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Many-body quantum systems present a rich phenomenology which can be significantly altered when they
are in contact with an environment. In order to study such set-ups, a number of approximations are usually
performed, either concerning the system, the environment, or both. A typical approach for large quantum
interacting systems is to use master equations which are local, Markovian, and in Lindblad form. Here, we
present an implementation of the Redfield master equation using matrix product states and operators. We show
that this allows us to explore parameter regimes of the many-body quantum system and the environment which
could not be probed with previous approaches based on local Lindblad master equations. We also show the
validity of our results by comparing with the numerical exact thermofield-based chain-mapping approach.

I. INTRODUCTION

In quantum systems, interactions can induce phases of mat-
ter with peculiar properties [1]. While it is still a very demand-
ing task to understand the ground state properties of strongly
correlated quantum systems, the study of many-body quan-
tum systems in contact with an environment is a much less
explored territory. In this case the environment can signif-
icantly alter the properties of the system, either suppressing
desired properties or enhancing them [2, 3]. For example, the
environment can induce dephasing in a system, thus forcing
it to lose coherence, or to alter or suppress its localization
properties [4–12]. On the other hand, a bath, especially if
carefully tailored, can be used to favor condensation [2, 13]
or exotic phases of matter in the steady state [3] or for long
times [14, 15]. The interplay of strong interaction and dissi-
pation has also been shown to result in non-trivial relaxation
regimes, from power-law [16, 17] to stretched exponentials
[5, 6, 18] and aging [19]. For a review on some aspects of
many-body open quantum system one can refer to [20]. The
study of such systems is however limited by approximations
needed to treat the many-body quantum system and to model
the environment and its interaction with the system itself.

The difficulty of studying many-body quantum systems
(even when isolated from the environment) stems from the
fact that a many-body wave function lives in a space which
grows exponentially with the system size. Hence, simulation
of such systems would be computationally expensive, even for
a few tens of sites. Over the years, various numerical meth-
ods have been developed to study such systems, from mean
field [21–26], to dynamical mean-field theory [27–29] and
quantum Monte Carlo [30–32]. Another family of methods
uses tensor networks [33–36], especially for one dimensional
systems where they are commonly known as matrix product
states (MPSs). In this scenario, tensor network algorithms are
implemented in different flavours to search for ground states,
[37] and to compute time evolutions [38–42].

For open quantum systems the computational complexity
grows further. In fact, density matrices are described in a
space which is the square of that of wave functions. Moreover,
the environments need to be modeled appropriately for an ac-

curate description of dissipative effects. For weak system-
environment coupling, it is possible to derive various master
equations under different assumptions [43–45].

Current studies of large many-body open quantum systems
mostly rely on master equations in Lindblad form [46, 47]
due to its ease of implementation and computation. In addi-
tion, to study large systems, further assumption on the locality
of operators used is required in order to remove the time de-
pendence in the dissipator. However, they may not produce
physical results even for weak system-environment coupling
[48–51] and this is motivating recent research [52–58]. To
go beyond the local system operator assumption, one could
opt for master equations with a global system operator. Un-
fortunately, however, these master equations usually work in
eigenbasis where the full energy spectra are required, making
it difficult to simulate large quantum systems. Hence, it has
not been shown how to simulate large many-body quantum
systems with master equations that go beyond the local Lind-
blad approach. Due to these constraints, a large variety of
many-body open quantum systems still remains unexplored.

Here we show how to realize the Redfield master equation
RME, which goes beyond the limits of local Lindblad mas-
ter equations, by using matrix product states and operators to
study larger many-body quantum systems. As an application,
we consider an XXZ spin chain with its center site coupled
to a thermal bath and we show the system’s response to the
thermal bath by analysing the local magnetization and correla-
tion propagation. We also demonstrate that this approach goes
beyond various Lindblad master equation approaches and is
consistent with the numerical exact thermofield-based chain-
mapping approach [71].

This paper is organized as follows. In Sec. II, we give a
general form of the Redfield master equation that can be stud-
ied via matrix product state and briefly discussed other types
of quantum master equations. In Sec. III, we propose a possi-
ble implementation of the Redfield master equation with ma-
trix product states and operators. As a demonstration of the
implementation, we study the dynamics of a spin-1/2 Heisen-
berg XXZ model described in Sec. IV. In V, we show the
supremacy of the proposed implementation by comparing to
the conventional approach as well as Lindblad master equa-
tions. We further show the consistency between our imple-
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mentation and the numerical exact thermofield-based chain-
mapping approach described in Appx. A. Detailed discussions
on numerical errors of these implementations are presented in
Appx. B.

II. FRAMEWORK

We consider a time-independent total Hamiltonian Htot in-
cluding both the system and bath

Htot = HS +HB + S ⊗B, (1)

where HS is the Hamiltonian of the system under consider-
ation, HB is the bath Hamiltonian, and the interaction be-
tween system and bath is given by S⊗B where S acts on
the system while B acts on the bath. Assuming the system-
bath coupling to be weak, and that the initial global density
matrix of the system and bath ρtot(0) is in a separable form
ρtot(0) ≈ ρ(0) ⊗ ρB where the reduced density matrix ρ(0)
describes the system while ρB is a thermal Gibbs state for the
bath at temperature T , it is possible to derive a master equa-
tion for the evolution of ρ(t) given by

∂ρ (t)

∂t
=− i [HS, ρ (t)] +Rt [ρ(t)] , (2)

which is also known as the Redfield master equation (RME)
[59]. Here the first term on the right-hand side describes the
unitary evolution due to the system Hamiltonian. The dissipa-
tion due to the bath is described by a time-dependent super-
operator

Rt [ · ] = [S (t) · , S] +
[
S, · S† (t)

]
, (3)

S (t) =

∫ t

0

S̃ (−τ)C (τ) dτ, (4)

with S̃ (τ) = eiHSτSe−iHSτ while the bath correlation func-
tion isC (τ) = tr

(
eiHBτBe−iHBτ B ρB

)
. Note that we work

in units such that J = ~ = kB = 1, where kB is the Boltz-
mann constant.

To simulate quantum dynamics by using Eq. (2), one would
typically diagonalize the system Hamiltonian HS and express
the terms of (3) in the energy eigenbasis. Such an approach
strongly limits the size of the systems that can be studied. For
the long time dynamics or steady states, one could evolve the
system under a time-independent dissipator R∞ [ · ] with the
transition operator S(∞). For clarity, we refer to it as the time-
independent Redfield master equation (iRME) in contrast to
the time-dependent one in Eq.(2).

In order to investigate larger systems, Lindblad master
equation with short range operators are typically used. The
advantage of such a master equations is that they can be sim-
ulated very effectively with MPS algorithms, either using a
trajectory method [20, 60] or the purification of the density
matrix [41]. A common microscopic derived Lindblad master
equation with local operators relies on the local Hamiltonian
approximation and a high temperature condition [48], and it is
known as the local Lindblad master equation (LLME). In this

S = 1
⊗

· · ·
⊗

1
⊗

σx
0

⊗
1
⊗

· · ·
⊗

1
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FIG. 1: Illustration of the MPO representation of S(t) andRt. Start-
ing from the system−bath coupling operator S we evaluate S(t) via
Eq. (4) andRt via Eq. (3). At site l the physical indices of the MPO
tensor for S are τl and τ ′l , while the auxiliary indices are αl and αl+1.
For Rt the tensor at site l has physical indices given by the tuples
(τl, τ

′
l ) for the input and (κl, κ

′
l) for the output, while the auxiliary

indices are α′l and α′l+1.

case, the transition operator S(∞) is governed by an approxi-
mated local system Hamiltonian (i.e., with inter-site coupling
terms ignored).

Another archetypal approximation is to take the singular
coupling limit master equation (SCME) [61, 62]. In this limit,
the correlation function is approximated as C (τ) ≈ 2aδ (τ)
where a depends on the bath model. The corresponding tran-
sition operator S(∞) then reduces to aS and as a result, the
dissipator R∞ [ · ] becomes local and in Lindblad form too,
thus allowing efficient evolution with MPSs.

III. REDFIELD DYNAMICS WITH MATRIX PRODUCT
STATES

In order to accurately compute the evolution of a many-
body open quantum system, it would be useful to develop a
way to compute Eq. (2) with MPSs, which would allow to
significantly increase the size of the systems currently stud-
ied by diagonalizing the system Hamiltonian HS. In the fol-
lowing we explain how this can be done. It is possible to
describe wave functions and density matrices, even exactly,
as a product of tensors [35] with 3 indices, one for the phys-
ical dimension (e.g., of the size of the local Hilbert space),
and two auxiliary dimensions (of a maximum size called the
bond dimension D). Operators acting on a state can be de-
scribed by linear maps from MPS to MPS, which are called
matrix product operators (MPOs). An MPO is a tensor with
4 indices, one for the input and one for the output physical
dimensions, and two auxiliary dimensions of maximum size
DW (the MPO bond dimension). We first rewrite the system
density matrix ρ(t) as an MPS [41], and the operators acting
on it as MPOs. The MPO representing S is then evolved in
time to obtain S̃(τ) using a Trotter decomposition at second
order. The convolution in Eq. (4) to compute S is evaluated
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subsequently using Romberg integration. The algorithm to
evaluateRt is described pictorially in Fig. 1. After having ob-
tained Rt we can use the Runge-Kutta method to evolve ρ(t)
using Eq. (2) [63]. We should here comment on the simulabil-
ity of the evolved and convoluted MPO, for the time evolution
of the density operator represented by an MPS. In general, for
time evolution one can either evolve the state, the operators or
a mixture of both. In practice, when using tensor networks, the
best approach depends on the system studied. For instance, an
evolution in the Heisenberg picture can be chosen both for iso-
lated [64, 65] and open systems [66–68]. However, in general,
the time evolution of an operator may require an exponentially
increasing amount of memory. In our case, and for the times
considered, the decay of the correlations in the bath helps in
representing accurately the evolution dynamics of the system,
while using MPOs of manageable size. For more details on
the convergence of numerical simulations see Appendix B 2.

IV. MODEL

The methods described above could be applied to a broad
range of physical systems. Here we consider a spin-1/2
Heisenberg XXZ spin chain with (2L+ 1) sites, with

HS =

L−1∑
l=−L

[
J
(
σxl σ

x
l+1 + σyl σ

y
l+1

)
+ ∆σzl σ

z
l+1

]
+ h

L∑
l=−L

σzl ,

where h is a uniform magnetic field, and the elements of σαl
are given by the Pauli matrices for α = x, y, or z. J and
∆ denote the tunneling strength and interaction strength re-
spectively [69]. The central site (l = 0) of the spin chain is
coupled to a harmonic oscillator bath, with bath Hamiltonian
HB =

∑∞
n=1

[
p2n
2mn

+
mnω

2
nx

2
n

2

]
, through the system operator

S = σx0 and B = −
∑∞
n=1 cnxn where cn is the system-bath

coupling constant for the n−th mode. The bath properties
can be characterized by the spectral function J(ω) [70]. In
the following, we consider an ohmic bath with an exponential
cutoff (i.e., J(ω) = γω exp (−ω/ωc) [45, 70], and where γ(∝∑
n c

2
n) is the dissipation strength. It also follows that in the

singular coupling limit the prefactor a = γT ). We consider a
system with 21 sites, i.e., L = 10, which cannot be simulated
via conventional Redfield master equation approaches (L ≈ 4
that is 9 − 10 sites at most). As initial condition we choose a
fully polarized initial state |Ψ0〉 = |↓↓↓ · · · ↓↓↓〉 which is an
eigenstate of the system Hamiltonian and it only evolves due
to the coupling to the bath.

V. RESULTS

In Fig. 2(a) we show the open system dynamics for the
fully polarized state |Ψ0〉 (the white dotted line depicts a lin-
ear propagation). This is expressed more clearly in Fig. 2(b)
which shows cuts, at different times, of panel (a). For a more
quantitative analysis we study the variance of the spreading of
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FIG. 2: (a) Contour plot of 〈σz
l 〉 with Redfield master equation (2).

(b) Local magnetization profile for times t = 0, 0.5, 1, 1.5, 2, 2.5
(darker lines for larger times). (c)

√
〈d2〉 as a function of time from

Eq. (2) (red solid lines), for sizes 5, 9, 13 and 21 (darker lines for
larger systems). Other parameters: ∆ = 5, h = 0.5, ωc = 20,
T = 2, γ = 0.02.

the magnetization, given by

〈d2〉 =
∑
l

〈σul 〉 l2 /
∑
l

〈σul 〉 , (5)

where σul = σ+
l σ
−
l with σ±l = (σxl ± iσyl )/2. The evolution

of
√
〈d2〉 is linear due to the fact that an excitation, after it is

introduced by the bath, propagates ballistically. For the dissi-
pative evolution we have considered different system sizes so
as to show how quickly finite size effects can play an impor-
tant role and limit the predictive power.

We now compare the results of our approach to those of the
LLME and SCME. We study two quantities, the local mag-
netization in the center 〈σz0〉, Fig. 3(a,c,e), and the correlation
between two distant sites 〈σ+

−5σ
−
5 〉, Fig. 3(b,d,f), for different

bath temperatures T . For low temperatures, Fig. 3(a,b), the
dynamics of the Lindblad master equations (dashed blue line
for LLME and green dotted line for SCME) is much slower
than the more accurate RME (red continuous line). In fact,
the derivation of both LLME and SCME requires an high tem-
perature approximation. As T increases the curves approach
each other, but even for T = 5, while the evolution is similar,
the difference between the various Lindblad master equations
and RME is sizeable.

It is important to probe the performance of these master
equations for varying many-body interaction strength ∆. In
Fig. 4(a) we show the local magnetization 〈σz0〉 versus time as
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FIG. 3: Evolution of local magnetization 〈σz
0〉, panels (a,c,e) and real

part of the long distance correlation 〈σ+
−5σ

−
5 〉, panels (b,d,f) as func-

tions of time. The evolutions are computed using RME (red solid
lines), SCME (green dotted lines) and LLME (blue dashed lines)
master equations. Panels (a,b) are for T = 0.2, (c,d) are for T = 2
and (e,f) are for T = 5. Other parameters: ∆ = 0.5, h = 0.5,
ωc = 20, γ = 0.02.
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FIG. 4: Local magnetization 〈σz
0〉 versus time t (a) for different in-

teractions ∆ = 0.5, 1.5, 3, 5 at ωc = 20 or (b) for different
cut-off frequencies ωc = 1, 5, 10, 15 at ∆ = 0.5, computed
from RME (red solid lines with color gradient), SCME (green dotted
lines), LLME (blue dashed lines) for 21 sites with γ = 0.02. Darker
colors imply larger interactions or cut-off frequencies. In all panels,
T = 2. The squares in panels (a) and (b) correspond to the nu-
merically exact TCMPS approach. The parameters used for TCMPS
approach can be referred to Appendix B 2

we vary ∆. We observe that the Redfield dynamics is strongly
affected by ∆ (red continuous lines from light to dark as ∆ in-
creases), however the evolution of both Lindblad master equa-
tions (green dotted curves for SCME and blue dashed lines for
LLME) does not vary significantly with ∆, but only changes
in the shaded regions. This implies that these Lindblad master
equations are unable to accurately capture the effect of strong

interaction effectively approximating the many-body physics
in this system.

We also study the effect of bath cutoff frequency ωc, which
modifies how different energy levels are coupled to the bath.
In Fig. 4(b) we show 〈σz0〉 as function of t for various cut-off
frequencies ωc. The SCME cannot probe the differences in
ωc and in fact there is a single green dotted line. The LLME
can vary with ωc but it is not accurately reproducing the RME
even in the weak interaction regime. In particular, even for
an highly Markovian environment (i.e., dark red), the LLME
shows a strong deviation from RME (see Appendix C for more
details).

We benchmark the Redfield dynamics with a numerically
exact thermofield-based chain-mapping approach with MPS
(TCMPS). The scheme evolves the total Hamiltonian Htot

that comprises of the system and the bath. The TCMPS ap-
proach contains four main ingredients: i. Discretization of
the bath with respect to its spectral density. ii. Thermofield
transformation that allows to exactly map the effect of a finite
temperature bath to that of two zero temperature baths. iii.
Star-to-chain mapping to ensure that the baths are mapped to
linear chains and iv. an MPS implementation to evolve the
total Hamiltonian of system plus baths. This approach has
been first introduced and rigorously tested in [71, 72], and
also used in [73, 74]. More details on the method and relevant
convergence tests can be found in Appendix B 2. It should
be pointed out, however, that the method is restricted to finite
times due to the finiteness of the bath. Before the boundary
is reached, the finite bath mimics an infinite reservoir allow-
ing us to compare it with our Redfield implementation. The
results for the Redfield (solid lines) and the TCMPS (open
squares) match exactly for the entire duration of the evolution
considered herein as seen in Fig. 4 validating our Redfield im-
plementation and establishing its correctness over the results
from the Lindblad master equations.

VI. CONCLUSIONS

We have presented an implementation of the Redfield mas-
ter equations using MPS and MPO. Unlike the conventional
approach that requires the full eigenenergy spectrum, the
MPS/MPO-based method allows us to probe the dynamics
of large many-body open quantum systems. We have com-
pared results from the Redfield master equation to typical
master equations in Lindblad form which can be computed
efficiently for large systems, and we have shown that those
Lindblad master equations fail to capture the dynamics as the
Redfield master equation can. Moreover, the time-dependence
in the evolution equations of our approach does not come at
an additional cost and in most of the regimes it is computa-
tionally cheaper than the time-independent counterpart. The
approach is thus robust and the current algorithm can be read-
ily extended to the study of multiple baths, different types of
couplings, or even systems with time-dependent Hamiltoni-
ans.

More work would be needed to increase the efficiency of
the code, especially in terms of memory requirements, for ex-
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ample using different evolution or integration schemes. Sys-
tematic comparison to the TCMPS approach, or to finite time
unitary evolution with small baths (see e.g. [75]), which are
valid also for strong system-bath coupling, would give impor-
tant insights in the regime of validity of the weak coupling
approximation [76, 77].

The possibility of studying accurately the open dynamics of
many-body quantum systems beyond Lindblad master equa-
tions leads to interesting opportunities in various directions,
for instance quantum thermodynamics and quantum transport.
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Appendix A: Thermofield-based Chain-mapping Approach with
Matrix Product States

A detailed description of the thermofield-based chain-
mapping technique with matrix product states (TCMPS) to
study many-body open quantum systems can be found in
Ref. [71]. Instead of studying the reduced dynamics of the
system, the exact dynamics of the total composite system is
investigated without perturbative treatments on the system-
bath coupling strength. For our setup, we consider a lin-
early discretized bath with the frequency spacing given by
∆ω = ωmax/Nmax where ωmax is the numerical cutoff for
the frequency of spectral density J(ω) and Nmax is the num-
ber of sites in the bath. The discretized bath Hamiltonian and
system-bath coupling Hamiltonian are given by

Hdiscrete
B =

Nmax∑
j=1

ωjb
†
jbj , (A1)

Hdiscrete
SB =

Nmax∑
j=1

√
Jjσ

x
0

(
bj + b†j

)
, (A2)

where ωj = j∆ω and Jj =
∫ ωj+1

ωj
dωJ(ω) ≈ J(ωj)∆ω.

Via thermofield transformation, the finite temperature bath
is mapped to another environment of 2Nmax modes a1,j and
a2,j , but in a vacuum state [71]. The transformed bath Hamil-

tonian and system-bath coupling then become

Hthermal
B =

Nmax∑
j=1

ωj

(
a†1,ja1,j − a

†
2,ja2,j

)
, (A3)

Hthermal
SB =

Nmax∑
j=1

g1,jσ
x
0

(
a1,j + a†1,j

)

+

Nmax∑
j=1

g2,jσ
x
0

(
a2,j + a†2,j

)
, (A4)

where g1,j = J
√

Jj [1 +N(ωj)] and g2,j = J
√

JjN(ωj)
with N(ω) = 1/[exp (ω/T ) − 1] for a harmonic oscillator
bath. Since σx0 is the operator that couples the system to the
bath, we refer to it as the system operator.

The above form is the so-called star configuration where all
modes of the bath are coupled to the system. However, such a
configuration can be computationally inefficient to evolve nu-
merically. The star-to-chain mapping [72, 79–81] is then per-
formed to transform the star configuration to a linear chain,
which could be efficiently implemented with matrix product
states, and which could be easier for a Trotter expansion based
time evolution algorithm with matrix product states. The
transformed Hamiltonians write

Hchain
B =

2∑
k=1

N ′
max∑
j=1

Ωk,ja
†
k,jak,j

+

2∑
k=1

N ′
max−1∑
j=1

βk,j

(
a†k,jak,j+1 + a†k,j+1ak,j

)
,

(A5)

Hchain
SB =

2∑
k=1

βk,0σ
x
0

(
ak,1 + a†k,1

)
, (A6)

where we used k to label the N ′max ≤ Nmax modes of
two virtual baths Ωk,j , while the βk,j are generated via the
Lanczos tridiagonalization of the discretized bath dispersion
given by a diagonal matrix with elements, in increasing or-
der, ω1, ω2, · · · , ωNmax

. Here we emphasize that N ′max is the
number of sites we kept in the transformed chain. The par-
ticular choice of N ′max could depend on the time scale of the
simulation.

In summary, the discretized bath Hamiltonian has under-
gone the following transformation for efficient simulations,

Hdiscrete
B

thermofield−−−−−−−→
transformation

H thermal
B

star-to-chain−−−−−−→
mapping

Hchain
B .

In Fig.4 of the main paper we use for the wave function
bond dimension Df = 100, and at each site we consider a lo-
cal Hilbert space of at most d = 5 levels. The numerical sim-
ulation is done using a second order Suzuki-Trotter method
with time step dt = 0.01. We find that for Fig.4 we can take
ωmax = 60, Nmax = 6000, N ′max = 300, while for Fig.4(b)
ωmax = 20, Nmax = 2000 N ′max = 300 to ensure that the
results are converged in all relevant parameter regimes.
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FIG. A5: (a) The dynamics of local magnetization of the central site
〈σz

0〉 under various system operator bond dimensionsDW = 15 (red
dotted), 30 (green dash-dotted), 45 (orange dashed) and 60 (blue
solid). (b) The difference of the local magnetization for between
bond dimension DW = 60 and 15 (green dash-dotted), 60 and 30
(orange dashed), 60 and 30 (blue solid). The bond dimension of the
density operator is D = 100. Other parameters are consistent with
Fig. 2 in the article.

Appendix B: Numerical Error

1. Redfield Master Equation with MPS and MPO

Our numerical simulation relies on the truncation of the
evolution of the system operator σx0 as well as the density op-
erator ρ. We perform the following error analysis by varying
the bond dimension of the system operator and the bond di-
mension of the density operator. We first investigate the error
due to truncation of the system operator. By using the param-
eters in Fig. 2, we check the results for system operator with
bond dimensionDW = 15, 30, 45, and 60. From Fig. A5(a),
the dynamics show qualitative agreement for various bond di-
mensions. In Fig. A5(b), we show the differences in results
from different bond dimensions DW (i.e., between 60 and 15,
60 and 30, 60 and 45) . By keeping system operator bond di-
mension as DW = 30, the error of our results would be of the
order of 10−4.

For various bond dimensions D of the density operator, the
results are show in Fig. A6. The dynamics obtained via vari-
ous density operator bond dimension again shows agreement
with each other. The error is of the order of 10−4 when the
density operator bond dimension is kept at D = 100.

2. Thermofield-based Chain-mapping Approach with MPS

In this section, we show the error for the TCMPS approach.
Many parameters can be fine-tuned, for instance the dis-
cretization of the spectral function, the numerical frequency
cutoff, the Trotter evolution parameters, the size of the local
Hilbert space and the maximum bond dimension. Here we
focus on the discretization of the bath and on the bond dimen-
sion. For the discretization of the bath, we first check the er-
ror with respect to the bath discretization parameters ∆ω and
ωmax.

By comparing the results of various numerical frequency

t

0 1 2 3t
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−0.95

−0.90

−0.85

−0.80

〈σ
z 0
〉

(a)

2.9 3.0
−0.7950

−0.7925

0 1 2 3t

−1.0

−0.5

0.0

∆
〈σ

z 0
〉

×10−3

(b)

FIG. A6: (a) The dynamics of local magnetization of the central
site 〈σz

0〉 under various density operator bond dimensions D = 50
(red dotted), 75 (green dash-dotted), 100 (orange dashed), 125 (blue
solid). (b) The difference of the local magnetization for between
bond dimension D = 125 and 50 (green dash-dotted), 125 and 75
(orange dashed), 125 and 100 (blue solid). (c) The value of local
magnetization at the central site at t = 3 versus density operator
bond dimension D. The bond dimension of the system operator is
DW = 30. Other parameters are consistent with Fig. 2 in the article.

0 1 2 3t

−1.00

−0.95

−0.90

−0.85

−0.80

〈σ
z 0
〉

(a)

2.9 3.0
−0.7975

−0.7950

−0.7925
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∆
〈σ

z 0
〉

×10−3

(b)

FIG. A7: (a) The dynamics of local magnetization of the central
site 〈σz

0〉 under various numerical cutoff frequencies ωmax = 50
(red dotted), 60 (green dash-dotted), 70 (orange dashed), 80 (blue
solid). (b) The difference of the local magnetization between various
numerical cutoff frequencies ωmax 80 and 50 (green dash-dotted),
80 and 60 (orange dashed), 80 and 70 (blue solid). The bath dis-
cretization parameters are ∆ω = 0.01. The transformed chain size
N ′max = 300 with local bath dimension d = 5. The wave function
bond dimension Df = 100. Other parameters are consistent with
Fig. 2 in the article.

cutoff ωmax = 50, 60, 70, 80, it can be shown that the dynam-
ics reach a good agreement in Fig. A7(a). A large numerical
cutoff frequency ωmax = 60 is required due to the shape of
the spectral function to obtain an error at the order of 10−4 as
illustrated by Fig. A7(b).

It follows that we would also need to consider the frequency
spacing ∆ω = 0.005, 0.01, 0.02, 0.04, which determines the
Nmax ranging from 12000 to 1500 with a fixed ωmax = 60.
By studying the dynamics in Fig.A8(a), the dynamics for fre-
quency spacing ∆ω cannot be resolved at 10−3. The errors
are more quantitatively depicted in Fig.A8(b) where clear con-
vergence can be observed when the frequency spacing are
reduced. We have represented the difference between vari-
ous bath sizes. In particular. Fig.A8(b), shows the differ-
ence ∆〈σz0〉 between frequency spacings ∆ω = 0.005 and
0.04 (green dash-dotted), 0.005 and 0.02 (orange dashed),
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FIG. A8: (a) The dynamics of local magnetization of the central site
〈σz

0〉 under various frequency spacing ∆ω = 0.04 (red dotted), 0.02
(green dash-dotted), 0.01 (orange dashed), 0.005 (blue solid). (b)
The difference of the local magnetization between various frequency
spacing, ∆ω, 0.005 and 0.04 (green dash-dotted), 0.005 and 0.02
(orange dashed), 0.005 and 0.01 (blue solid). The bath numerical
cutoff frequency ωmax = 60 and the transformed chain size N ′max

are kept at 300 with local bath dimension d = 5. The wave function
bond dimension Df=100. Other parameters are consistent with Fig.
2 in the article.

0 1 2 3
t

−1.00

−0.95

−0.90

−0.85

−0.80
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〉

(a)
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FIG. A9: (a) The dynamics of local magnetization of the central site
〈σz

0〉 under various wave function bond dimensions Df = 50 (red
dotted), 100 (green dash-dotted), 150 (orange dashed), 200 (blue
solid). (b) The difference of the local magnetization between bond
dimensions Df = 200 and 50 (green dash-dotted) , 200 and 100
(orange dashed), 200 and 150 (blue solid). The bath discretization
parameters are N ′max = 300, ∆ω = 0.01, and ωmax = 60 with
local bath dimension d = 5. Other parameters are consistent with
Fig. 2 in the article.

0.005 and 0.01 (blue solid). In our simulation, by choosing
∆ω = 0.01, the error would be at the order of 10−5.

Last we examine the role of the wave function bond dimen-
sion Df kept ranging from 50 to 200. Fig. A9(a) also reveals

qualitative agreement between various bond dimensions while
Fig. A9(b) demonstrates the error convergence when the bond
dimension increases.

In the above simulation, we used a second-order Trotter
time evolution with a time step of 0.01 resulting in a relatively
large error. This could be improved with a fourth-order Trotter
method. However increasing the accuracy of the method, or
its time of validity, could require a sizeable computing time.

0 1 2 3t
−1.00

−0.95

−0.90

−0.85

〈σ
z 0
〉

(a)

L = 3

L = 4

0 1 2 3t
−1.00

−0.95

−0.90

−0.85
(b)

FIG. A10: The dynamics of local magnetization of the central site
〈σz

0〉versus time t computed from RME (red solid lines) and iRME
(purple filled circles) for (a) ∆ = 0.5, T = 2, ωc=10, γ=0.02 and (b)
∆ =0.5, T = 2, ωc=1, γ = 0.2 for 7 sites (faint colors) and 9 sites
(darker colors)

Appendix C: Comparison between Redfield Master Equation
and Time-independent Redfield Master Equation

It is also important to point out that, in the small ωc regime,
the evolution due to the time-dependent RME cannot be ap-
proximated by the (time-independent) iRME. This is high-
lighted in Fig. A10(a,b) where results from RME (red solid
lines) are compared to those of its time-independent approx-
imation iRME where R∞ is used instead of Rt (purple cir-
cles). Here we consider systems with 9 (darker lines or cir-
cles) or 7 (lighter lines or circles) sites. In Fig. A10(a) we
consider ωc = 0.2 and in Fig. A10(b) ωc = 0.02. For large
enough cutoff, panel (a) the prediction of RME and iRME are
in agreement. For small cut-offs ωc, panel (b), the finite time
effects are stronger and the inaccuracy of the iRME more ev-
ident. This is due to the fact that at small frequencies the size
of the system plays a bigger role. For the iRME the super-
operator R∞ would be quickly affected by the finite system
size, while Rt would require some time before the finite size
effects are felt.
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[67] I. Pižorn, V. Eisler, S. Andergassen, and M. Troyer, New J.
Phys. 16, 073007 (2014).

[68] C. Karrasch, J. H. Bardarson, and J. E. Moore, Phys. Rev. Lett.
108, 227206 (2012).

[69] We note here that the presence of a local magnetization h is a
prerequisite for LLME to perform a local approximation, while
it is not necessary for RME.

[70] From the definition of C(τ) we get C(τ) =∫∞
0

(dω/π) J(ω) [coth (ω/2T ) cos(ωτ)− i sin(ωτ)] with
J(ω) = π

∑
c2n/(2mnωn)δ(ω − ωn).
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