex) and Gy = (V ,Ey),
are composed of several disconnected path graphs (or cy-
cles under periodic boundary conditions). If the lattice is
n vertices wide and m vertices tall then Gx consists of m
path graphs each on n vertices; similarly Gy consists of
n path graphs each on m vertices. If scatterers are intro-
duced then the path graphs composing Gx and Gy will
depend on what edges and vertices are removed to ac-
count for the scatterers.

Since Gx and Gy are composed of several disconnected
path graphs, we can write down their Laplacians and fac-
tor them into incidence matrices. The Laplacians L(Gx)

and L(Gy) approximate ∂ 2

∂x2 and ∂ 2

∂y2 , respectively, so

L(Gx)+ L(Gy) approximates ∇2. If L(Gx) = B†
xBx and

L(Gy) = B†
yBy, then L(Gx) + L(Gy) = C†C where C is

the |Ex∪Ey|×V matrix produced by vertically concate-
nating Bx and By.

Generalizing this to n-dimensions, the procedure is (1)
separate the lattice into n graphs (each composed of dis-
connected paths or cycles) corresponding to each direc-
tion in space (2) write down the Laplacians for these n
graphs and factor them into incidence matrices and (3)
vertically concatenate their incidence matrices.

E. Sixth (and higher) Order Laplacians

So far our discussion has been restricted to second
and fourth order Laplacians; however, we can arrive at
higher order Laplacians by (1) taking higher order ex-
pansions of the Lagrange interpolation formula, (2) dif-
ferentiating twice and evaluating at x = 0, and (3) read-
ing off the interpolation formula coefficients as matrix
coefficients. Periodic boundary conditions are achieved
by requiring that the Laplacian be circulant. As before,
Dirichlet boundary conditions can be imposed by tak-
ing principal submatrices of the Laplacian. Our remarks
about generalizing beyond 1-D also hold for higher order
Laplacians.

The problem of finding the incidence matrices of
higher order Laplacians is a little more involved that in
the 1st order case where the graph theoretic interpreta-
tion facilitates the factorization. We let N denote the ra-
dius of a discrete Laplacian. That is, a Laplacian matrix
with nonzero entries only out to nearest neighbors has
N = 1, second nearest neighbors has N = 2, and so on.
In general the radius N Laplacian will be factored into
incidence matrices of hypergraphs where each hyperedge

can contain up to N+1 vertices. (Note: Hyperedges with
fewer than N +1 vertices will appear if Dirichlet bound-
ary conditions are used.)

As in the N = 1 and N = 2 (i.e. second and fourth
order) cases, the entries of these incidence matrices can
be found by considering the factorization of a Lapla-
cian with periodic boundary conditions. The transla-
tional invariance of this case guarantees that all hyper-
edges will have the same weights and can be oriented
identically. Then the entries of the incidence matrix can
be found by choosing an appropriate ansatz (one of the
form ∑

n
j=−m a jS j for some n and m) and solving the ap-

propriate system of polynomial equations (similar to how
53 was solved). We provide numerical values for the
entries of Laplacians and their incidence matrices up to
tenth order in appendix C.

VIII. DISCRETIZATION ERRORS

Using a kth order Laplacian, as described in §VI one
expects discretization errors to shrink with lattice spac-
ing as O(ak). To obtain a more quantitative assessment
of discretization errors, we can numerically compute a
metric called the Q factor, which is used to quantify dis-
cretization errors in numerical simulations [15].

To compute this factor we use the discretized solutions
at three different lattice spacings Φa , Φ2a and Φ4a. The
Q factor is then defined by

Q (t) =

∥∥Φ4a−Φ2a
∥∥

2
‖Φ2a−Φa‖2

. (56)

Φ4a and Φ2a are defined on different lattices, and thus
they are vectors of different dimension. However, we
choose the lattices so that the vertices present in the lat-
tice of spacing 4a are a subset of the vertices present
in the lattice of spacing 2a. Then, by

∥∥Φ4a−Φ2a
∥∥ we

really mean the l2 norm of the vector Φ4a− I4a(Φ2a),
where I4a is the inclusion map that discards the vector
components associated with the vertices absent from the
lattice of spacing 4a. For notational simplicity we drop
explicit reference to this inclusion map.

Now we want to see the value associated with Eq.(56)
when we take the continuum limit, a→ 0. Straightfor-
ward Taylor expansion shows that a kth order discretized
Laplacian, which leaves errors of order ak should yield
a corresponding Q factor of 2k in the limit of a going
to zero, provided errors from other steps in the algo-
rithm, such as state preparation do not dominate. Now
we present a table of values that shows the average of Q
from t = 0 to t = 0.5, working with 0.0001 as the time
step.
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Second order Fourth order
〈Q〉spreading 3.98 15.69
〈Q〉rigidly-translating 1.99 2.00
〈Q〉standing 3.99 15.89

One sees that for the spreading wavepacket case and
the standing wave case (both static initial conditions) the
Q factors are in good agreement with the expected values
of 4 and 16 for the second-order and fourth-order Lapla-
cians. In the case of the rigidly translating wavepacket
(which corresponds to the initial condition of (35)), the
Q factor is approximatly 2 independent of the order of
the discretized Laplacian. This is because, in this case,
the dominant source of error is in the state preparation.
Exact state preparation would involve inverting the in-
cidence matrix, as described in §IV C. The initial state
described by (35) is accurate only up to errors of order
a, thus yielding a Q factor of 2. In appendix B we also
obtain an analytical calculation of the Q factor for the
special case of a standing wave, treated with a first-order
Laplacian.

Since a kth order Laplacian gives truncation errors of
order ak, the total error accumulated for evolution time T
will be order akT . A D dimensional Laplacian of order
k has an incidence matrix which is D(k/2+ 1)-sparse;
so if an s-sparse Hamiltonian is used then k = 2(s/D)−
2. Then the total error accumulated is on the order of
Ta2(s/D)−2.

IX. SMOOTHNESS

In preceding sections we have discussed the impact
of using higher order discretizations to minimize error.
In general, both classically and quantumly, one chooses
the order of the discretization of the Laplacian on a lat-
tice to obtain discretization errors of order ak, where a is
the lattice spacing. The choice of k is influenced by the
smoothness of the underlying continuum solution that
one is attempting to discretize. A high order discretiza-
tion with error O(ak) of an mth derivative is only justified
if the exact solution is (k+m)-times differentiable, since
any such discretization of an mth derivative is derived by
Taylor expanding the exact solution to order k+m. Fur-
thermore, knowing the magnitude of these higher deriva-
tives allows quantitative error bounds to be derived, as
we show in this section.

Theorem 1. Let Ω be a bounded convex domain in Rd .
Let f be a smooth function on Ω that vanishes on the
boundaries. Let~v(~x) be the solution to

~∇ ·~v(~x) = f (~x) (57)

on Ω with no divergenceless component. Then,√∫
Ω

ddx~v(~x) ·~v(~x) ≤ `

π

√∫
Ω

ddx f (~x)2 (58)

where ` is the diameter of Ω.

Proof. The divergence operator is not invertible because
it has a kernel. However, it does have a Moore-Penrose
pseudoinverse Div−1, which is typically expressed in
terms of the Green’s function, as follows.

Div−1[ f ](~x) =
∫

Ω
ddy f (~y)

~y−~x
|~y−~x|d

. (59)

We next note that the Laplacian operator can be written
as ∇2 = ∇†∇. (Here, we think of ∇ as a column vec-
tor of partial derivative operators.) The singular values
of the Laplacian are therefore the squares of the singu-
lar values of ∇†, which is the Divergence operator. The
fundamental gap theorem [22, 23] states that on a convex
bounded domain Ω, the smallest nontrivial eigenvalue of
the Laplacian subject to Neumann boundary conditions
is lower bounded by π2/`2 where ` is the diameter of Ω.
Consequently, the smallest nonzero singular value of ∇†,
i.e. the divergence operator, can be at most π/`. Hence
the largest singular value of Div−1 can be at most `/π .
Thus we obtain (58).

Theorem 2. Let D be Hermitian linear combination of
finite-order partial derivatives on Rd . Let φλ be the so-
lution to

∂ 2φλ

∂ t2 = ∇
2
φλ −λ

2D2
φλ (60)

on some continuous domain Ω⊂Rd subject to Dirichlet
or Neumann boundary conditions. We take initial condi-
tions at t = 0 to be fixed functions φ (~x,0), and φ̇ (~x,0)
independent of λ . Then for any ε ∈R and any t ≥ 0

‖φε (t)−φ0(t)‖ ≤
√

2tε

[(
‖φ (0)‖2 +

d

∑
j=1
‖‖ψ j(0)‖2

)
(61)

×

(
‖Dφ (0)‖2 +

d

∑
j=1
‖Dψ j(0)‖2

)]1/4

where ‖ f‖ ≡
√∫

Ω ddx| f (~x)|2 and

~ψ(~x,0) =
∫

ddy
~x−~y
|~x−~y|d

φ̇ (~y,0). (62)

Proof. Let

13



Sλ =

[
φλ

~ψλ

]
(63)

H0 =


0 ∂

∂x1
. . . ∂

∂xd

− ∂

∂x1
0 . . . 0

... 0 . . . 0
− ∂

∂xd
0 . . . 0

 (64)

HD =


D 0 . . . 0
0 −D . . . 0
...

. . .
0 0 . . . −D

 (65)

Hλ = H0 +λHD (66)
dSλ

dt
= −iHλ Sλ . (67)

By (67),

d2

dt2 Sλ = −H2
λ

Sλ (68)

=


∇2−λ 2D2 0 . . . 0

0 ∂ 2

∂x2
1
−λ 2D2 . . . ∂ 2

∂x1∂xd

...
. . .

0 ∂ 2

∂xd ∂x1
. . . ∂ 2

∂x2
d
−λ 2D2




φ

ψ1
...

ψd

 .

Thus the solution to (67) satisfies (60). As initial condi-
tions (t = 0) for ~ψλ we can take

~ψ(0) = Div−1 [
φ̇ (0)

]
(69)

where Div−1 is as defined in (59). By (67) we have

d
dt
〈Sε ,S0〉=

〈
Ṡε (t),S0(t)

〉
+
〈
Sε (t), Ṡ0(t)

〉
(70)

= 〈−i(H0 + εHD )Sε (t),S0(t)〉 (71)
+ 〈Sε (t),−iH0S0(t)〉
= 〈Sε (t), i(H0 + εHD )S0(t)〉 (72)
+ 〈Sε (t),−iH0S0(t)〉
= iε〈Sε (t),HDS0(t)〉. (73)

Thus, by the Cauchy-Schwarz inequality∣∣∣∣ d
dt
〈Sε ,S0〉

∣∣∣∣≤ ε‖Sε (t)‖×‖HDS0(t)‖, (74)

where ‖S‖ is a shorthand for
√
〈S,S〉. Hλ is Hermitian

for real λ and therefore ‖Sε (t)‖= ‖Sε (0)‖.∣∣∣∣ d
dt
〈Sε ,S0〉

∣∣∣∣≤ ε‖Sε (0)‖×‖HDS0(t)‖. (75)

Next, we observe that

‖HDS0(t)‖= ‖H+
D S0(t)‖ (76)

where the operator

H+
D =


D 0 . . . 0
0 D . . . 0
...

. . .
0 0 . . . D

 (77)

is Hermitian and commutes with H0. Thus, ‖HDS0(t)‖
is conserved, and (75) becomes∣∣∣∣ d

dt
〈Sε ,S0〉

∣∣∣∣≤ ε‖Sε (0)‖×‖HDS0(0)‖, (78)

which expands out to∣∣∣∣ d
dt
〈Sε ,S0〉

∣∣∣∣≤ ε

√√√√‖φ (0)‖2 +
d

∑
j=1
‖ψ j(0)‖2 (79)

×

√√√√‖Dφ (0)‖2 +
d

∑
j=1
‖Dψ j(0)‖2.

By definition

‖Sε (t)−S0(t)‖= 〈Sε (t)−S0(t),Sε (t)−S0(t)〉(80)
= 〈Sε (t),Sε (t)〉+ 〈S0(t),S0(t)〉
− 2Re〈Sε ,S0〉

The “Hamiltonians” H0 and HD are Hermitian so
〈Sε (t),Sε (t)〉 and 〈S0(t),S0(t)〉 are time-independent.
Thus,

d
dt
‖Sε (t)−S0(t)‖2 = −2Re

d
dt
〈Sε ,S0〉. (81)

Applying (79) yields∣∣∣∣ d
dt
‖Sε (t)−S0(t)‖2

∣∣∣∣≤ 2ε

√√√√‖φ (0)‖2 +
d

∑
j=1
‖ψ j(0)‖2 (82)

×

√√√√‖Dφ (0)‖2 +
d

∑
j=1
‖Dψ j(0)‖2.

The triangle inequality and (82) yield

‖Sε (t)−S0(t)‖2 = ‖Sε (0)−S0(0)‖2 +
∫ t

0
dτ

d
dτ
‖Sε (τ)−S0(τ)‖2

≤ ‖Sε (0)−S0(0)‖2 +
∫ t

0
dτ

∣∣∣∣ d
dτ
‖Sε (τ)−S0(τ)‖2

∣∣∣∣
≤ ‖Sε (0)−S0(0)‖2 (83)

+ 2tε

√√√√‖φ (0)‖2 +
d

∑
j=1
‖ψ j(0)‖2

√√√√‖Dφ (0)‖2 +
d

∑
j=1
‖Dψ j(0)‖2.
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The initial conditions have Sε (0) = S0(0), and therefore

|Sε (t)−S0(t)‖2 ≤ 2tε

√√√√‖φ (0)‖2 +
d

∑
j=1
‖ψ j(0)‖2 (84)

×

√√√√‖Dφ (0)‖2 +
d

∑
j=1
‖Dψ j(0)‖2.

Recalling the definition of Sλ (63),

‖Sε (t)−S0(t)‖2 = ‖φε (t)−φ0(t)‖2+‖~ψε (t)−~ψ0(t)‖2.
(85)

Thus (84) implies the bound

‖φε (t)−φ0(t)‖2 ≤ 2tε

√√√√‖φ (0)‖2 +
d

∑
j=1
‖ψ j(0)‖2 (86)

×

√√√√‖Dφ (0)‖2 +
d

∑
j=1
‖Dψ j(0)‖2.

From this we obtain the final bound.

In the special case that D = ∇2 and Ω is convex we
can bound ‖HDS0(0)‖ in terms of more accessible quan-
tities, as follows.

Theorem 3. Let φλ be the solution to

∂ 2φλ

∂ t2 = ∇
2
φλ −λ

2 (
∇

2)2
φλ (87)

on some convex domain Ω ⊂ Rd subject to Dirichlet or
Neumann boundary conditions. We take initial condi-
tions at t = 0 to be fixed functions φ (~x,0), and φ̇ (~x,0)
independent of λ . Then for any ε ∈R and any t ≥ 0

‖φε (t)−φ0(t)‖ ≤
√

2tε‖∇2φ (0)‖ (88)

×
(
‖φ (0)‖2 +

`2

π2 ‖φ̇ (0)‖
2
)1/4

.

where ‖ f‖ ≡
√∫

Ω ddx| f (~x)|2.

Proof. By theorem 2,

‖φε (t)−φ0(t)‖ ≤
√

2tε

[(
‖φ (0)‖2 +

d

∑
j=0
‖ψ j(0)‖2

)
(89)

×

(
‖∇2

φ (0)‖2 +
d

∑
j=0
‖∇2

ψ j(0)‖2

)]1/4

By theorem 58,

d

∑
j=0
‖ψ j(0)‖2 ≤ `2

π2 ‖φ̇ (0)‖. (90)

Recalling (59), we have

∇
2~ψ(0) = ∇

2
∫

ddy
~x−~y
|~x−~y|d

φ̇ (~y) (91)

=
∫

ddy
(

∇
2 ~x−~y
|~x−~y|d

)
φ̇ (~y) (92)

=~0. (93)

Substituting (90) and (93) into (89) yields (88).

Theorem 2 gives a very nice quantitative upper bound
on discretization errors in terms of directly accessible
properties of the initial conditions. However, it only
applies under the specific condition that the error term
of interest is expressible as a negative coefficient times
the square of a Hermitian linear combination of partial
derivatives. Not all discretized Laplacians satisfy this.
However, it is possible to engineer high order Laplacians
such that this is the case. We illustrate this by giving
an explicit discretized Laplacian in two dimensions with
error of order a2, which satisfies this condition. The for-
mula is

1
a2

{
− 2

15 [φ (x,y+ 2a)+φ (x,y−2a)+φ (x+ 2a,y)+φ (x−2a,y)]

− 1
10 [φ (x+ a,y+ a)+φ (x−a,y+ a)+φ (x+ a,y−a)

+φ (x−a,y−a)]+ 26
15 [φ (x+ a,y)+φ (x−a,y) +φ (x,y+ a)

+φ (x,y−a)]−6φ (x,y)}

= ∇2φ (x,y)− a2

20

(
∇2)2

+O(a6),
(94)

as one can verify by Taylor expansion. Thus “stencil” for
discretizing a two dimensional Laplacian is illustrated
in figure 7. An incidence matrix factorization for this
stencil-based Laplacian is given in appendix C 3.

Theorem 3 has the benefit that the error bound is char-
acterized directly in terms of easily accessible quantities
(φ and φ̇ ). However, the downside is that the condition
on the error term (namely that it should take the form of
a negative coefficient times the square of a Laplacian) is
somewhat restrictive. Theorem 2 is more general in that
the error term could be higher order, but still requires it
to be the square of a differential operator. In appendix
A we derive an alternative theorem which relaxes this
restriction and can be applied to Laplacians that are con-
structed directly as a sum of discretized second partial
derivatives. Relative to stencil-based discrete Laplacians
such as in figure 7 these Laplacians are much easier to
derive and factor into incidence matrices at any order.
On the other hand, we do not know how to use the meth-
ods of appendix A appears to obtain an error bound di-
rectly in terms of φ and φ̇ . (In other words, appendix
A contains only an analogue of theorem 2 but no ana-
logue of theorem 3.) We include both versions of our
analysis as we believe it may depend on context which
one is more useful. A related question, which we leave
for future work, is whether the specialized forms for the
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FIG. 7. This linear combination of values at neighboring lat-
tice sites produces a discrete approximation to the Laplacian
with errors of order a2 satisfying the conditions of theorem 2.
Specifically, one obtains ∇2φ (x,y)− a2

20
(
∇2)2

+O(a6). Thus
the operator D in theorem 2 is in this case ∇2.

discretized Laplacians devised in this section and in ap-
pendix A result in smaller discretization errors than other
discretized Laplacians at the same order. It is quite pos-
sible that they only aid in yielding provable error bounds
but do not actually yield smaller error in practice.

X. POST-PROCESSING

After performing Hamiltonian simulation we are
left with a state which encodes both φ (T ) and
B−1dφ (T )/dt. Depending on the application, we might
be interested in just φ or just dφ/dt or both.

If our goal is to produce a state proportional to φ then
the post-processing amounts to measuring if the state is
in HV or HE (recall the full Hilbert space is HV ⊕HE ),
with success if it is measured in HV . In general we can-
not give a reasonable lower bound on the success proba-
bility of this measurement, even for simple systems. To
see this, consider the case of the standing wave in 1D
with Dirichlet boundary conditions. The initial condi-
tions are φ (x,0) = cos(x) and dφ (0)/dt = 0, and at any
other time the field can be written φ (x, t) = f (t)cos(x)
for some f that oscillates between 1 and -1. If the evolu-
tion time T is chosen so that f (T ) = 0 then φ (x,T ) = 0.
So the state will have no support (up to errors from the

finite difference method) in HV . However, at least in
this example, for average choice of T instead of worst-
case, one will have an O(1) probability of obtaining the
φ subspace. The same issue arises if we are instead wish
to extract dφ/dt from the complementary subspace.

If our goal is to produce a state proportional to dφ/dt
then the post-processing is a little more complicated. We
begin by measuring if the state is in HV or HE , with
success if it is measured in HE . The resulting state is
proportional to B−1dφ/dt, so it remains to cancel B−1.
This inverse can be canceled in much the same way that
B−1 was originally applied. Mirroring the procedure for
matrix inversion in [8], the procedure for matrix multi-
plication is

|B−1dφ/dt〉|0〉|0〉= ∑
j

α j|Λ j〉|0〉|0〉 (95)

7→∑
j

α j|Λ j〉|λ̃ j〉|0〉 (96)

7→∑
j

α j|Λ j〉|λ̃ j〉 (97)

×

 λ̃ j

C
|0〉+

√
C2− λ̃ 2

j

C
|1〉

 .

The first line re-expresses the initial state in the eigen-
basis {|Λ j〉} of the Hamiltonian which is simulated in
the subsequent phase estimation step.

In the second line we run phase estimation on the uni-
tary exp (−iH), where H is exactly the same Hamilto-
nian we used for simulating the wave equation, and write
the eigenvalues to the second register. We use |Λ j〉 to de-
note the eigenstate with eigenvalue λ j, but we use |λ̃ j〉 to
denote a state encoding the approximation of the eigen-
value output by phase estimation.

In the third line we perform a controlled rotation of the
second qubit. The constant C must satisfy C ≥

√
||L|| so

that the argument under the square root is not negative.
Setting it to Θ(

√
||L||), the probability of measuring the

last qubit in |0〉 is κ(L)−2 in the worst case (i.e. when
the initial state only has support in the ground space of
the Hamiltonian.). Then we produce a state proportional
to dφ (T )/dt conditioned on measuring the last qubit in
the state |0〉.

XI. COMPARISON TO OTHER QUANTUM
ALGORITHMS

As discussed in the introduction, there are three quan-
tum algorithms to which ours can be meaningfully com-
pared. The algorithm of Clader, Jacobs, and Sprouse
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solves a problem related to, but not identical with, that
solved here. Namely they give a quantum algorithm to
compute scattering crossections in the special case of
monochromatic illumination [5]. In [7], Montanaro and
Pallister analyze the degree to which quantum linear sys-
tem algorithms can achieve speedups for finite element
methods. The performance of such quantum algorithms
when applied to wave equations is a complex question
that we defer to future work.

The most direct comparison to our algorithm can be
made with the algorithm of Berry, Childs, Ostrander, and
Wang [2]. Since the algorithm of [2] only works for first
order differential equations, we must introduce ancillary
variables to simulate a second order differential equation.
To simulate the wave equation for φ (x), we introduce
the variable θ (x) ≡ a dφ

dt , in which case we have the first
order equation

d
dt

[
φ

θ

]
=

1
a

[
0 1
−L 0

][
φ

θ

]
(98)

Let

A =
1
a

[
0 1
−L 0

]
(99)

and let V be a matrix that diagonalizes A:

A = V−1DV D diagonal. (100)

(V is defined only up to an overal normalization.) The
complexity of the algorithm of [2] is dictated by κV , the
condition number of V (which is independent of the nor-
malization of V ). Specifically, theorem 9 of [2] gives a
runtime upper bound for their quantum algorithm of

Õ (κV sgT‖A‖) , (101)

where s is the sparsity of A, and g is a measure of how
much the norm of the solution vector x(t) varies over the
duration of the simulation, namely

g = max
t∈[0,T ]

‖~x(t)‖/‖~x(T )‖. (102)

We can see that for the problem at hand, as the lattice
spacing a is taken to zero:

s = O(1)
T = O(1)
g = O(1)

‖A‖= O(a−1). (103)

We can work out κV by noting that A is diagonalized
by the matrix whose columns are the eigenvectors of

A. That is, if the eigenvectors of A are ~v1, . . . ,~vN with
corresponding eigenvalues λ1, . . . ,λN then V−1AV =
diag(λ1, . . . ,λN) where

V =

 ~v1 ~v2 . . . ~vN

 (104)

Let~y1, . . . ,~yN denote the eigenvectors of L. By inspecting
(99) one sees that the eigenvectors of A are[

~y1
i
√

λ1~y1

]
,
[

~y1
−i
√

λ1~y1

]
, . . . ,

[
~yM

i
√

λM~yM

]
,
[

~yM
−i
√

λM~yM

]
.

(105)
(M is the dimension of L and N = 2M is the dimension
of A.)

We can thus write V in the following block form.

V =

[
Y Y
iZ −iZ

]
(106)

where

Y =

 ~y1 ~y2 . . . ~yM

 (107)

and

Z =

 √λ1~y1
√

λ2~y2 . . .
√

λM~yM

 . (108)

L is a symmetric matrix so~y1, . . . ,~yM form an orthogonal
basis. We choose the normalizations to make it orthonor-
mal. Let U be the orthogonal matrix that diagonlizes Y .
Then[

UT 0
0 UT

]
[V ]

[
U 0
0 U

]
=

[
1 1

iS −iS

]
, (109)

where

S =


√

λ1
. . . √

λM

 . (110)

Permuting the basis then yields
B1

B2
. . .

BM

 (111)

where for each j = 1, . . . ,M the block B j is given by the
following 2×2 matrix

B j =

[
1 1

i
√

λ j −i
√

λ j

]
. (112)
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This preceeding manipulations were all changes of ba-
sis, which do not affect the eigenspectrum of. Thus, the
eigenvalues of V are the eigenvalues of B1, . . . ,BM . By
direct calculation, the eigenvalues of B j are q(+)

j and q(−)j
where

q(±)j =
1
2

(
1+ i

√
λ j±

√
1−6i

√
λ j−λ j

)
. (113)

For a path graph of N vertices the eigenvalues of the
Laplacian range from ∼ 1/N2 to 1, and the same is true
for any larger constant number of dimensions for the
eigenvalues of an N ×N × . . .×N grid. The smallest
eigenvalue of V is thus q(−)i with where i indexes the
smallest eigenvalue of L. Thus, for large N, we can ap-
proximate q(−)i by Taylor expanding to lowest order in√

λi, obtaining

q(−)i =
1
2

(
1+ i

√
λ j−

√
1−6i

√
λ j−λ j

)
(114)

' 2i
√

λ j, (115)

which is of order a. Similarly, we can see that the largest
eigenvalue of V is O(1) and thus

κV = Θ(a−1). (116)

Substituting (116) and (103) into (101) yields a total
complexity of O(a−2) for the quantum algorithm of [2].

In the algorithm presented here, we have quadratically
better dependence on κ . There are three places for this
dependence to come into the total complexity of our al-
gorithm. First, if we choose to prepare an arbitrary ini-
tial state, then the first step of our algorithm is to im-
plement, via quantum linear algebra methods [8, 16, 17]
the Moore-Penrose pseudoinverse of the incidence ma-
trix B. The complexity of this step is proportional to
the condition number of B, which is the square root of
the condition number of the Laplacian L [26]. A sec-
ond place that the condition number can contribute to the
complexity is in the post-processing, as we saw when
we considered producing a state proportional to dφ/dt.
Here our approach also scales quadratically better with
respect to the condition number of the Laplacian. Addi-
tionally, the number of qubits required by our algorithm
is logN where N is the number of lattice sites, whereas
the number of qubits required by the algorithm of [2] is
O(log(N)+ log t), where t is the duration of the process
to be simulated.

It is worthwhile to relate the Laplacian’s condition
number, which is a fairly abstract quantity, with param-
eters of more direct physical significance. In the case of

a Laplacian for a D-dimensional cubic volume of dimen-
sion `× `× . . . discretized into a cubic lattice of spacing
a one sees that the largest eigenvalue of − 1

a2 L is of or-
der D/a2 and the smallest eigenvalue is of order 1/`2.
Thus the condition number of the Laplacian is of order
D`2/a2, so the incidence matrix has a condition num-
ber of order

√
D`/a. In our algorithm, the simulation

of the time-evolution itself, achieved using [10], scales
as Õ(stD/a). Thus, both state preparation and time-
evolution have complexity scaling linearly in a−1.

XII. KLEIN-GORDON EQUATION

Going to relativistic theories we know that spinless
particles are described by the Klein-Gordon equation,

1
c2

∂ 2φ

∂ t2 −∇
2
φ +

m2c2

h̄2 φ = 0, (117)

where m is the particle mass, c is the speed of light and h̄
the Planck constant. In order to not carry these constants
any more we will adopt the natural units, which implies
c = 1 and h̄ = 1.

As we can see we are dealing with a wave equation,
and thus it also should admit some Hamiltonian in our
Schrödinger equation. Suppose we have a graph G′,
where

∂ 2φ

∂ t2 =
1
a2 L (G′)φ ,

is the discretized version of Eq.(117). It means that our
Laplacian has the whole information about the particle,
which includes its mass term. In fact this graph G′ can
be easily achieved from a graph G that gives our ordinary
wave equation, which means L (G) does not have a mass
term.

Starting with G the mass term can be realized by
adding self loops with W = (am)2 as its weight on all
vertices of G. This manipulated graph is our graph G′.
Finally, as we did before, we need to construct its inci-
dence matrix B (G′) in order to get the Laplacian,

B (G′)† B (G′) = L (G′) .

Besides, without difficult we can see how this Laplacian
is related with the Laplacian from G

L (G′) = L (G)+ a2m2I,

where I is the identity matrix. Therefore, whereas B (G)
gives our ordinary wave equation, applying B (G′) in our
Hamiltonian gives our relativistic wave equation.
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XIII. MAXWELL’S EQUATIONS

With µ0 = ε0 = 1 and without sources, Maxwell’s
equations governing the time evolution of electric and
magnetic fields take the form

∂~E
∂ t

= ~∇×~B
∂~B
∂ t

= −~∇×~E

which imply that ~E and ~B both follow the wave equation.
If we consider discretizing space, then we can write these
as

∂

∂ t

[
~E
~B

]
=

[
0 C
−C 0

][
~E
~B

]
where C is the finite difference approximation of the curl
operator. To see how to construct C, consider the follow-
ing

~∇×

a
b
c

=

∂c/∂y−∂b/∂ z
∂a/∂ z−∂c/∂x
∂b/∂x−∂a/∂y

=

 0 −∂ /∂ z ∂ /∂y
∂ /∂ z 0 −∂ /∂x
−∂ /∂y ∂ /∂x 0

a
b
c

 .

This suggests we should consider the linear differen-
tial equation

∂

∂ t


Ex
Ey
Ez
Bx
By
Bz

 (118)

=


0 0 0 0 −∂ /∂ z ∂ /∂y
0 0 0 ∂ /∂ z 0 −∂ /∂x
0 0 0 −∂ /∂y ∂ /∂x 0
0 ∂ /∂ z −∂ /∂y 0 0 0

−∂ /∂ z 0 ∂ /∂x 0 0 0
∂ /∂y −∂ /∂x 0 0 0 0




Ex
Ey
Ez
Bx
By
Bz


We can discretize space into a uniform cubic lattice

and approximate the differential operators using finite
difference methods to reduce this to an ordinary differ-
ential equation. (Appendix C contains numerical val-
ues for the entries of these operators up to tenth or-
der.) This ordinary differential equation will be a case
of Schrödinger’s equation since the approximate differ-
ential operators coming from the Lagrange interpolation
formula are anti-Hermitian. In this case, unitarity trans-
lates to conservation of the classical energy contained in

the field
∫

V
|~E(~x)|2 + |~B(~x)|2.

XIV. FUTURE WORK

It is an interesting open question whether our quan-
tum algorithm is optimal. In particular, it is natural to

ask whether an analogue of the no-fast-forwarding the-
orem from [18] could yield a lower bound for the com-
plexity of the problem of simulating wave equations that
matches the complexity of the algorithm presented here.
It is also interesting to investigate the performance of
quantum algorithms for simulating the wave equation
based on finite element methods, rather than finite dif-
ference methods, as considered here. Another direc-
tion for future work is to use automated circuit synthe-
sis techniques to generate concrete quantum circuits im-
plementing our algorithm and thereby obtain quantita-
tive resource estimates for benchmark instances of wave
equation simulation problems. Lastly, one can consider
extending the quantum algorithm presented here to more
complicated wave equations.
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Appendix A: Alternative Smoothness Analysis

Theorem 4. Let φλ be the solution to

∂ 2φλ

∂ t2 = ∇
2
φλ +λ

2
d

∑
j=1

(
∂ k

∂xk
j

)2

φλ (A1)

on some compact continuous domain Ω ⊂Rd subject to
some specified boundary conditions. We take initial con-
ditions at t = 0 to be fixed functions φ (~x,0) and φ̇ (~x,0)
independent of λ . Then for any ε ∈R and any t ≥ 0

‖φε (t)−φ0(t)‖ ≤
√

2tε

[(
‖φ (0)‖2 +

d

∑
j=1
‖ψ j(0)‖2

)

×

 d

∑
j=1

∥∥∥∥∥ ∂

∂xk
j
φ (0)

∥∥∥∥∥
2

+
d

∑
l=1

∥∥∥∥∥ ∂ k

∂xk
j
ψl(0)

∥∥∥∥∥
2
1/4

.

where ‖ f‖ ≡
√∫

Ω ddx| f (~x)|2 and

~ψ(~x,0) =
∫

ddy
~x−~y
|~x−~y|d

φ̇ (~y,0). (A2)
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Proof. Let

Sλ =

 φλ

~ψλ

~θλ

 (A3)

∇ =

[
∂

∂x1
, . . . ,

∂

∂xd

]
(A4)

∇k =

[
∂ k

∂xk
1

, . . . ,
∂ k

∂xk
d

]
(A5)

H0 =

 0 ∇ 0
−∇T 0 0

0 0 0

 (A6)

H1 =

 0 0 ∇k
0 0 0
−∇T

k 0 0

 (A7)

Hλ = H0 +λH1 (A8)
dSλ

dt
= −iHλ Sλ . (A9)

By (A9),

d2

dt2 Sλ = −H2
λ

Sλ (A10)

=

 ∇2 +λ 2∇2
k 0 0

0 ∇T ∇ λ∇T ∇k
0 λ∇T ∇k λ 2∇T

k ∇k

 φ

~ψ
~θ

 . (A11)

Thus the solution to (A9) satisfies (A1). As initial con-
ditions (t = 0) for ~ψλ we take

~ψ(0) = Div−1 [
φ̇ (0)

]
(A12)

~θ (0) = 0 (A13)

where Div−1 is as defined in (59). By (A9) we have

d
dt
〈Sε ,S0〉=

〈
Ṡε (t),S0(t)

〉
+
〈
Sε (t), Ṡ0(t)

〉
(A14)

= 〈−i(H0 + εH1)Sε (t),S0(t)〉 (A15)
+ 〈Sε (t),−iH0S0(t)〉
= 〈Sε (t), i(H0 + εH1)S0(t)〉 (A16)
+ 〈Sε (t),−iH0S0(t)〉
= iε〈Sε (t),H1S0(t)〉. (A17)

Thus, by the Cauchy-Schwarz inequality∣∣∣∣ d
dt
〈Sε ,S0〉

∣∣∣∣≤ ε‖Sε (t)‖×‖H1S0(t)‖, (A18)

where ‖S‖ is a shorthand for
√
〈S,S〉. Hλ is Hermitian

for real λ and therefore ‖Sε (t)‖= ‖Sε (0)‖. Thus (A18)
simplifies to∣∣∣∣ d

dt
〈Sε ,S0〉

∣∣∣∣≤ ε‖Sε (0)‖×‖H1S0(t)‖. (A19)

Next, observe that

‖H1S0(t)‖=

√√√√∥∥∥∥∥ d

∑
j=1

∂ k

∂xk
j
θ j

∥∥∥∥∥
2

+
d

∑
j=1

∥∥∥∥∥ ∂ k

∂xk
j
φ

∥∥∥∥∥
2

. (A20)

and ∥∥∥∥∥ ∂ k

∂xk
j
φ

∥∥∥∥∥
2

≤

∥∥∥∥∥ ∂ k

∂xk
j
φ

∥∥∥∥∥
2

+
d

∑
l=1

∥∥∥∥∥ ∂ k

∂xk
j
ψl

∥∥∥∥∥
2

(A21)

=
∥∥∥H (k)

j S0(t)
∥∥∥2

(A22)

where

H
(k)

j = ik



∂ k

∂xk
j

∂ k

∂xk
j

. . .
∂ k

∂xk
j

0
. . .

0


. (A23)

For any k, H (k)
j commutes with the H0 and is Hermitian.

Thus ∥∥∥H (k)
j S0(t)

∥∥∥= ∥∥∥H (k)
j S0(0)

∥∥∥ . (A24)

Next, we observe that∥∥∥∥∥ d

∑
j=1

∂ k

∂xk
j
θ j

∥∥∥∥∥ ≤ d

∑
j=1

∥∥∥∥∥ ∂ k

∂xk
j
θ j

∥∥∥∥∥ (A25)

≤
√

d

√√√√ d

∑
j=1

∥∥∥∥∥ ∂ k

∂xk
j
θ j

∥∥∥∥∥
2

(A26)

=
√

d‖Hθ S0(t)‖ (A27)

where

Hθ =



0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . 0 0 . . . 0
0 0 . . . 0 ∂ k

∂xk
1

...
...

...
. . .

0 0 . . . 0 ∂

∂xk
d


. (A28)

Hθ is Hermitian and commutes with H0 thus, by (A13),

‖Hθ S0(t)‖= ‖Hθ S0(0)‖= 0. (A29)
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Substituting these results into (A20) yields

‖H1S0(t)‖ ≤

√√√√ d

∑
j=1

∥∥∥H (k)
j S0(0)

∥∥∥2
. (A30)

Substituting (A30) into (A19) yields

∣∣∣∣ d
dt
〈Sε ,S0〉

∣∣∣∣≤ ε‖Sε (0)‖×

√√√√ d

∑
j=1

∥∥∥H (k)
j S0(0)

∥∥∥2
.

(A31)
By definition

‖Sε (t)−S0(t)‖2 = 〈Sε (t)−S0(t),Sε (t)−S0(t)〉
= 〈Sε (t),Sε (t)〉+ 〈S0(t),S0(t)〉
− 2Re〈Sε ,S0〉. (A32)

The “Hamiltonians” H0 and H1 are Hermitian so
〈Sε (t),Sε (t)〉 and 〈S0(t),S0(t)〉 are time-independent for
any ε ∈R. Thus,

d
dt
‖Sε (t)−S0(t)‖2 = −2Re

d
dt
〈Sε ,S0〉. (A33)

Thus, by (A31)

∣∣∣∣ d
dt
‖Sε (t)−S0(t)‖2

∣∣∣∣≤ 2ε‖Sε (0)‖×

√√√√ d

∑
j=1

∥∥∥H (k)
j S0(0)

∥∥∥2
.

(A34)
By the triangle inequality

‖Sε (t)−S0(t)‖2 = ‖Sε (0)−S0(0)‖2 (A35)

+
∫ t

0
dτ

d
dτ
‖Sε (τ)−S0(τ)‖2

≤ ‖Sε (0)−S0(0)‖2

+
∫ t

0
dτ

∣∣∣∣ d
dτ
‖Sε (τ)−S0(τ)‖2

∣∣∣∣ .
The initial conditions have Sε (0) = S0(0), and therefore

‖Sε (t)−S0(t)‖2 ≤
∫ t

0
dτ

∣∣∣∣ d
dτ
‖Sε (τ)−S0(τ)‖2

∣∣∣∣ .
(A36)

Applying (A34) to (A36) yields

‖Sε (t)−S0(t)‖2 ≤ 2tε‖Sε (0)‖×

√√√√ d

∑
j=1

∥∥∥H (k)
j S0(0)

∥∥∥2
.

(A37)
Recalling the definition of Sλ (A3),

‖Sε (t)−S0(t)‖2 = ‖φε (t)−φ0(t)‖2+‖~ψε (t)−~ψ0(t)‖2.
(A38)

Thus (A36) implies the bound

‖φε (t)−φ0(t)‖2 ≤ 2tε‖Sε (0)‖×

√√√√ d

∑
j=1

∥∥∥H (k)
j S0(0)

∥∥∥2
.

(A39)
By (A23), (A3), and (A13), (A39) becomes

‖φε (t)−φ0(t)‖2 ≤ 2tε

√√√√(‖φ (0)‖2 +
d

∑
j=1
‖ψ j(0)‖2

)
(A40)

×

√√√√√
 d

∑
j=1

∥∥∥∥∥ ∂

∂xk
j
φ (0)

∥∥∥∥∥
2

+
d

∑
l=1

∥∥∥∥∥ ∂ k

∂xk
j
ψl(0)

∥∥∥∥∥
2
 .

Theorem 4 gives a very nice quantitative upper bound
on discretization errors in terms of directly accessible
properties of the initial conditions. Furthermore, theo-
rem 1 shows that the quantity ~ψ(0) has magnitude not
too much larger than the chosen initial velocity φ̇ (0).
However, theorem 4 applies only under the specific con-
dition that the error term of interest is expressible as a
positive coefficient times the sum of (2k)th derivatives.
Not all discretized Laplacians satisfy this. However, it is
possible to engineer high order Laplacians such that this
is the case. This problems reduces to engineering a high
order discretized one-dimensional derivatives such that
the leading error term is a positive coefficient times an
even derivative. The Laplacian in d dimensions can then
be composed as the sum of these discretized derivatives
along each of the coordinate axes.

We illustrate this by giving an explicit discretized
Laplacian in one dimension with error of order a4, which
satisfies this condition and then computing a correspond-
ing incidence matrix factorization. By Taylor expansion,
one can verify that

−9
2

f (x)+
17
6
( f (x+ a)+ f (x−a))

−41
60

( f (x+ 2a)+ f (x−2a))+
1

10
( f (x+ 3a)+ f (x−3a))

= a2 d2 f
dx2 (x)+

4
45

a6 d6 f
dx6 (x)+O(a8). (A41)

On a one dimensional lattice with periodic boundary
conditions we can write this Laplacian as

L(4) = a01+ a1(S+ S−1)+ a2(S2 + S−2)

+ a3(S3 + S−3)

where S is the cyclic shift operator and

a0 = −9/2
a1 = 17/6
a2 = −41/60
a3 = 1/10.
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Next, we verify that this can be factorized as

L(4) = −BT B (A42)

with sparse B. To this end we introduce the ansatz

B = b01+ b1S+ b2S2 + b3S3. (A43)

The requirement (A42) then determines a system of
quadratic equations constraining b0,b1,b2,b3. One so-
lution to this system of equations is (up to 6 digits of
precision)

b0 = 1.27811
b1 = −1.63446
b2 = 0.434589
b3 = −0.0782406

as one can verify.

Appendix B: Analytical Q

We begin by giving the mesh spacing as a function of
the number of vertices |V | = n for our one dimensional
lattice

a (n) =
1

n+ 1
. (B1)

As discussed in §VIII, in order to get Q we need to
work with the three different mesh spacing a1, a2 and
a3, where the relation between them can be established
working with the follow total number of vertices

a1 (4n+ 3) =
1

4 (n+ 1)
, (B2)

a2 (2n+ 1) =
1

2 (n+ 1)
,

a3 (n) =
1

n+ 1
,

respectively. Moving forward we get three discrete func-
tions that describe the standing wave,

φ
a
j = cos (ωat) sin

(
π

4 (n+ 1)
j
)

, (B3)

φ
2a
j = cos

(
ω

2at
)

sin
(

π

2 (n+ 1)
j
)

,

φ
4a
j = cos

(
ω

4at
)

sin
(

π

n+ 1
j
)

where ω is the frequency of the wave,

ω
a = 8 (n+ 1) sin

(
π

8 (n+ 1)

)
, (B4)

ω
2a = 4 (n+ 1) sin

(
π

4 (n+ 1)

)
,

ω
4a = 2 (n+ 1) sin

(
π

2 (n+ 1)

)
.

From the Q factor definition we know that we need
to compute two differences Φ4a −Φ2a and Φ2a −Φa.
However, these points should be computed at the same
distance, which means Φ4a

j −Φ2a
2 j , and Φ2a

2 j −Φa
4 j. Let

us proceed with the follow computation,

Φ
4a
j −Φ

2a
2 j =

(
cos
(
ω

4at
)
− cos

(
ω

2at
))

sin
(

π

n+ 1
j
)

.

But we are interest in the continuum limit of this expres-
sion, with means a→ 0 or n→ ∞. Thus, from now the
idea is to work with approximate values. Starting with
the frequency,

ω
4a ' π−δ4a,

ω
2a ' π−δ2a.

where

δ4a = −
π3

24 (n+ 1)2 ,

and

δ2a = −
π3

96 (n+ 1)2 .

Now we can use the following trigonometric property,

cos [(π−δ4a) t]−cos [(π−δ2a) t] =−2sin (ω̄t) sin (δ t) ,

with

ω̄ = π− δ4a−δ2a

2
,

δ =
δ4a−δ2a

2
.

But for large n we get the follow approximations

sin (ω̄t) ' sin (πt) ,

sin (δ t) '−
3π3

192n2 .

However, our real interest is computing the norm∥∥Φ4a−Φ2a
∥∥

2 in the continuum limit,

∥∥Φ
4a−Φ

2a∥∥
2 = lim

n→∞

√
1
n

n

∑
j=1

(
Φ4a

j −Φ2a
2 j

)2
,

= lim
n→∞

√√√√1
n

n

∑
j=1

4sin2 (πt)
(

3π3

192n2

)2

sin
(

π

n+ 1
j
)

.
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where we can make use of the expression below,

lim
n→∞

1
n

n

∑
j=0

sin2
(

π j
n

)
=
∫ 1

0
dxsin2 (πx) =

1
2

,

Therefore,∥∥Φ
4a−Φ

2a∥∥
2 =
√

2sin (πt)
(

3π3

192n2

)
.

Similarly, for
∥∥Φ2a−Φa

∥∥
2 we get

∥∥Φ
2a−Φ

a∥∥
2 = lim

n→∞

√
1
n

n

∑
j=1

(
Φ2a

2 j −Φa
4 j

)2
,

=
1
4

√
2sin (πt)

(
3π3

192n2

)
.

Thus, combining these two results in the Q factor expres-
sion we establish

Q (t)
a→0

= 4,

that agrees with the value for e2 in the Richardson expan-
sion and with our numerical result.

The same steps can be done for the second order
Laplacian to see Q (t) = 16 in the continuum limit. How-
ever the correct wave frequency for this case is

ω = (n+ 1)

√
5
2
− 8

3
cos
(

π

n+ 1

)
+

1
6

cos
(

2π

n+ 1

)
.

Appendix C: Numerical Values for Higher Order
Operators

In this appendix we provide tables of numerical val-
ues for the entries of higher order approximations of
derivative operators, specifically the first derivative and
the Laplacian. We also include a table of values for fac-
torizing higher order Laplacians, and we discuss how to
deal with factorizing stencil based Laplacians in more
than one dimension. We use kth order to indicate that at
lattice spacing a, the leading error term in the discrete
derivative is of order ak.

1. First Derivative

Below is a table of numerical values a j used for
higher order approximations of the first-order derivative.
For a 1D space with periodic boundary conditions,
the radius-N approximation is ∑

N
j=−N a jS j where S

represents a cyclic permutation of the vertices, i.e.,

Si, j = δi, j+1 mod M for M > 2N + 1.

operator ∂ /∂x
radius N order k entries a−N to aN
1 2 -1/2, 0 ,1/2
2 4 1/12, -2/3, 0, 2/3, -1/12
3 6 -1/60, 3/20, -3/4, 0, 3/4, -3/20, 1/60
4 8 1/280, -4/105, 1/5, -4/5, 0, 4/5, -1/5, 4/105, -1/280
5 10 -1/1260, 5/504, -5/84, 5/21, -5/6, 0, 5/6, -5/21, 5/84, -5/504, 1/1260

2. 1-D Laplacians

If we take the second derivative of the Lagrange
interpolation formula (truncated at the N-th order), we
arrive at Eqn. 45. Using this expression, we can find
the coefficients a j which let us write the Laplacian
under periodic boundary conditions as L = ∑

N
j=−N a jS j.

Since the Laplacian is symmetric a j = a− j. In the table
below we give the values for a j for the first 5 orders of
truncation.
operator ∂ 2/∂x2

radius N order k a0 to aN
1 2 -2,1
2 4 -5/2,4/3,-1/12
3 6 -49/18,3/2,-3/20,1/90
4 8 -205/72,8/5,-1/5,8/315,-1/560
5 10 -5269/1800,5/3,-5/21,5/126,-5/1008,1/3150

In order to implement our algorithm using any of
the above Laplacians, we need to know its incidence
matrix factorization. A simple procedure for doing this
is the following:

1. Generate the coefficients of the Laplacian operator
using the Lagrange interpolation formula.

2. With these coefficients, write the Laplacian for a
1-D grid with periodic boundary conditions in the
form ∑

N
j=−N a jS j. Note a j = a− j since Laplacians

are symmetric.

3. Build an ansatz for the incidence matrix of the
form B = ∑

N
j=1 b j(I−S j).

4. Calculate BB†.

5. Solve BB† = ∑
N
j=−N a jS j for the values b j.

We choose the ansatz B = ∑
N
j=1 b j(I− S j) instead of

one like ∑
N
j=1 c jS j so that BB† automatically has zero

sum rows and columns like a Laplacian under periodic
boundary conditions. The table below gives values for
b j which lead to various higher order Laplacians.
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radius N b1 to bN
1 1
2 1.1547, - (0.5774 ± 0.5)
3 1.2192, -0.1247, 0.0101

0.1247, -1.2192, 1.1046
4 -0.0465, 1.1508, -1.2284, 0.1076

1.2540, -0.1552, 0.0209, -0.0016
0.0209, -0.1552, 1.2540, -1.1181
1.2284, -1.1508, 0.0465, -0.0166

5 -0.0041, 0.0306, -0.1762, 1.2756, -1.1262
1.2756, -0.1762, 0.0306,-0.0041,0.0003
0.0289, 1.0626, -1.3223, 0.2195, -0.0131
0.2195, -1.3223, 1.0626, 0.02891, 0.0243

3. 2-D Laplacians

If we restrict to decomposing Laplacians into the form
Ltot = Lx + Ly (treating the total Laplacian operator as
the sum of the Laplacians in the x and y directions) then
we can factor them simply by concatenating incidence
matrices, as described in Subsection VII D. These Lapla-
cians are a restricted case since they approximate the sec-
ond derivative at vertex (x,y) using only the values of the
function at vertices in the set {(x,y+ r)|r ∈ {−k,−k +
1 . . .k−1,k}}∪{(x+ r,y)|r ∈ {−k,−k+ 1 . . .k−1,k}}
(i.e. using vertices lying on a +-sign shaped subset of
the vertices at distance ≤ r from (x,y)).

Another well-known way to approximate Laplacians
in multiple dimensions is to use stencils such as the one
in Figure 7. These have the disadvantage that their inci-
dence matrices are not simply the concatenation of inci-
dence matrices for Laplacians in the x and y directions;
however, our procedure for calculating incidence matrix
factorizations in this case can generalize. Using stencils
has the advantage that they approximate the Laplacian at
(x,y) using all points within some distance r of (x,y) and
not just those within distance r in the x of y direction.

We show how to factor the Laplacian corresponding
to the stencil in Fig. 7 which has error of order a2. The
formula is

1
a2

{
− 2

15 [φ (x,y+ 2a)+φ (x,y−2a)+φ (x+ 2a,y)

+φ (x−2a,y)]− 1
10 [φ (x+ a,y+ a)+φ (x−a,y+ a)

+φ (x+ a,y−a)+φ (x−a,y−a)]+ 26
15 [φ (x+ a,y)

+φ (x−a,y)+φ (x,y+ a)+φ (x,y−a)]−6φ (x,y)}

= ∇2φ (x,y)− a2

20

(
∇2
)2
+O(a6),

(C1)
as one can verify by Taylor expansion. Previously we
assumed we worked in a large one dimensional space
with periodic boundary conditions; in this case we as-

sume we’re working on a large 2D space with periodic
boundaries which can be treated as a torus discretized
using a square grid. The Laplacian matrix can then be
expressed as

L = −6I +
26
15

(S⊗ I + S†⊗ I + I⊗S+ I⊗S†) (C2)

− 1
10

(S⊗S+ S⊗S† + S†⊗S+ S†⊗S†)

− 2
15

(S2⊗ I +(S†)2⊗ I + I⊗S2 + I⊗ (S†)2)

Our ansatz for the incidence matrix is

B =

[
| j|+|k|≤N

∑
j,k

b j,k(I−S j⊗Sk) | N

∑
j=−N

c j(I−S j⊗ I)

]

where [A|B] denotes the horizontal concatenation of
matrices A and B. By construction this ansatz has zero-
sum rows.

In terms of hypergraphs, this incidence matrix has hy-
peredges connecting vertices at distance at most 2N from
each other, so the stencil they produce will have diam-
eter at most 4N. In fact there are two types of hyper-
edges present. Those encoded in the left block of the
incidence matrix (the part where the coefficients b j,k ap-
pear) are hyperedges which span all N neighbors of their
center vertices; those encoded in the right block span all
N neighbors of their center vertex which have the same y
coordinate.

The stencil in Figure 7 has diameter 4, and to factor it
it suffices to set N = 1. Doing so we find 16 solutions for
the coefficients b j,k and c j, one of which is

b0,1 =
1

46

(
1
5

(
−
√

345−15
)
+ 3
)

b1,0 =
1

30

(
−
√

345−15
)

b−1,0 =
1

30

(
−
√

345−15
)
+ 1

b0,−1 =
1

46

(
1
5

(
−
√

345−15
)
+ 3
)

c1 =
1

138

(
−2
√

1794−69
)

c−1 =
1

138

(
−2
√

1794−69
)
+ 1 (C3)

One might expect to find solutions with c j = 0 for all
j; however, they don’t exist. This reveals the importance
of choosing the right ansatz for an incidence matrix fac-
torization. For example, when factoring a 3D Laplacian
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built from a stencil with diameter 4N, one might try the
ansatz

B′ =

| j|+|k|+|l|≤N

∑
j,k,l

b j,k,l(I−S j⊗Sk⊗Sl) | N

∑
j=−N

c j(I−S j⊗ I⊗ I)



and not find solutions, while the ansatz

B′′ =

[
| j|+|k|+|l|≤N

∑
j,k,l

b j,k,l(I−S j⊗Sk⊗Sl)

| N

∑
j=−N

c j(I−S j⊗ I⊗ I) | N

∑
j=−N

d j(I− I⊗S j⊗ I)

]
might have solutions.
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