
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum analog-digital conversion
Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii
Phys. Rev. A 99, 012301 — Published 2 January 2019

DOI: 10.1103/PhysRevA.99.012301

http://dx.doi.org/10.1103/PhysRevA.99.012301

Quantum analog-digital conversion

Kosuke Mitarai,1, ∗ Masahiro Kitagawa,1, 2 and Keisuke Fujii3, 4, †

1Graduate School of Engineering Science, Osaka University,
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
2Quantum Information and Quantum Biology Division,

Institute for Open and Transdisciplinary Research Initiatives,
Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

3Graduate School of Science, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302, Japan.
4JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

(Dated: October 29, 2018)

Many quantum algorithms, such as Harrow-Hassidim-Lloyd (HHL) algorithm, depend on oracles
that efficiently encode classical data into a quantum state. The encoding of the data can be cat-
egorized into two types; analog-encoding where the data are stored as amplitudes of a state, and
digital-encoding where they are stored as qubit-strings. The former has been utilized to process
classical data in an exponentially large space of a quantum system, whereas the latter is required
to perform arithmetics on a quantum computer. Quantum algorithms like HHL achieve quantum
speedups with a sophisticated use of these two encodings. In this work, we present algorithms
that converts these two encodings to one another. While quantum digital-to-analog conversions
have implicitly been used in existing quantum algorithms, we reformulate it and give a generalized
protocol that works probabilistically. On the other hand, we propose a deterministic algorithm
that performs a quantum analog-to-digital conversion. These algorithms can be utilized to realize
high-level quantum algorithms such as a nonlinear transformation of amplitudes of a quantum state.
As an example, we construct a “quantum amplitude perceptron”, a quantum version of the neural
network, and hence has a possible application in the area of quantum machine learning.

I. INTRODUCTION

A wide variety of quantum algorithms that potentially
give quantum speedups over classical computers has been
proposed. The problems that are efficiently solved by ex-
isting quantum algorithms can be divided into two types:
ones where input data of a problem is relatively small in
size but the problem itself is hard classically, and ones
where the input of a problem is exponentially large, mak-
ing it hard to handle on classical computers. The formers
are solved by algorithms such as Shor’s factoring [1], or
quantum chemistry calculations [2]. On the other hand,
there are algorithms that solve problems categorized as
the latter. They achieve quantum speedups only if an or-
acle that encodes N classical data in O(poly(logN)) time
exists [3]. A famous example is Harrow-Hassidim-Lloyd
(HHL) algorithm [4], which is an algorithm to apply a in-
verse A−1 of a matrix A to a N = 2n-dimensional vector
{cj}Nj=1. It requires us to construct a quantum state:

N∑
j=1

cj |j〉 , (1)

where {cj}Nj=1 normalized to satisfy
∑N
j=1 |cj |2 = 1.

Data encoding in the format of Eq. (1) is crucial for all
HHL-based algorithms [5–8], and others [9, 10]. We will
call the state of Eq. (1) as an “analog-encoded” state,

∗ mitarai@qc.ee.es.osaka-u.ac.jp
† fujii.keisuke.2s@kyoto-u.ac.jp

since data are encoded into analog quantities, that is,
complex amplitudes of a quantum state. Here we define
an analog-encoding unitary transformation UA({cj}) by:

UA({cj}) |0〉 =
∑
j

cj |j〉 . (2)

Another approach is to encode m-bits of binary data

into qubit-strings. Let N and dj = {d(k)j }mk=1 (d
(k)
j =

0, 1, j = 1, · · · , N) be the number of binary data pro-
vided and the data bitstrings. In this approach, data are
encoded as follows:

1√
N

N∑
j=1

|j〉 |dj〉 =
1√
N

N∑
j=1

|j〉 |d(m)
j · · · d(1)j 〉 . (3)

We will call this state as a “digital-encoded” state. For
example, quantum algorithms for solving semidefinite
programs (SDPs) [11, 12] depends on this encoding. Sim-
ilarly to an analog-encoding unitary transformation, we
define a digital-encoding unitary transformation by

UD({dj}) |j〉 |0〉 = |j〉 |dj〉 . (4)

UD is often called quantum random access memory
(QRAM). Refs. [13, 14] have provided a protocol which
employs qutrits to speedup a memory call to O(log2N)
two-body interaction gates. Their method is promising
compared to a conventional method that requires O(N)
operations. It might be worth noting that in the context
of QRAM, it is usually assumed that we already have
“memory cells” which stores data in the form accessible
from a quantum computer. The O(log2N) operations do
not include the construction of them.

2

Many quantum algorithms sophisticatedly use these
two types of encodings. For example, in HHL algorithm
[4], an analog-encoded state Eq. (1) is put through quan-
tum phase estimation algorithm that digitally encode
eigenvalues {λj} of a matrix A, and then the inverse
of them are multiplied to the amplitudes by controlled
rotations (Fig. 1 (b)); in quantum metropolis sampling
[15], energy eigenvalue {Ej} of a Hamiltonian is first dig-
itally encoded by the phase estimation, and then the en-
coded energies are transferred to amplitudes in the form
of e−β(Ej−Ek), again using controlled rotations.

In this paper, we investigate the relation between these
two different encoding methods. Specifically, we con-
centrate on conversions between these two encodings;
can you go from “digital-encoding” to “analog-encoding”
(quantum digital-to-analog conversion, QDAC), or the
other way around (quantum analog-to-digital conversion,
QADC)? DAC and ADC play important roles in classi-
cal information processing, since digitally-stored data are
easier to handle than analog data which physical systems
generate and are driven by. QDAC and QADC can be re-
garded as quantum analogs of them, and therefore there
is a possibility that they stimulate the construction of
more sophisticated quantum algorithms.

First, we formulate these problems. It is shown that
QDAC can be implemented probabilistically, and QADC
deterministically. A special case of QDAC, in fact, has
implicitly been employed in existing algorithms such as
HHL and quantum metropolis samplings. We unify those
techniques and give a generalized procedure. QDAC and
QADC algorithms provide an insight into what should be
done in digital- or analog-encodings. Also, as an applica-
tion, we show that a QADC-QDAC combined method
can be utilized to perform almost arbitrary nonlinear
transformations of amplitudes of a quantum state. This
result can be utilized, for example, for a purpose of con-
structing quantum machine learning algorithms.

This paper is organized as follows. First in Sec. II,
we summarize the algorithms we use as subroutines and
define QADC and QDAC problem. In Sec.III, we re-
view QDAC procedures that have implicitly been utilized
in existing algorithms. We also present the generalized
QDAC procedure. Then in Sec.IV, we present an algo-
rithm to perform QADC. In Sec. V, we provide appli-
cations of QADC, and show that QADC combined with
QDAC provides us a way to perform a nonlinear trans-
formation of amplitudes of a quantum state.

II. PRELIMINARY

Here we summarize some useful results from existing
works along with definitions of terms. Throughout this
paper N = 2n denotes the number of data.

Fact 1 (analog encoding unitary [16, 17])
For given classical data {xj}Nj=1 ∈ RN such that∑N
j=1 x

2
j = 1, a binary-tree like classical data structure

Classical data�� , ��

Analog-encoding �=1� �� �

Digital-encoding1� �=1� � |��⟩
QDACQADCEncode

(a)

Analog-encoding �=1� �� �
Analog-/ digital-

encoding �=1� �� �� |��⟩

Vector �� Eigenvalue �� of matrix �
Analog-encoding �=1� �−1� � �QDAC

Phase estimation

(b) HHL algorithm

FIG. 1. (a) Schematic sketch of analog-encoding and digital-
encoding. QDAC and QADC mediates these two encod-
ings. (b) A brief flowchart of HHL algorithm [4]. {|aj〉} de-
note eigenvectors of a Hermitian matrix A, each correspond-
ing to eigenvalues {λj}. χj are complex numbers such that∑N

j=1 xj |j〉 =
∑N

j=1 χj |aj〉.

can be constructed in time O(N log2N) on a classical
computer. With this structure, there exists a quantum
algorithm that constructs an analog-encoding unitary
UA({xj}Nj=1) with O(logNpoly(log logN)) single- and
two-qubit gates.

We use the phase estimation algorithm stated below
as a key ingredient of our QADC algorithm.

Fact 2 (phase estimation [18]) Let U be a unitary
operator acting on M -qubit Hilbert space with eigenstates

{|ψj〉}2
M

j=1 and corresponding eigenvalues {e2πiφj}2Mj=1

where φj ∈ [0, 1). Let ε = 2−m for some positive
integer m. There exists a quantum algorithm, which
consists of O(1/ε) controlled-U calls and O(log2(1/ε))
single- and two-qubit gates, that performs transforma-

tion
∑2M

j=1 aj |ψj〉 |0〉
⊗m → |ψPE〉 =

∑2M

j=1 aj |ψj〉 |φ̃j〉

where φ̃j denotes a bitstring φ̃j
(1)
φ̃j

(2)
· · · φ̃j

(m)
such that

|
∑m
k=1 φ̃

(k)
j 2−k − φj | ≤ ε for all j with state fidelity at

least 1− poly(ε).

We say that |ψ̃〉 has fidelity 1−δ with |ψ〉 when | 〈ψ̃|ψ〉 | =
1−δ. The phase estimation algorithm can also be viewed
as a digital-encoding unitary transformation, where the
address is replaced by eigenstates of U .

Next we state a version of the amplitude amplification
technique.

Fact 3 (amplitude amplification [19]) Suppose we
have a unitary operator U that acts on M -qubit Hilbert

3

space as U |0〉⊗M = α |ψ〉 |0〉 + β |G〉 |1〉 where |ψ〉 , |G〉
are arbitrary M − 1-qubit states. Then probability of
getting |ψ〉 |0〉 can be made close to unity by O(1/|α|)
application of U .

We define QDAC as follows.

Definition 1 (QDAC) Let {dj}Nj=1 be a set of real
numbers in [0, 1), each of which is represented by dj =∑m
k=1 d

(k)
j 2−k with binary variables d

(k)
j ∈ {0, 1}. Let dj

denote the m-bit string d
(1)
j · · · d

(m)
j . An m-bit QDAC op-

eration transforms digital-encoded state 1√
N

∑N
j=1 |j〉 |dj〉

to C
∑N
j=1 dj |j〉 |0〉

⊗m
where C is a normalization con-

stant.

As for QADC, the amplitudes {cj}Nj=1 of a quantum
state are, in general, complex numbers. Therefore we
define three versions of QADC, each corresponding to
the analog-to-digital conversion of the absolute value, the
real part, and the imaginary part of {cj}.

Definition 2 (abs-QADC) Let r̃j denote the m-

bit string r̃
(1)
j · · · r̃

(m)
j that best approximates |cj |

by
∑m
k=1 r̃

(k)
j 2−k. An m-bit abs-QADC operation

transforms analog-encoded state
∑N
j=1 cj |j〉 |0〉

⊗m
to

1√
N

∑N
j=1 |j〉 |r̃j〉.

Definition 3 (real-QADC) Let x̃j denote the m-bit

string x̃
(1)
j · · · x̃

(m)
j that best approximates the real part

of cj by
∑m
k=1 x̃

(k)
j 2−k. An m-bit real-QADC opera-

tion transforms analog-encoded state
∑N
j=1 cj |j〉 |0〉

⊗m
to

1√
N

∑N
j=1 |j〉 |x̃j〉.

Definition 4 (imag-QADC) Let ỹj denote the m-bit

string ỹ
(1)
j · · · ỹ

(m)
j that best approximates the imaginary

part of cj by
∑m
k=1 ỹ

(k)
j 2−k. An m-bit imag-QADC oper-

ation transforms analog-encoded state
∑N
j=1 cj |j〉 |0〉

⊗m

to 1√
N

∑N
j=1 |j〉 |ỹj〉.

We use quantum arithmetics as a subroutine, which is
stated as the following theorem.

Fact 4 (quantum arithmetics [20]) Let a, b be m-bit
strings. There exists a quantum algorithm that performs
transformation |a〉 |b〉 → |a〉 |a+ b〉 or |a〉 |b〉 → |a〉 |ab〉
with O(poly(m)) single- and two-qubit gates.

Note that for accuracy defined as ε = 2−m, quantum
arithmetics scales as O(poly(log(1/ε))). Furthermore, we
assume the following statement as a fact.

Fact 5 Some basic functions such as inverse, trigono-
metric functions, square root, and inverse trigonometric
functions can be calculated to accuracy ε, that is, we can
perform a transformation |a〉 |0〉 → |a〉 |f̃(a)〉 such that

|f̃(a) − f(a)| ≤ ε where f(a) is the objective function,
using O(poly(log(1/ε))) quantum arithmetics.

A similar title is found on Ref. [21]. However, their
purpose was to map a continuous-space wave function
|ψ〉 =

∫
dxψ(x) |x〉 to a discrete-space wave function

|ψd〉 =
∑
j ψ(j/N) |j〉. In the context of this paper, it

can be viewed as analog-to-analog conversion.

III. QDAC

It is actually straightforward to create an analog-
encoded state from a digital-encoded state just by adding
an ancilla qubit and performing a controlled rotation
with the data register. In fact, this QDAC procedure has
implicitly used in existing works. For example, HHL [4]
has utilized the above protocol to multiply the inverse
of eigenvalues of a Hermitian matrix A to an analog-
encoded state vector. We state this QDAC operation
formally as a theorem below.

Theorem 1 (QDAC with ancilla) There exists a
quantum algorithm that performs m-bit QDAC using
O(poly(log(1/ε))) single- and two-qubit gates and one

U†D, where ε = 2−m, with probability
∑N
j=1 d

2
j/N .

Proof - The procedure of the algorithm is as follows. As-
sume that we are provided with a digital-encoded state
Eq. (3).

1. Compute ϕj = 2
π cos−1 dj by quantum arithmetics.

1√
N

N∑
j=1

|j〉 |dj〉 |0〉⊗m →
1√
N

N∑
j=1

|j〉 |dj〉 |ϕj〉 , (5)

where ϕj denotes m-bit strings ϕ
(1)
j · · ·ϕ

(m)
j such

that ϕj =
∑m
k=1 ϕ

(k)
j 2−k.

2. Adding an ancilla qubit |0〉a, perform a controlled

rotation Ry(πϕj) = eiπϕjY/2, on the ancilla.

1√
N

N∑
j=1

|j〉 |dj〉 |ϕj〉 |0〉a

→ 1√
N

N∑
j=1

|j〉 |dj〉 |ϕj〉
(
dj |0〉a +

√
1− d2j |1〉a

)
. (6)

3. Measure the ancilla in computational basis. With

probability
∑N
j=1 d

2
j/N , we obtain

C

N∑
j=1

dj |j〉 |dj〉 |ϕj〉 |0〉a , (7)

where C =
√

1/(
∑N
j=1 d

2
j).

4. Uncompute ϕj (step 1) and apply U†D. We now
have an analog-encoded state

C

N∑
j=1

dj |j〉 . (8)

4

Now we analyze the complexity. On step 1, cos−1 dj
can be calculated with quantum arithmetics using
O(poly(log(1/ε))) gates by Fact 5. Step 2 uses m =
log(1/ε) controlled rotations. Therefore, overall complex-

ity for steps 1, 2 and 4 is O(poly(log(1/ε))) and one U†D.

The success probability of step 3 is
∑N
j=1 d

2
j/N . �

Success probability of above procedure can be rewrit-
ten in terms of the mean µ and the variance v of the

data, since 1
N

∑N
j=1 d

2
j = v + µ2. Note that, when

v+µ2 � 1 and the success probability is relatively small,
the amplitude amplification technique can be utilized to
shorten the expected running time quadratically from

O(1/(v + µ2)) to O
(

1/
√

(v + µ2)
)

.

When one modifies Step 1 to give ϕj = cos−1(f(dj)),
we readily obtain the following.

Corollary 1.1 (generalized QDAC) There exists a
quantum algorithm that performs the transformation
1√
N

∑N
j=1 |j〉 |dj〉 → C ′

∑N
j=1 f̃(dj) |j〉 |0〉 such that

|f̃(dj) − f(dj)| ≤ ε, where f : [0, 1) → [0, 1) is a func-
tion satisfying Fact 5, using O(poly(log(1/ε))) single-

and two-qubit gates, with probability
∑N
j=1 f̃(dj)

2/N =

(NC ′)−1.

If we choose f(x) = tanh(x), Collorary 1.1 provides an
alternative way to implement a sigmoid function other
than the one proposed in Ref. [22].

IV. QADC

First, we propose an abs-QADC algorithm. Note that
the abs-QADC may easily be constructed with the real-
QADC and the imag-QADC presented as Theorem 3 and
4. However, we expect that the abs-QADC algorithm
that we present here would bring you some intuitions
in the construction of the algorithm. We use the swap
test [23], which is a special case of the Hadamard test, to
extract the absolute value of amplitudes. The usual swap
test, as described in Fig. 2, measures an absolute value
of an inner product of arbitrary two states |ψ〉 and |ξ〉 as
p0, the probability of getting |0〉 from an ancilla qubit. If
we input |k〉, which is a computational basis state, and
an analog-encoded state to the swap test, we can extract
a data xk. The amplitude estimation [19] of p0 can be
utilized to encode the data digitally. An important trick
used in the algorithm presented below is that this process
can be parallelized.

Theorem 2 (abs-QADC) There exists an m-bit abs-
QADC algorithm that runs using O(1/ε) controlled-UA
gates and O((log2N)/ε) single- and two-qubit gates with
output state fidelity 1−O(poly(ε)), where ε = 2−m.

Proof - First we provide the algorithm. (See Fig. 3 for
steps 1-4.)

1. Prepare address qubits. 1√
N

∑N
k=1 |k〉ad

|𝜉⟩|𝜓⟩|Ͳ⟩ H H

𝑛𝑛
𝑝0 = ͳʹ ሺͳ + 𝜉 𝜓 2ሻ

FIG. 2. Quantum circuit of the swap test [23].

2. Perform controlled-NOT from the address qubits
to initialized ancilla qubits, which will be referred

as qubits A, to get 1√
N

∑N
k=1 |k〉ad |k〉A.

3. Prepare the analog-encoded state in data qubits,∑
j cj |j〉data.

4. Using another ancilla qubit (We will call it qubit
B), perform a swap test [23] without measurement
between data-qubit and qubits A (Fig. 3). We have:

∑
k

|k〉ad
2
√
N

∑
j

cj |j〉data |k〉A + |k〉data
∑
j

cj |j〉A

 |0〉B +

∑
j

cj |j〉data |k〉A − |k〉data
∑
j

cj |j〉A

 |1〉B
 (9)

≡ 1√
N

∑
k

|k〉ad |Ψk〉data,A,B . (10)

Fig. 3 shows the quantum circuit from step 1 to
step 4. We define V to be the combined unitary
transformation of step 3 and 4. This step extracts
an absolute value rk of amplitude ck each corre-
sponding to an address |k〉ad. The similar idea is
also used in Ref. [24].

5. Construct a gate

G = V (CNOT)ad→AS0(CNOT)ad→AV
†ZB , (11)

where S0 is a conditional phase shift gate; S0 =
I − 2 (|0〉 〈0|)data,A,B and ZB is a Pauli Z gate only

acting on the qubit B (Fig. 4). The act of G can
be written as

G
1√
N

∑
k

|k〉ad |Ψk〉data,A,B =

1√
N

∑
k

|k〉ad
(
Gk |Ψk〉data,A,B

)
, (12)

where

Gk = V SkV
†ZB , (13)

and

Sk = I − 2 (|0〉 〈0|)data,B ⊗ (|k〉 〈k|)A. (14)

5

Each |Ψk〉data,A,B is decomposed into two of eigen-

states |Ψk+〉data,A,B and |Ψk−〉data,A,B of Gk, each
respectively corresponding to eigenvalue λk± =

e±i2πθk where sin(πθk) =
√

1
2 (1 + r2k) and θk ∈

[1/4, 1/2). The decomposition is: |Ψk〉data,A,B =
−i√
2
(eiπθk |Ψk+〉data,A,B−e−iπθk |Ψk−〉data,A,B). See

Appendix for detailed description.

6. Introducing the register qubits, run the phase esti-
mation of G as depicted in Fig.5. Then we have:

1√
2N

∑
k

|k〉ad
(
|θk〉reg′ |Ψk+〉data,A,B

+ |1 − θk〉reg′ |Ψk−〉data,A,B
)

≡ 1√
N

∑
k

|k〉ad |Ψk,AE〉reg′,data,A,B (15)

where |θk〉reg′ and |1 − θk〉reg′ are m-bit strings
that store θk and 1− θk as binary data, and

|Ψk,AE〉reg′,data,A,B =

1√
2

(
|θk〉reg′ |Ψk+〉data,A,B + |1 − θk〉reg′ |Ψk−〉data,A,B

)
(16)

7. On another register, using digital quantum arith-

metics, calculate rk =
√

2 sin2 πθk − 1. Note that
sinπθk = sinπ(1−θk), and rk is uniquely recovered
since rk ∈ [0, 1]. Then finally we get:

1√
N

N∑
k=0

|k〉ad |r̃k〉reg |Ψk,AE〉reg′,data,A,B . (17)

8. Uncompute the data, A, B, reg’ qubits. We obtain:

1√
N

N∑
k=0

|k〉ad |r̃k〉reg |0〉reg′,data,A,B , (18)

which is a digital-encoded state.

Here we analyze the complexity of the above algo-
rithm. For steps 1 to 4, we used O(logN) single- and
two-qubit gate. On step 5, the phase estimation, we need
to use O(1/ε) of controlled-UA and O(log2N/ε) of single-
and two-qubit gate. Step 6, quantum arithmetics takes
O(poly(log(1/ε))) by Fact 5. Therefore, overall complex-
ity is O(1/ε) of controlled-UA and O(log2N/ε) of single-
and two-qubit gate. The fidelity of the output state is
1−O(poly(ε)) by Fact 2. �

Next we show the real-QADC.

Theorem 3 (real-QADC) There exists an m-bit real-
QADC algorithm that runs using O(1/ε) controlled-UA
gates and O((log2N)/ε) single- and two-qubit gates with
output state fidelity 1−O(poly(ε)), where ε = 2−m.

data: ���

address: ���

A: ���

B: ���

�

�
� ∑ � ��

�
� �� �������	

H H

H

�
�

�

�

�

�

FIG. 3. Quantum circuit through steps 1 to 4 of abs-QADC
in the main text.

𝑉† 𝑆0 𝐺𝑉𝑍data
A
B

address

FIG. 4. Definition of gate G in abs-QADC.

Proof - We provide the algorithm. (See Fig. 3 for steps
1-3.) The algorithm presented here is slightly modified
one from the previous algorithm for QADC.

1. Prepare address qubits. 1√
N

∑N
k=1 |k〉ad

2. Prepare the analog-encoded state in data qubits,∑
j xj |j〉data

3. Using another ancilla qubit (We will call it qubit
B), perform an Hadamard test as described in
Fig. 6. We have:

∑
k

|k〉ad
2
√
N

∑
j

xj |j〉data + |k〉

 |0〉B +

∑
j

xj |j〉data − |k〉

 |1〉B
 (19)

≡ 1√
N

∑
k

|k〉ad |Ψk〉data,B . (20)

This step extracts the real part xk of a complex am-
plitude ck each corresponding to an address |k〉ad.
Fig. 6 shows the quantum circuit from step 1 to 3.
We define W to be the combined unitary transfor-
mation of step 2 and 3.

4. Construct a gate

G′ = WS′0W
†ZB , (21)

where S′0 is a conditional phase shift gate; S′0 =
I − 2 (|0〉 〈0|)data,B and ZB is a Pauli Z gate only

acting on the qubit B (Fig. 4). The act of G′ can
be written as

G′
1√
N

∑
k

|k〉ad |Ψk〉data,B =

1√
N

∑
k

|k〉ad
(
G′k |Ψk〉data,B

)
, (22)

6

𝑉 ⟨address: |0ܩ
data: |0⟩

A: |0⟩
B: |0⟩

𝑚 bit register: 0 H

2ܩ 2𝑚−1ܩ 2𝑚ܩ
𝐼𝑄ܨ𝑇

H

FIG. 5. Step 6 of the abs-QADC algorithm. The phase estimationa is performed to encode the analog-encoded value xj into
qubit bitstrings. IQFT is inverse quantum Fourier transformation [25].

where

G′k = (1− 2 |Ψk〉data,B 〈Ψk|data,B)ZB . (23)

Each |Ψk〉data,B is decomposed into two of eigen-

states |Ψk+〉data,B and |Ψk−〉data,B of Gk, each
respectively corresponding to eigenvalue λk± =

e±i2πθk where sin(πθk) =
√

1
2 (1 + xk) and θk ∈

[1/4, 1/2). The decomposition is: |Ψk〉data,B =
−i√
2
(eiπθk |Ψk+〉data,B−e−iπθk |Ψk−〉data,B). The de-

tail of this transformation is similar to the one de-
scribed in Appendix and thus omitted.

5. Introducing the register qubits, run the phase esti-
mation of G′. Then we have:

1√
2N

∑
k

|k〉ad
(
|θk〉reg′ |Ψk+〉data,B

+ |1 − θk〉reg′ |Ψk−〉data,B
)

≡ 1√
N

∑
k

|k〉ad |Ψk,AE〉reg′,data,B (24)

where |θk〉reg′ and |1 − θk〉reg′ are m-bit strings
that store θk and 1− θk as binary data, and

|Ψk,AE〉reg′,data,B =

1√
2

(
|θk〉reg′ |Ψk+〉data,B + |1 − θk〉reg′ |Ψk−〉data,B

)
(25)

6. On another register, using digital quantum arith-
metics, calculate xk = 2 sin2 πθk − 1. Note that
sinπθk = sinπ(1− θk). Then finally we get:

1√
N

N∑
k=0

|k〉ad |x̃k〉reg |Ψk,AE〉reg′,data,B . (26)

7. Uncompute the data, A, B, reg’ qubits. We obtain:

1√
N

N∑
k=0

|k〉ad |x̃k〉reg |0〉reg′,data,B , (27)

data: |0⟩address: |0⟩
B: |0⟩

1𝑁σ𝑘 𝑘 ad Ψ𝑘 data,B
H H

H 𝑈𝐴†
𝑛𝑛

𝑊
𝑈𝐴

FIG. 6. A quantum circuit through steps 1 to 3 of real-QADC
in the main text.

data: |0⟩address: |0⟩
B: |0⟩

1𝑁σ𝑘 𝑘 ad Ψ𝑘 data,B
H H

𝑈𝐴†
𝑛𝑛

𝑊
𝑈𝐴

S

FIG. 7. A quantum circuit element for imag-QADC. The
imag-QADC can be performed by replacing W in the real-
QADC by this circuit.

which is a digital-encoded state.

The runtime of this algorithm is as same as the abs-
QADC. �

The imag-QADC can be constructed in the same man-
ner as the real-QADC. In this case, we replace the gate
W to the one described in Fig. 7. Therefore we have the
following.

Theorem 4 (imag-QADC) There exists an m-bit
imag-QADC algorithm that runs using O(1/ε) controlled-
UA gates and O((log2N)/ε) single- and two-qubit gates
with output state fidelity 1−O(poly(ε)), where ε = 2−m.

7

V. APPLICATIONS

A. Classical data loading

As stated in the introduction, there are some algo-
rithms, such as quantum SDP solvers [11, 12], that re-
quire an oracle which encodes N classical data into a
quantum state Eq. (3) in time O(poly(logN)).

QADC can be utilized for this purpose. Assume that
a binary-tree structure required in Fact 1 is already
constructed on the classical side. Combined with the
analog-encoding unitary UA of Fact 1, the m-bit digital-

encoded state 1√
N

∑N
j=1 |j〉 |dj〉 can be prepared with

O(log2Npoly(log logN)/ε) quantum gates.
Recently another method for digital encoding has been

proposed [26]. They proposed a protocol that directly
encodes binary classical data into qubits.

B. Nonlinear transformation of amplitude

The transformation performed on the probability am-

plitudes cj of a quantum state
∑N
j=1 cj |j〉, without mea-

surements, is always linear owing to the unitarity of
the quantum dynamics. Even with (projective) mea-
surement, the transformation is restricted to the form
of cj/C, where C is some constant that is determined
by the normalization condition. Therefore, a transfor-
mation of the form f(cj) with an arbitrary function f
cannot be done, without encoding them in digital form
using QADC. We state the fact that this form of nonlin-
ear transformation of amplitude can be performed using
QADC and QDAC as the following theorem.

Theorem 5 Let data {cj}Nj=1, analog-encoding unitary

UA({cj}Nj=1) and analog-encoded state
∑N
j=1 cj |j〉 be

given. For any function f : C → [−1, 1] that sat-
isfies Fact 5, there exists a probabilistic quantum al-

gorithm that performs transformation
∑N
j=1 cj |j〉 →

C ′
∑N
j=1 f̃(cj) |j〉, such that |f̃(cj) − f(cj)| ≤ ε,

with O(1/ε) controlled-UA gates and O((log2N)/ε)
single- and two-qubit gates. Probability of success is∑N
j=1 f̃(cj)

2/N and the output state fidelity is 1 −
O(poly(ε))

Proof - By running the QADC algorithm from The-
orem 3 and Theorem 4 in parallel, we get a

state 1√
N

∑N
j=1 |j〉 |x̃j〉 |ỹj〉 using O(1/ε) controlled-

UA gates and O((log2N)/ε) single- and two-qubit
gates with state fidelity 1 − O(poly(ε)). Then per-
forming the modified QDAC from Corollary 1.1, we

get C ′
∑N
j=1 f̃(xj , yj) |j〉 |xj〉 |yj〉 with O(poly(log(1/ε)))

single- and two-qubit gates and with probability∑N
j=1 f̃(cj)

2/N . Finally, application of inverse QADC
leaves us the desired state. �

The most useful application of this would be to deal
with a “quantum big-data”. For example, using UA on
two registers, we can prepare

UA |0〉 ⊗ UA |0〉 =
∑
i,j

cicj |i〉 |j〉 . (28)

UA is not restricted to the loading of classical data {cj},
but can also be a time evolution operator e−iHt, where H
is some Hamiltonian which can efficiently be simulated
on a quantum computer. Notice that the tensor prod-
uct structure of quantum mechanics has calculated the
product ci, cj and the combined system has N2 of ampli-
tudes. This nonlinearity is employed in quantum circuit
learning [27] for machine learning application. The di-
rect digital encoding of these N2 dimensional data on
a quantum state might be impractical, since the calcu-
lation of the product {cicj}Ni,j=1 takes O(N2) time and
space classically. In comparison, the construction of the
quantum state Eq. (28) requires only O(N logN) clas-
sical and O(logNpoly(log logN)) quantum operations.
Tensor product structure is useful to introduce nonlin-
earity to the data in the form of Eq. (28), however, it
cannot be used to introduce general and more complex
transformation stated in above theorem.

Applying QADC on this combined state yields a state,∑
i,j

|i〉 |j〉 |cicj〉 . (29)

Note that this transformation can also be performed
in time O(poly(logN)). Then applying the nonlinear
QDAC procedure and the inverse of QADC, one gets,∑

i,j

f(cicj) |i〉 |j〉 |0〉 , (30)

which has nonlinearly transformed probability ampli-
tudes. A further extension is discussed in the next sub-
section.

C. Quantum amplitude perceptron

When one chooses f(x) = tanh(x) or the ReLU func-
tion which are frequently used in neural networks, it can
readily mimic the perceptron, which is a building block
of neural networks. We denote such an activation func-
tion by σ(x) In neural network, a transformation of the
form σ(w · x), where w and x are a weight vector and
a data vector, is utilized to learn some task. The train-
ing of the network is done by tuning the weight w to
give some specific output. To mimic this, first we ap-
ply a parametrized unitary transformation U(θ), which
corresponds to the weight w, on an analog-encoded state∑N
i=1 ci |i〉, yielding a state

∑N
i=1

∑N
j=1 ujk(θ)cj |i〉. Note

that the amplitude xi can be a resultant amplitude after
the tensor product multiplication described in the previ-
ous section. Then use the procedure of Theorem 5 with

8

the activation function σ, which produces,

C ′
∑
i

σ

∑
j

uij(θ)xj

 |i〉 . (31)

The full tomography of this state would require us an
exponential time, but if one is interested in the constant
number of perceptron outputs, performing a swap test
[23] with chosen basis {|k〉} is enough to extract them.
The state Eq. (31) can be further transformed by some
unitary gates to determine the readout weight of the out-
put.

For machine learning, it is necessary to optimize the
parameter θ. Although the gradient of the output with
respect to θ cannot be extracted due to the complex form
of Eq. (31), gradient-free methods can be utilized, just
as same as mentioned in Ref. [22].

Finally, we note here, if one can determine the value of∑
i

{
σ

[(∑
j uij(θ)xj

)2]}2

somehow, amplitude ampli-

fication technique can be employed to make QDAC pro-
cedure deterministic. This would enable us to implement
a multilayer neural network on a quantum computer de-
terministically.

VI. CONCLUSION

We have formulated QDAC and QADC, and described
algorithms to implement them on quantum computers.
Although QDAC protocols have implicitly been utilized
in existing algorithms, we have generalized it to facil-
itate complex nonlinear functions. We have also pre-
sented an algorithm that performs QADC. It was shown
that a combination of QADC and QDAC enables us al-
most arbitrary nonlinear transformations of amplitudes
of a quantum state. The possible application of this non-
linear transformation is to make a quantum amplitude
perceptron, which can be employed to construct more
sophisticated quantum machine learning algorithms.

ACKNOWLEDGMENTS

KM would like to thank Makoto Negoro for fruit-
ful discussions. KF is supported by KAKENHI No.
16H02211, JST PRESTO JPMJPR1668, JST ERATO
JPMJER1601, and JST CREST JPMJCR1673. KM and
MK are supported by CREST by JST grant number JP-
MJCR1672.

Appendix: Eigenvalues and eigenstates of Gk

Here we calculate the eigenvalues and eigenstates of
Gk defined in Eq. (22). We consider Gk acting on the

state

|Ψk〉data,A,B = V |0〉data |k〉A |0〉B =

1

2

∑
j

cj |j〉data |k〉A + |k〉data
∑
j

cj |j〉A

 |0〉B +

∑
j

cj |j〉data |k〉A − |k〉data
∑
j

cj |j〉A

 |1〉B
 .
(A.1)

First, we define two normalized states

|Ψk0〉 =
1

2αk

∑
j

cj |j〉data |k〉A + |k〉data
∑
j

cj |j〉A

 |0〉B ,
(A.2)

|Ψk1〉 =
1

2βk

∑
j

cj |j〉data |k〉A − |k〉data
∑
j

cj |j〉A

 |1〉B ,
(A.3)

where

αk =

√
1

2
(1 + r2k), (A.4)

βk =

√
1

2
(1− r2k). (A.5)

We define θk ∈ [1/4, 1/2) by

sinπθk = αk. (A.6)

Then |Ψk〉data,A,B can be rewritten as

|Ψk〉data,A,B = αk |Ψk0〉+ βk |Ψk1〉 . (A.7)

We denote ZB , V SkV
† and Gk acting on the subspace

spanned by {|Ψk0〉 , |Ψk1〉} as Z̃B , Ṽ SkV † and G̃k respec-
tively. The first two can be written as

Z̃B = |Ψk0〉 〈Ψk0| − |Ψk1〉 〈Ψk1| , (A.8)

Ṽ SkV † = (1− 2α2
k) |Ψk0〉 〈Ψk0|

+ (1− 2β2
k) |Ψk1〉 〈Ψk1|

− 2αkβk(|Ψk1〉 〈Ψk0|+ |Ψk0〉 〈Ψk1|). (A.9)

Therefore G̃k is

G̃k = Ṽ SkV †Z̃B

= (1− 2α2
k) |Ψk0〉 〈Ψk0|

− (1− 2β2
k) |Ψk1〉 〈Ψk1|

− 2αkβk(|Ψk1〉 〈Ψk0| − |Ψk0〉 〈Ψk1|). (A.10)

Two eigenvalues of G̃k are

λk± = e±i2πθk , (A.11)

9

and eigenvectors |Ψk±〉 each corresponding to λk± are

|Ψk±〉 =
1√
2

(|Ψk0〉 ± i |Ψk1〉) . (A.12)

|Ψk〉 can be decomposed into |Ψk±〉 as

|Ψk〉 =
−i√

2

(
eiπθk |Ψk+〉 − e−iπθk |Ψk−〉

)
. (A.13)

[1] P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
[2] I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H.

Yung, and A. Aspuru-Guzik, Annu. Rev. Phys. Chem.
62, 185 (2011).

[3] S. Aaronson, Nature Physics 11, 291 (2015).
[4] A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev.

Lett. 103, 150502 (2009).
[5] M. Schuld, I. Sinayskiy, and F. Petruccione, Phys. Rev.

A 94, 022342 (2016).
[6] C.-H. Yu, F. Gao, and Q.-Y. Wen, (2017),

arXiv:1707.09524.
[7] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev.

Lett. 113, 130503 (2014).
[8] N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett. 109,

050505 (2012).
[9] N. Wiebe, A. Kapoor, and K. M. Svore, Quantum Info.

Comput. 15, 316 (2015).
[10] S. Lloyd, M. Mohseni, and P. Rebentrost, (2013),

arXiv:1307.0411.
[11] F. G. Brandao and K. M. Svore, in 2017 IEEE 58th An-

nual Symposium on Foundations of Computer Science
(FOCS) (IEEE, 2017) pp. 415–426.

[12] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M.
Svore, and X. Wu, (2017), arXiv: 1710.02581.

[13] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev.
A 78, 052310 (2008).

[14] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev.
Lett. 100, 160501 (2008).

[15] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin,
and F. Verstraete, Nature 471, 87 (2011).

[16] I. Kerenidis and A. Prakash, (2016), arXiv:1603.08675.
[17] I. Kerenidis and A. Prakash, (2017), arXiv:1704.04992.
[18] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca,

Proceedings of the Royal Society A 454, 339 (1998).
[19] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp,

arXiv:0005055 [quant-ph].
[20] L. Ruiz-Perez and J. C. Garcia-Escartin, Quantum In-

formation Processing 16, 152 (2017).
[21] F. Schmüser and D. Janzing, Phys. Rev. A 72, 042324

(2005).
[22] Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik,

arXiv:1711.11240.
[23] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf,

Phys. Rev. Lett. 87, 167902 (2001).
[24] S. S. Zhou, T. Loke, J. A. Izaac, and J. B. Wang, Quan-

tum Inf. Process. 16, 82 (2017).
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, 2010).

[26] J. A. Cortese and T. M. Braje, (2018), arXiv:1803.01958.
[27] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii,

arXiv:1803.00745.

