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Characteristic dips appear in the coherence traces of a probe qubit when dynamical decoupling
(DD) is applied in synchrony with the precession of target nuclear spins, forming the basis for
nanoscale nuclear magnetic resonance (NMR). The frequency of the microwave control pulses is
chosen to match the qubit transition but this can be detuned from resonance by experimental
errors, hyperfine coupling intrinsic to the qubit, or inhomogeneous broadening. The detuning acts
as an additional static field which is generally assumed to be completely removed in Hahn echo
and DD experiments. Here we demonstrate that this is not the case in the presence of finite
pulse-durations, where a detuning can drastically alter the coherence response of the probe qubit,
with important implications for sensing applications. Using the electronic spin associated with a
nitrogen-vacancy centre in diamond as a test qubit system, we analytically and experimentally study
the qubit coherence response under CPMG and XY8 dynamical decoupling control schemes in the
presence of finite pulse-durations and static detunings. Most striking is the splitting of the NMR
resonance under CPMG, whereas under XY8 the amplitude of the NMR signal is modulated. Our
work shows that the detuning error must not be neglected when extracting data from quantum
sensor coherence traces.

I. INTRODUCTION

In the last decade, the nitrogen-vacancy (NV) centre
in diamond [1] has emerged as a leading qubit system
for the development of quantum technologies. The opti-
cal addressability and long coherence times (even at room
temperature) of its electronic spin make the NV an excel-
lent platform for quantum sensing [2–5], computing [6–8]
and devices [9]. A particularly promising application is
nanoscale nuclear magnetic resonance (NMR), which re-
lies on the ability of the NV to detect the weak oscillating
signals from target nuclear spins using dynamical decou-
pling (DD) schemes [4, 5, 10–12]. These methods have
been used to detect single nuclear spins and spin clusters
inside the diamond [13–16], ensembles of nuclear spins on
the diamond surface [17–20] and ultimately single nuclear
spins on the diamond surface [21–23]. DD is also utilised
in protocols for increasing spectral resolution [24–29] and
controlling nuclear spins in spin registers [6, 8].

NMR detection with DD relies on the fact that DD
normally protects a qubit state from decoherence by av-
eraging out the effects of environmental noise [30–32].
When the DD pulses are applied in synchrony with a nu-
clear spin signal, the decoupling fails and characteristic
dips appear in coherence traces. The position and depth
of these dips are used to extract information about the
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incident signal, such as the number and spatial location
of the target spins [21, 23, 33]. It is thus vitally impor-
tant to be able to accurately model the sensor coherence
response, including in the presence of unavoidable control
errors.

In this work, we focus on the effect of a specific type of
error in DD-based NMR sensing, namely detuning errors.
A static detuning is present whenever the microwave fre-
quency within each DD pulse does not match the qubit
transition frequency, which for the NV corresponds to
one of the ms = 0 ↔ ms = ±1 spin transitions. Detun-
ings emerge from experimental errors in the microwave
driving frequency but also from more intrinsic sources
that shift the qubit frequency itself, such as hyperfine
splittings from the host nitrogen spin of the NV as well
as inhomogeneous broadening due to the fluctuating en-
vironment. For instantaneous pulses, detuning errors
can generally be neglected when modelling Hahn echo
and DD experiments as the static field is completely re-
focussed after each pulse. This is how the Hahn echo
and DD protocols extend the coherence of the NV spin
from the dephasing time, T ∗2 , to the true coherence time,
T2 [10]. Here we show, however, that in the presence
of finite pulse-durations [34], the microwave detuning er-
ror can no longer be ignored and can have drastic effects
on the sensor coherence response. In particular, we find
that detunings can split the NMR resonance in CPMG
based detection, and modulate the resonance amplitude
under the XY8 sequence. We investigate these effects
both analytically, by deriving new expressions for the
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sensor coherence response to a classical field under finite-
duration-pulse control, and experimentally, by detecting
an ensemble of protons spins prepared on the diamond
surface using near-surface NV centres. Our findings have
immediate ramifications for experiments that rely on the
position or strength of the coherence dip to extract in-
formation from the environment. More broadly, these ef-
fects present an interesting class of problems as they can-
not be captured by instantaneous pulse models. Whilst
many studies have focussed on the decoupling efficiency
of different DD sequences to errors [35–41], our work rep-
resents a new study of the detuning effect on the resonant
dip associated with nuclear spin detection.

The manuscript is organised as follows. We first de-
tail our methods (Sec. II) for the theoretical description
of DD sequences in the presence of static detunings and
finite-duration pulses (II A) and for the experimental ver-
ification (II B). In Sec. III, we present the results in the
case of the CPMG sequence, whereas Sec. IV is devoted
to the XY8 sequence. Finally, we discuss the implications
of these findings and future work (Sec. V).

II. METHODS

A. Theory

The detection of a large ensemble of weakly coupled
nuclear spins is well described by a semi-classical model,
which treats the sensor quantum mechanically but repre-
sents the nuclear spin signal as a classical field [13, 33]. To
include the effect of detuning errors and finite-duration
pulses, we derive here a new expression for the sensor
coherence response. We consider a spin qubit subject
to a classical signal and dynamical decoupling control
(Fig. 1a). The classical signal can be modelled by a time-
dependent magnetic field, B(t) = (Bx(t), By(t), Bz(t)),
but in the presence of a large external magnetic field ap-
plied along the z-axis – or, in the case of the NV centre,
due to a large zero-field splitting – only the z-component
of the signal field survives the pure-dephasing approxima-
tion. The dynamical decoupling is modelled by the pulse

Hamiltonian, Ĥp(t) = ∆Ŝz +
∑N
m=1 Ω(t− tm)Ŝφm

, which
describes a sequence of N microwave pulses at times tm
(spaced by τ) about the axes described by the phase φm
and with a shape Ω(t) which is zero outside some width
tp. ∆ is the microwave detuning from resonance (see
Fig. 1c) and the pulse Hamiltonian is presented in the
frame rotating with the microwave frequency (neglecting
counter-rotating terms).

The Hamiltonian can be written in the toggling frame,
the frame rotating under Ĥp(t) (see Appendix A), as

Ĥ(t) = −γe
2
Bz(t)

∑
i

fi(t)σ̂i, (1)

where γe = −28 GHz/T × 2π is the gyromagnetic ratio
of the qubit and σ̂i are the usual Pauli matrices. The

fi(t) are the modulation functions which generalise the
single, square-wave modulation function used in many
semi-classical and quantum models [13, 41, 43–46]. Due
to the finite duration, tp, of the microwave π-pulses, the
qubit state is not instantaneously inverted but has some
finite-duration transit. In the limit of tp → 0, the parallel
modulation function, fz(t), recovers this stepped modu-
lation function whilst the perpendicular modulation func-
tions, fx,y(t), vanish. For finite pulse-durations, however,
the perpendicular modulations are non-zero introduc-
ing some spin-mixing into a previously pure-dephasing
Hamiltonian. These generalised modulation functions
have been described previously [47] but here we include
a static microwave detuning in the pulse Hamiltonian
which modifies their behaviour.

To model the coherence response under this finite pulse
control, we follow closely the derivation for the instanta-
neous pulse case [13, 33, 44]. We model a typical DD
experiment that begins with the sensor in an initial su-
perposition state |ψ(0)〉 = (|u〉+|d〉)/

√
2 (where |u, d〉 are

the up and down states of the sensor qubit). After the
application of a DD sequence of total length ttotal the co-
herence is measured along the original superposition axis,
L(ttotal) = 〈ψ(ttotal)|σ̂x|ψ(ttotal)〉. The full evolution

is determined by |ψ(ttotal)〉 = Û(ttotal)Ûp(ttotal) |ψ(0)〉
where Û(t) is the propagator (given in Appendix A) as-
sociated with the toggling frame Hamiltonian, Eq. (1)

and Ûp(t) is the pulse propagator associated with the

pulse Hamiltonian Ĥp(t).
To observe detuning error effects on the resonant co-

herence dip without the loss of background coherence
we assume that the error is small enough to still satisfy
Ûp(ttotal) |ψ(0)〉 ' |ψ(0)〉. For the XY8 sequence this is
satisfied by its robust design which applies pulses at dif-
ferent phases to cancel the accumulation of errors - up
to second order [48]. For the CPMG sequence the error
accumulates quickly but results in an effective rotation
about the x-axis [48]. However, by choosing the initial

state as |ψ(0)〉 = (|u〉+|d〉)/
√

2 this rotation has no effect

and Ûp(ttotal) |ψ(0)〉 ' |ψ(0)〉 is still valid. When the ini-
tial state is not aligned with the x-axis the approximation
fails.

We find that, after a DD sequence of total length ttotal,
the coherence is

L(ttotal) = exp

(
−1

2

γ2e
2π

∫ ∞
−∞

S(ω)|̃f(ω)|2dω t2total

)
, (2)

where S(ω) is the noise spectrum of the classi-
cal signal (resulting from the magnetic field Bz(t))

and f̃(ω) = (f̃x(ω), f̃y(ω), f̃z(ω)) where f̃i(ω) =
1

ttotal

∫ ttotal
0

fi(t) exp(−iωt)dt is the spectrum of the i-
th modulation function. This expression can be inter-
preted the standard way – the DD sequence creates a
narrow-band filter (with filter function |̃f(ω)|2) that is
scanned across the bath noise spectrum as the pulse spac-
ing τ is increased. For instantaneous pulses, Eq. (2) re-
duces exactly to the usual semi-classical expression as
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FIG. 1. (a) The two dynamical decoupling pulse sequences considered in this work to detect an oscillating (AC) magnetic
signal generated, for instance, by an ensemble of nuclear spins. The blue and red pulses correspond to 0◦ and 90◦ phase shift
of the microwave driving field, respectively. (b) Schematic of the experiment: a single nitrogen-vacancy (NV) centre below the
diamond surface, with a semi-infinite sample of nuclear spins above the surface. (c) Transition frequencies of the NV electronic
spin as a function of the axial magnetic field B0. The hyperfine structure due to the 15N nuclear spin of the NV centre
(mI = ± 1

2
) is shown, with the shading of the lines denoting the amount of nuclear spin polarisation under optical pumping, in

particular near the ESLAC at B ≈ 500G the nuclear spin is almost fully polarised into the mI = − 1
2

state [42].

f̃x,y(ω) = 0 and the filter function is simply |̃f(ω)|2 =

|f̃z(ω)|2 [13]. The inclusion of detuning errors and finite-
duration pulses alters this filter function and thus the
coherence response. In Sec. III, we specifically analyse
the response of the CPMG sequence to detuning errors
in the presence of finite-duration pulses. We study the
modulation functions and their spectra to predict the
effect of the coherence response – a drastic splitting of
the characteristic dip. This prediction is verified experi-
mentally. In Sec. IV, we examine the effect of detuning
errors on the coherence signals under XY8 control. Both
instances have implications for experiments that extract
information from the dip position or strength.

B. Experiment

To experimentally test our predictions, we performed
measurements on single NV centres implanted in a
(001)-oriented electronic-grade diamond purchased from
Delaware Diamond Knives and overgrown with 2 µm of
12C-enriched (99.95%) diamond [49]. 15N+ ions were im-
planted (InnovIon) at a fluence of 109 ions/cm2 and en-
ergy of 3 keV, corresponding to NV depths in the range
5− 10 nm [50, 51]. Following implantation, the diamond
was annealed at 950◦C for 2h in a vacuum of∼ 10−5 Torr,
acid cleaned (15 minutes in a boiling mixture of sulphuric
acid and sodium nitrate) and annealed at 500◦C for 4h
in an oxygen atmosphere [23, 52].

As a target sample, we applied a layer of immersion oil
to the diamond surface (Fig. 1b), resulting in an effec-
tively semi-infinite bath of proton spins with a density
of about 60 nm−3 [17, 33]. An external magnetic field
B0 was applied along the NV axis to lift the degeneracy
between the ms = ±1 spin sublevels, with the microwave
driving field (frequency ω) approximately resonant with
the ms = 0 ↔ −1 transition (Fig. 1c). The magnetic

field was applied using a temperature-controlled perma-
nent magnet to minimise magnetic field drifts [53]. Due
to hyperfine coupling with the 15N nuclear spin of the NV
(a spin- 12 ), the electronic spin transition ms = 0 ↔ −1
has in fact two possible frequencies depending on the
state of the nuclear spin, mI = ± 1

2 , separated by about
3 MHz [42]. This gives rise to an intrinsic detuning since
the driving microwave field cannot be resonant with both
transitions simultaneously. In this paper, however, we
chose the strength of the external magnetic field to be
near the excited state level anti-crossing (ESLAC), i.e.
B0 ≈ 500 G, where the 15N spin is efficiently polarised
into the mI = − 1

2 state under optical pumping [42]
(Fig. 1c). This allows us to study the case of a single
qubit frequency, denoted as ωNV, with an independent
control over the detuning ∆ = ω − ωNV. Another mo-
tivation for working near the ESLAC is to facilitate the
alignment of B0, which can be aligned within a few de-
grees of the NV axis by using the angle-dependent pho-
toluminescence (PL) induced by the ESLAC [54–56].

The microwave field was applied using a loop an-
tenna placed in proximity of the diamond. The an-
tenna was connected to a signal generator (Rohde &
Schwarz SMBV100A) gated through the built-in IQ
modulation by a pulse pattern generator (SpinCore
PulseBlasterESR-PRO 500 MHz) to generate the DD
sequences. The microwave pulse shape is roughly flat
topped with a measured rise/fall time of < 4 ns, limited
by the bandwidth of the IQ modulation. For each NV
studied, we first recorded an optically detected magnetic
resonance (ODMR) spectrum at low microwave power
to determine the NV transition frequency, ωNV. We
then performed a Rabi measurement at high microwave
power and zero detuning to determine the π-pulse du-
ration (tp) used in the subsequent DD measurements,
setting tp at the position of the first trough seen in the
Rabi oscillations. When a detuning was applied during
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FIG. 2. (a) Modulation functions (fx, fy, fz) in the time domain for the CPMG sequence with finite duration pulses for zero
and non-zero detuning error. The simulation here has pulse spacing τ = 240 ns, pulse width tp = 40 ns and detunings ∆ = 0
(top graph) and ∆/2π = 1.5 MHz (bottom). These values were chosen to be representative of the experiment performed in

Fig. 3. (b) Filter function, |̃f(ω)|2, for the CPMG sequences shown in (a) but with a total of N = 128 pulses. For zero detuning
there is a central peak at ωDD/2π = 2.08 MHz which splits at non-zero detuning. (c) Scan of the filter function shown in (b)
as a function of the detuning strength, ∆. (d) Scan of the filter function shown in (b) as a function of the pulse width, tp. The
green solid lines indicate the equivalent slices in each map and these also correspond to the filter function shown in (b).

a DD measurement, the microwave power and pulse du-
ration tp were kept constant as determined at zero de-
tuning. We note that the Rabi frequency of the pulses,
Ω = π/tp, was always larger than the detuning. We ap-
ply pulse durations in the range tp = 20→ 80 ns so that
Ω/2π = 6.25→ 25 MHz and test detunings in the range
|∆|/2π = 0→ 3 MHz.

To account for drifts in the NV frequency, we mea-
sured ωNV via ODMR both before and after the DD
measurement and defined the detuning as the difference
∆ = ω − ω̄NV where ω̄NV is the mean NV transition fre-
quency. Drifts in ωNV of up to 0.2 MHz were observed
over the course of a few hours (a typical acquisition time
for a single NMR spectrum), mainly caused by residual
temperature fluctuations of the magnet [53]. As such, an
uncertainty of ±0.1 MHz is associated with the quoted
values of the detuning ∆. In the DD experiments, we
scanned the pulse spacing τ and measured the difference
∆S = (S0 − S1) where S0 (S1) is the photon count af-
ter the DD sequence when the final π/2 pulse projects

the NV spin coherence onto the |0〉 (| − 1〉) state. The
spectrum is then normalised to the τ = 0 case, giving
a measure of the spin coherence. All measurements are
carried out at room temperature.

III. EFFECTS OF DETUNING IN CPMG
BASED NMR

Figure 2a shows the CPMG modulation functions in
the time domain for finite-duration pulses with and with-
out a detuning error. For zero detuning, these modu-
lation functions repeat with a 2-pulse period and have
the resonant frequency ωDD = π/τ where τ is the pulse
spacing. For non-zero detuning, each pulse accumu-
lates a small error and this imprints a slow oscillation
onto the modulation functions (this can be best seen
in fz(t)). Whilst we assumed that the small detuning
error had no effect on the coherence background (i.e.

Ûp(ttotal) |ψ(0)〉 ' |ψ(0)〉) due to it creating an effec-



5

280240200
-3

-2

-1

0

1

2

3

100

80

60

40

20

0
280240200320280240200160

FigCPMG

∆/2
+3.0 MHz

+2.5 MHz

+2.0 MHz

+1.5 MHz

+1.0 MHz

+0.5 MHz

0 MHz

‐0.5 MHz

‐1.0 MHz

‐1.5 MHz

‐2.0 MHz

‐2.5 MHz

‐3.0 MHz

(ns)

C
oh

er
en

ce
 (n

or
m

.)

(a) (b)

, (ns)

(c) 

De
tu
ni
ng

, ∆
/2

(M
Hz

)

50
%

, (ns)

Pu
lse

 d
ur
at
io
n,
 

(n
s)

Data
Theory

FIG. 3. (a,b) NMR spectra obtained using the CPMG sequence for various values of the detuning ∆, with a π-pulse duration
tp = 40 ns, a number of π pulses N = 336, and under a magnetic field B ≈ 500 G. The different spectra are vertically offset for
clarity. The solid lines are double-Lorentzian fits used to estimate the positions of the two NMR dips, τ1 and τ2. (b) Positions
of the two NMR dips extracted from (a), τ1 and τ2, as a function of the detuning ∆. (c) Positions of the two NMR dips as a
function of the π-pulse duration tp for a fixed detuning ∆/2π = +1.5 MHz. Here the number of pulses is N = 256 (shallower
NV compared to (a,b)). In (b,c), the blue dots are the experimental data (blue lines are a guide to the eye) while the red lines
are the theory.

tive x-rotation which does not affect the initial sensor
state [48], this rotation does cause errors to accumulate
in the modulation functions (described in Appendix A).
This beating oscillation splits the resonant frequency of
the CPMG sequence. Figure 2b shows the filter function
|̃f(ω)|2 resulting from these modulation functions, which
have a single peak at ω = ωDD for zero detuning and two
peaks for non-zero detuning due to the accumulation of
the pulse error. These two peaks at ω1 and ω2 are well
resolved, i.e. the difference δω = ω2 − ω1 is much larger
than the peak width (300 kHz against less than 50 kHz,
for a detuning ∆/2π = 1.5 MHz). They have slightly
different amplitudes, which are both roughly half of the
amplitude of the non-split peak.

In Fig. 2c and 2d, the dependence of the filter function
on detuning strength ∆ and pulse width tp is presented.
The behaviour is symmetric about ∆ = 0 but not about
the nominal resonant frequency ωDD. Indeed, although
the two peaks ω1 and ω2 shift symmetrically in terms
of position, with a non-trivial dependence on ∆, their
amplitudes differ, with the ω2 resonance being stronger
than ω1 for detunings up to |∆/2π| ≈ 2 MHz but weaker
for larger detunings (Fig. 2c). The pulse width scan for
a constant non-zero detuning (Fig. 2d) reveals that the
peak positions scale approximately linearly with tp, with

again an asymmetry in amplitude. Importantly, we see
that instantaneous pulses (tp = 0) are unaffected by the
detuning (i.e. there is no splitting) and thus cannot be
used to accurately model the effect of detuning.

To test these predictions experimentally, we measured
the NV spin coherence while scanning the pulse spacing
τ , which is equivalent to scanning the central frequency of
the filter function, ωDD = π/τ . Since the proton ensem-
ble generates a fluctuating signal peaked at the Larmor
frequency ωL/2π ≈ 2.1 MHz, we expect a dip in coher-
ence at τ = π/ωL ≈ 235 ns in the zero-detuning case,
and two dips with a non-zero detuning. The results for a
representative NV centre are shown in Fig. 3a, where the
π-pulse duration was fixed to tp = 40 ns and the detun-
ing varied from ∆/2π = +3 MHz to −3 MHz in steps of
0.5 MHz. The data indeed reveals two dips at times τ1
and τ2 for non-zero detunings, and reproduces the fact
that the amplitude of the τ2 dip (corresponding to the ω1

peak in the filter function) is larger than for τ1 at small
detunings.

A direct comparison of theory and experiment is shown
in Fig. 3b, which plots τ1 and τ2 as a function of the de-
tuning as extracted from Fig. 3a (blue data) and as calcu-
lated for this situation (red lines). While there is a good
qualitative agreement including the roll-over of τ2 near
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FIG. 4. (a) Filter function |f̃(ω)|2 for the XY8 sequence for various values of the detuning ∆, with N = 376, tp = 40 ns and
τ = 235 ns. (b,c) NMR spectra recorded from the same NV as in Fig. 3a using the XY8 sequence with tp = 40 ns and N = 376,
for positive (b) and negative (c) detunings. (d) Decoherence curves recorded for a different NV under the XY8 sequence, with
N = 128, tp = 40 ns and a detuning ∆ = 0 (black line) or ∆/2π = +3 MHz (blue). Also shown for comparison is the case of
the CPMG sequence with ∆/2π = +3 MHz (red). (e) Parameters dNV and T ∗2n obtained by fitting the model of Ref. [33] to
the spectra shown in (b,c), for detunings between -2 and +2 MHz. The lines are a guide to the eye. The vertical error bars are
the standard error from the fit.

|∆/2π| = 2.5 MHz, the splitting observed experimentally
is larger than predicted. We repeated these experiments
on several NV centres and systematically observed this
trend. We attribute this discrepancy to a combination
of pulse errors yet to be identified. We checked theoreti-
cally that a flip-angle error (i.e. an error in the choice of
tp) and/or a more realistic pulse shape do not produce a
larger splitting. In Fig. 3c, we plotted the dip positions
for a constant detuning ∆/2π = +1.5 MHz but varying
pulse duration tp from 80 ns to 24 ns (the smallest pulse
duration achievable with our set-up), confirming the pre-
diction that the splitting increases with tp, although the
measured splitting is again larger than predicted.

It can be noted that Fig. 3a displays a small asym-
metry about ∆ = 0 whereby at +0.5 MHz the dip is
split but at −0.5 MHz the dip is not split. We attribute
this to experimental error. In particular, as explained in
Sec. II B, the detuning was observed to vary during the
acquisition by up to 200 kHz due to residual temperature
fluctuations. In this case, it is possible that the detuning
of −0.5 MHz (average of the detuning measured before
and after the acquisition) was in fact close to zero during
a large portion of the acquisition, resulting in a single
dip. Moreover, in Fig. 3 (theory and experiment) the
splitting of the coherence dip is not symmetric about the
central position, as it is in Fig. 2c. This mismatch arises
simply from plotting the data in different domains - fre-
quency and (temporal) pulse spacing. Whilst the filter

function splitting is symmetric about the central reso-
nance position the switch to a scan over pulse spacing
breaks this symmetry. Additionally, the splitting of the
filter function is itself dependent on the pulse spacing
which further contributes to the aberration. The theory
dip positions presented in Fig. 3b represent a direct map
from the filter function presented in Fig. 2c.

The splitting of the CPMG filter function as a func-
tion of detuning explains why the CPMG protocol is
rarely used for the spectroscopy of weak narrow-band
signals [17] (i.e. requiring a large number of π pulses re-
sulting in a narrow-band filter function), since the shape
of the main resonance is directly affected by inhomoge-
neous broadening or drifts (resulting in a broadening of
the NMR dip), and the splitting induced by a static de-
tuning can even be mistaken for two NMR dips from two
different nuclear spin species. This effect may also be
relevant to broadband noise spectroscopy where CPMG
is sometimes used [57, 58] and τ is scanned over a large
range (limited by tp for the highest frequencies), implying
that the shape of the filter function is not constant across
the scan and possibly resulting in spectral distortions.
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IV. EFFECTS OF DETUNING IN XY8 BASED
NMR

We now investigate the effect of detuning on the XY8
sequence. Figure 4a shows the filter function |̃f(ω)|2 for
a constant pulse duration tp = 40 ns and different de-
tunings. Unlike for the CPMG sequence, here the filter
function exhibits a single resonance at ωDD = 1/2τ for
detunings up to 2 MHz, with only a small splitting ap-
pearing at ∆/2π = 2.5 MHz. This is due to the robust
design of the XY8 sequence as discussed in Appendix B
where the modulation functions are presented. The am-
plitude of the single peak decreases when the detuning
increases, with a 6% and 30% reduction at ∆/2π = 1.5
and 2.0 MHz, respectively.

We tested these detuning effects on the same NV as
in Fig. 3a, with XY8-NMR spectra shown in Figs. 4b
(positive detunings) and 4c (negative detunings). There
is indeed a clear reduction in the amplitude of the dip
as the detuning is increased. Moreover, the presence of
a detuning reduces the baseline coherence and add mod-
ulations that interfere with the NMR dip especially at
large detunings (in particular, the NMR dip is no longer
resolved at ∆/2π = −2.5 MHz). These background co-
herence modulations arise from the detuning error effect
on the qubit evolution even in the absence of dynamic
noise (i.e. when Ûp(ttotal) |ψ(0)〉 6= |ψ(0)〉), and as such
are not captured by Eq. (2). Experimentally, this is best
seen in full-range decoherence curves (Fig. 4d), where
the presence of a detuning is seen to shorten the deco-
herence time T2 and add large modulations that could be
mistaken for NMR resonances. In contrast, the CPMG
sequence is overall more robust to the detuning error, as
can be seen by the ∆/2π = +3 MHz curve showing a sim-
ilar T2 as the zero-detuning XY8 case, with no significant
modulations. This is consistent with previous works that
found the CPMG sequence to perform better than XY8
in protecting a qubit with an initial state parallel to the
axis of the CPMG π-pulses [37–40, 59].

To illustrate how these detuning effects can affect
the interpretation of NMR data, we used the model of
Ref. [33] (which assumes no detuning) to fit the experi-
mental data and extract the dephasing time, T ∗2n, of the
ensemble of nuclear spins producing the NMR signal (re-
lated to the width of the NMR dip), and the depth of
the NV centre, dNV (related to the amplitude for a given
width). These parameters are plotted against the detun-
ing ∆ in Fig. 4e, showing variations significantly larger
than the uncertainty (from the fit). For instance, this
model estimates T ∗2n = 24±7 µs and dNV = 11.8±0.3 nm
from the ∆/2π = +2 MHz data, against T ∗2n = 12± 1 µs
and dNV = 8.9 ± 0.1 nm at ∆ = 0. We stress that such
detunings are sometimes unavoidable, due to inhomoge-
neous broadening (a 2 MHz ODMR linewidth is not un-
common in dense layers of near-surface NV centres [52])
or hyperfine shifts, and as such this motivates the in-
clusion of detuning in the analysis of NMR data, or the
development of pulse sequences that are less sensitive to

detuning [41, 60, 61].

V. CONCLUSION

In this work, we studied the effect of detuning errors
in the context of NMR spectroscopy based on dynamical
decoupling sequences applied to a qubit such as the NV
centre in diamond. We found that the combination of
non-zero detuning and finite pulse-duration gives rise to
a splitting of the main resonance in the filter function
for the CPMG sequence, and a modulation of the reso-
nance amplitude for the XY8 sequence. These findings
show that detuning errors, which are often unavoidable
in experiments, must not be neglected when extracting
quantitative information from NMR data, such as the
number of spins in the sample or the depth of the NV
centre. While in this paper we focused on two of the sim-
plest dynamical decoupling sequences, CPMG and XY8,
it would be interesting to investigate the effect of de-
tunings on quantitative NMR sensing based on more ad-
vanced protocols specifically designed to be more robust
against pulse errors [41, 60, 61]. Another direction of
interest is the study of different combinations of pulse
errors in the NMR context, such as finite pulse-durations
combined with a flip-angle error (i.e. pulses that are not
exactly π). Such studies will shed light into the optimal
conditions to perform accurate, quantitative NMR spec-
troscopy, and may also unveil new ways to extract useful
information from the qubit coherence data.
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Appendix A: Semi-classical model for
finite-duration-pulse control

Here we detail the transformation to the toggling frame
and the derivation of the analytic expression for the sen-
sor qubit coherence response, Eq. (2).

A classical signal felt by the qubit (here the NV elec-
tronic spin), can be modelled as a time-dependent mag-
netic field, Bz(t). The microwave control is applied res-
onantly (plus some detuning) with one of the NV transi-
tions to isolate a sensor qubit. In the frame rotating with
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the microwave drive frequency (and neglecting counter
rotating terms) the Hamiltonian is given by

Ĥ0(t) = −γeBz(t)Ŝz + Ĥp(t), (A1)

where γe = −28 GHz/T× 2π is the NV electronic gyro-
magnetic ratio and

Ĥp(t) = ∆Ŝz +

N∑
m=1

Ω(t− tm)Ŝφm (A2)

is the microwave pulse Hamiltonian which describes a se-
ries of microwave pulses at the positions tm with phases
φm and with shape Ω(t). The pulse shape Ω(t′) is de-
fined on the interval t′ ∈ [−tp/2, tp/2] and we require∫ tp/2
−tp/2 Ω(t)dt = π for a complete π-rotation. (Ŝφm

=

(exp(iφm) |d〉〈u|+exp(−iφm) |u〉〈d|)/2 where |u, d〉 are the
up and down states of the sensor qubit.) It is common to
model the pulse shape with a delta-spike so that tp = 0,
however, here we assume some finite (non-zero) pulse du-
ration and model the pulses as square (or top-hat) so that
Ω(t) ≡ Ω = π/tp. The Hamiltonian is presented here in
the frame rotating with the microwave drive frequency
and after making the rotating wave approximation to ne-
glect the counter-rotating terms. The microwave drive is
detuned from the NV resonance by ∆.

In the toggling frame (the frame rotating under the
pulse propagator) the Hamiltonian can be written as

Ĥ(t) = −γe
2
Bz(t)

∑
i

fi(t)σ̂i, (A3)

which is presented in the main text. Here,∑
i=x,y,z fi(t)σ̂i = Û†p(t)σ̂zÛp(t) with Ûp(t) =

T̂ exp
(
−i
∫ t
0
Ĥp(s)ds

)
the pulse propagator. The trans-

formation to this frame and the generalised modulation
functions, fi(t), have been discussed previously [47] but
here we include a detuning in the pulse Hamiltonian to
obtain the modulation functions seen in Fig. 2a. We use
the Magnus expansion [45, 46, 62] to obtain an approxi-
mate evolution operator

Û(ttotal) ≈ exp

(
−γe

2

∑
i

∫ ttotal

0

fi(t)Bz(t)dtσ̂i

)
(A4)

≡ exp

(
−i1

2

∑
i

βiσ̂i

)
, (A5)

where βi = −γe
∫ ttotal
0

fi(t)Bz(t)dt.
The coherence response is calculated via L(ttotal) =

〈ψ(t)|σ̂x|ψ(t)〉 where we use Eq. (A5) to evolve the ini-

tial sensor superposition state, |ψ(0)〉 = (|u〉 + |d〉)/
√

2.
(The true state evolution is determined by the combined

evolution Û(ttotal)Ûp(ttotal) as we are working in the tog-
gling frame. However, we assume that the detuning is not
so large so that Ûp(ttotal) |ψ(0)〉 ' |ψ(0)〉 as discussed in
Section II A. The failure of this approximation at large

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

0

1

X Y X Y Y X Y X

FIG. 5. Modulation functions (fx, fy, fz) in the time domain
for the XY8 sequence with finite duration pulses for zero and
non-zero detuning error. The simulation here has pulse spac-
ing τ = 240 ns, pulse width tp = 40 ns and detunings ∆ = 0
(top graph) and ∆/2π = 1.5 MHz (bottom) - matching the
parameters as for the CPMG sequence in Fig. 2a.

detunings may account for the collapse of the coherence
background seen in Figs. 4b and 4c.) We find that

L(ttotal) ' 〈1− 2
β2
y + β2

z

|βββ|2
sin2 1

2
|βββ|〉 (A6)

' 〈cos |βββ|〉 (A7)

where in the last line we have assumed β2
x � |βββ|2 and we

define |βββ|2 = β2
x + β2

y + β2
z .

We then follow the derivation in [33] to find the ex-
pression presented in the main text,

L(ttotal) = exp

(
−1

2

γ2e
2π

∫ ∞
−∞

S(ω)|̃f(ω)|2dω t2total

)
,

(A8)

where S(ω) is the classical noise spectrum, f̃(ω) =

(f̃x(ω), f̃y(ω), f̃z(ω)) and we have defined the Fourier

transform f̃i(w) = 1
ttotal

∫ ttotal
0

fi(t) exp(−iωt)dt. For

tp = 0 Eq. (A8) reduces exactly to the expression given
in [33].

Appendix B: The XY8 sequence

The XY family of DD sequences were designed specifi-
cally to protect an arbitrary initial state [35, 36]. By de-
sign the XY8 sequence is more robust than CPMG and
the error only accumulates at second order [48]. However,

this error generates a rotation about the (x̂xx+ ŷyy)/
√

2-axis

which is not parallel with the initial state (|u〉+ |d〉)/
√

2.
We attribute the large modulations of the XY8 back-
ground coherence in Fig. 4 to this fact. If enough pulses
are applied the small error can be compounded, whereas
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for CPMG the first order x-rotation actually works to
minimise the modulations created by higher order terms
as it stabilises the rotation axis around the x-axis. This
is consistent with previous studies showing that CPMG
can outperform XY8 at protecting states aligned with
the x-axis [37–40, 59]. Figure 5 shows the XY8 modu-

lation functions for the same parameters as in Fig. 2a.
Whilst the detuning error alters the modulation func-
tions slightly the sequence corrects these alterations by
the end of the sequence, at t = 8τ . This explains why the
filter function splitting is not seen for the XY8 sequence
(until larger detuning strengths).
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R Hanson. Universal dynamical decoupling of a single
solid-state spin from a spin bath. Science, 330(6000):60–
63, 2010.

[11] Carlos A. Meriles, Liang Jiang, Garry Goldstein,
Jonathan S. Hodges, Jeronimo Maze, Mikhail D. Lukin,
and Paola Cappellaro. Imaging mesoscopic nuclear spin
noise with a diamond magnetometer. Journal of Chemi-
cal Physics, 133(12):1–8, 2010.

[12] V S Perunicic, C D Hill, L T Hall, and L C L Hollen-
berg. A quantum spin-probe molecular microscope. Na-
ture Communications, 7:1057–1064, 2016.

[13] Nan Zhao, Jan Honert, Bernhard Schmid, Michael Klas,
Junichi Isoya, Matthew Markham, Daniel Twitchen, Fe-
dor Jelezko, Ren-Bao Liu, Helmut Fedder, and Jörg
Wrachtrup. Sensing single remote nuclear spins. Nature
Nanotechnology, 7(10):657–662, 2012.

[14] Shimon Kolkowitz, Quirin P Unterreithmeier, Steven D
Bennett, and Mikhail D Lukin. Sensing distant nuclear
spins with a single electron spin. Physical Review Letters,
109(13):137601, 2012.

[15] T H Taminiau, J J T Wagenaar, T Van der Sar, F Jelezko,
Viatcheslav V Dobrovitski, and R Hanson. Detection and
control of individual nuclear spins using a weakly coupled
electron spin. Physical Review Letters, 109(13):137602,
2012.

[16] Fazhan Shi, Xi Kong, Pengfei Wang, Fei Kong, Nan
Zhao, Ren-Bao Liu, and Jiangfeng Du. Sensing and
atomic-scale structure analysis of single nuclear-spin clus-
ters in diamond. Nature Physics, 10(1):21–25, 2014.

[17] T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du,
C. A. Meriles, F. Reinhard, and J. Wrachtrup. Nuclear
magnetic resonance spectroscopy on a (5-nanometer)3

sample volume. Science, 339(6119):561–563, 2013.
[18] HJ Mamin, M Kim, MH Sherwood, CT Rettner, K Ohno,

DD Awschalom, and D Rugar. Nanoscale nuclear mag-
netic resonance with a nitrogen-vacancy spin sensor. Sci-
ence, 339(6119):557–560, 2013.

[19] M. Loretz, S. Pezzagna, J. Meijer, and C. L. Degen.
Nanoscale nuclear magnetic resonance with a 1.9-nm-
deep nitrogen-vacancy sensor. Applied Physics Letters,
104(3):033102, 2014.

[20] Stephen J. DeVience, Linh M. Pham, Igor Lovchin-
sky, Alexander O. Sushkov, Nir Bar-Gill, Chinmay
Belthangady, Francesco Casola, Madeleine Corbett,
Huiliang Zhang, Mikhail Lukin, Hongkun Park, Amir Ya-
coby, and Ronald L. Walsworth. Nanoscale NMR spec-
troscopy and imaging of multiple nuclear species. Nat.
Nanotechnol., 10:129, 2015.

[21] C Müller, X Kong, J-M Cai, K Melentijević, A Stacey,
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V. V. Dobrovitski. Comparison of dynamical decou-
pling protocols for a nitrogen-vacancy center in diamond.
Physical Review B, 85(15):155204, 2012.

[39] Mustafa Ahmed Ali Ahmed, Gonzalo A. Álvarez, and
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