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Phodotetection plays a key role in basic science and technology, with exquisite performance hav-
ing been achieved down to the single photon level. Further improvements in photodetectors would
open new possibilities across a broad range of scientific disciplines, and enable new types of appli-
cations. However, it is still unclear what is possible in terms of ultimate performance, and what
properties are needed for a photodetector to achieve such performance. Here, we present a general
modeling framework for photodetectors whereby the photon field, the absorption process, and the
the amplification process are all treated as one coupled quantum system. The formalism naturally
handles field states with single or multiple photons as well as a variety of detector configurations,
and includes a mathematical definition of ideal photodetector performance. The framework reveals
how specific photodetector architectures introduce limitations and tradeoffs for various performance
metrics, providing guidance for optimization and design.

I. INTRODUCTION

Photodetectors are used extensively in a broad range
of scientific experiments and for numerous technology ap-
plications. Pushing the limits of photodetection is im-
portant to allow new phenomena to be explored and to
improve the performance in applications. In the realm
of single-photon detection, records are constantly being
reported for detector performance [1–7], and these de-
tectors are being used to gain increasing understanding
of the the fundamental properties of light [8–12]. Still,
photodetectors are complex, and determining the fun-
damental limits of their performance and how to design
their internal structure is not straightforward because of
several simultaneous performance requirements. In the
case of single photon detectors, these performance met-
rics include efficiency, jitter, dark count rate, number res-
olution, and bandwidth, but also include aspects such
as operating temperature, size, and power requirements.
Determining the best possible photodetector that can op-
timize all of these considerations is challenging because
many of these are interrelated.

Since the formulation of quantum mechanics there have
been several theoretical models of photodetection. The
pioneering work of Glauber [13], Mandel et al. [14], and
Kelly and Kleiner [15] established the relationship be-
tween the counting statistics of point-like detectors and
states of the electromagnetic field, and this theory has
provided the foundation for much of the proceeding work.
Refinements of the theory by Scully and Lamb [16], Srini-
vas and Davies [17] and Ueda et al. [18] accounted for the
backaction of the detection process on the field, which is
important to capture the statistics of continuous pho-
tocurrents in the limit of weak fields. Further impor-
tant refinements of photodetection theory include the re-
laxation of approximations in the field-matter interac-
tion, e.g., the rotating-wave approximation [19, 20], and
the incorporation of variations in detector architecture,
e.g., multiplexed arrays [21].

While the theoretical models and methods resulting
from this large body of literature are useful for under-

standing photodetection phenomena in many contexts,
they generally do not provide a framework to design pho-
todetectors from the ground up. Such an endeavor might
have been experimentally unfeasible in the past, but with
recent progress in nanoscale fabrication and engineering
one can now ask the question of how to design an optimal
photodetector starting from the atomic scale. To answer
this question one needs a theory that models the dynam-
ics of the electromagnetic field and some general model of
the detector’s internal degrees of freedom, with as few as-
sumptions as possible. Such a design-oriented approach
is essential to establish the ultimate limits of photodetec-
tors, and to identify from general principles new optimal
designs, or perhaps even radically new photodetector de-
signs. For example, recent progress in developing such an
approach to modeling photodetectors has shown that in
principle there exists no trade-offs between some detector
metrics [22, 23], suggesting that improved photodetectors
are possible.

In this manuscript we build on theories for light-matter
interaction with weak fields, open quantum systems, and
quantum measurement, to develop a holistic approach
to modeling photodetectors that allows one to directly
relate general criteria for performance to internal pho-
todetector structure, and moreover, optimize this inter-
nal structure to meet performance metrics. Our formal-
ism allows one to evaluate the state of the matter system
during and after interaction with the field as

ρ̂MATTER(t) = TrLIGHT [P(t, t0)ρ̂TOT(t0)] (1)

where P is an operator determined by the internal struc-
ture of the system and its coupling to both the inci-
dent field and amplification processes, and ρ̂TOT(t0) =
ρ̂LIGHT(t0) ⊗ ρ̂MATTER(t0) represents the initial density
operator for the combined matter and field quantum
state. TrLIGHT represents a partial trace over the field
degrees of freedom. We show how to explicitly calculate
P in a wide variety of cases, and additionally, we show
that in most cases of interest, this allows us to represent
measurement outcomes Π(t) as

Π(t) = TrLIGHT [K(t, t0)ρ̂TOT(t0)] (2)
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FIG. 1. Illustration of the general photodetection situation
being considered. (a) An arbitrary number of photons im-
pinges on an arbitrary number and configuration of elements.
An element is an object that creates a signal upon photon
absorption. It can consist of a few atoms, or macroscopic
collections of atoms.(b) A fully coupled quantum detector
considers the photon field, the optical absorption, and the
measurement as part of one quantum system. The result of
the measurement is fed to a classical read-out.

which can be used to determine average performance.
This abstraction enables us to both intuitively under-
stand detection as propagation of an input pulse to an
outgoing signal and analyze the effects of detector inter-
nal structure on average photodetector performance. In
particular it naturally furnishes a definition for ideal de-
tection that places conditions on P (or K) – and, conse-
quently, the detector architecture – that must be satisfied
to achieve it, ultimately allowing us to identify new pho-
todetector designs with superior predicted performance.

II. MODELING APPROACH

We seek to develop an approach that can describe a
general photodetection system as illustrated in Fig. 1.
By a general photodetection system we mean one that
is composed of a number of elements, where the func-
tion of each element is to generate a signal upon pho-
ton absorption. An element could be composed of a few
atoms, or could be microscopic in size. For example, a
single molecule on a few-atom quantum transport chan-
nel could be an element; a macroscopic semiconductor
composed of interacting atoms could also be an element.
In both cases one signal is generated. The general pho-
todetection system is composed of many such elements,
each interacting with the field, and each generating its
own signal. The only limitation we impose on the pho-
todetection system is that it is smaller than the photon
wavelength.

In Ref. [24] it was shown that the Ito Langevin equa-
tion for the interaction of a point-like (i.e., within a pho-
ton wavelength) matter system with a few-photon pulse
can be solved by rewriting it as a set of master equations
constructed according to the initial incoming field in the
Fock basis. In this manuscript we consider a single-mode
wavepacket, which is relevant to detectors in single-mode

waveguides, but the approach can be generalized to more
complex fields. For a single-field-mode wavepacket with
frequency ωE and light-field temporal profile at the de-
tector of E(t), the overall density matrix for the field is

ρ̂LIGHT(t) =
∑
N,M

cN,M (t) |N〉 〈M | ,

where |N〉 is a Fock state of the mode with occupation
N , see Appendix A. We note that in the case of specific
numerals in place of N and M separating commas will
be omitted. For a field initially in a state defined by a
set of cN,M (t0) the reduced density matrix characterizing
the matter degrees of freedom at any time t is

ρ̂MATTER(t) =
∑
N,M

cN,M (t0)%̂N,M (t)

where %̂N,M (t) are a set of auxiliary density matrices
obeying the equations

˙̂%N,M (t) = VSYS + VF−M + VAMP

(3)

with

VSYS = −i[Ĥ, %̂N,M (t)] +

BATHS∑
i

D[Ŷi]%̂
N,M (t),

VL−M =
√
NE(t)e−iωt[Ŝ%̂N−1,M , L̂†i ]

+
√
ME∗(t)eiωt[L̂i, %̂

N,M−1Ŝ†] +D[L̂]%̂N,M

+
√
MN |E(t)|2

(
Ŝ%̂N−1,M−1Ŝ† − %̂N−1,M−1

)
,

VAMPS =

AMPS∑
i

D[(2ki)
1/2X̂i]%̂

N,M (t), (4)

with “BATHS” and “AMPS” referring to sums over
the number of baths and amplification channels, respec-
tively. It is straightforward, if cumbersome, to extend
this formalism to multiple field modes, including addi-
tional spontaneous emission channels.

Eq. (3) comprises three parts: the internal dynamics
of the system, the light-matter interaction due to the in-
coming field excitation, and the amplification of internal
states of the detector, modeled as a weak measurement
of some internal states. VSYS describes the internal evo-
lution according to Ĥ, the non-interacting Hamiltonian,
and the influence of external baths Ŷi, described using
the Lindblad superoperator

D[Ô]ρ̂ = Ôρ̂Ô† − 1

2
Ô†Ôρ̂− 1

2
ρ̂Ô†Ô.

VL−M describes the light-matter interaction, including
spontaneous emission, and is mediated by the dipole cou-
pling L̂ and the quadratic coupling Ŝ. It is important to
note that these terms dictate that the evolution of a given
auxiliary density matrix relies on the evolution of auxil-
iary density matrices interacting with fields with reduced
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FIG. 2. The relationship between matrices %̂N,M (t) evolved by
the system of equations in (3). Each matrix depends on the
evolution of matrices with lower superscript index; the real
system density matrix is given by the matrix with superscript
indices corresponding to the initial state of the incoming field.

initial excitations. We emphasize that these field indices
do not directly correspond to the state of the field at a
time t; they correspond to the state of an incoming field
before interaction at time t0, and the density matrices
that contain the correct information about the system
are the ones that correspond to the actual incoming field
state given by cN,M (t0). So, for an initial field with Fock
state in a single mode containing two photons, the den-
sity matrix that contains the true dynamics of the system
is %̂22. The others are auxiliary density matrices required
to propagate %̂22 and are in some sense fictitious. This
is shown schematically in Fig. 2. Each diagonal den-
sity matrix (N = M) is initialized to the state of the
system (%̂N,N (t0) = ρ̂MATTER(t0)), and the off-diagonal
ones (N 6= M) are zero.

The amplification process VAMPS is mediated by opera-
tors X̂i =

∑
j χij x̂ij , which we constrain to be Hermitian

and therefore expressible as sums of projectors onto inter-
nal states x̂ij = |vj〉 〈vj |. These operators also influence
the dynamics through the Lindbladian. These operators
can be interpreted as a weak measurement process with
amplification strengths χij and rate ki[25]. However,
Eq. (3) as written only describes the averaged dynam-
ics associated with amplification. It may be unraveled[25]
into individual measured trajectories by conditioning the
dynamics on the prior results of the measurement im-
posed by the amplification. This is accomplished by
adding the term

AMPS∑
i

dWi,t

dt
(2ki)

1/2
(
X̂i%̂

N,M + %̂N,M X̂†i − 2〈X̂i〉%̂N,M
)

(5)

to Eq. (3), where Wi are Wiener processes for each ampli-
fication channel that correspond to particular measure-
ment records, whose increments are explicitly,

dIi(t) = 〈X̂i〉(t)dt+
1

(8k)1/2
dWi,t. (6)

We assume the Wiener processes across measurement
channels are uncorrelated, and for later use define the
integrated measurement records

Ii(t) =
1

tm

∫ t

t−tm
dt′
(
〈X̂i〉(t′) +

1

(8k)1/2

dWi,t′

dt′

)
(7)

where tm defines an integration time that sets the tem-
poral resolution of the detector. As an example, Ii(t)
could be the time-dependent current measured with an
external electronic read-out. We note the appearance of

the quantity 1
(8k)1/2

dWi,t

dt , which is noise arising from the

continuous measurement process.
The machinery introduced thus far allows for deter-

mination of the average and unraveled dynamics of the
system, and in principle, computation of measurement
outcomes. However, it cannot be written in the form of
the direct relations that we desire as expressed by Eqs.
(1) and (2). We will now restructure and extend this
machinery so that we may write the system dynamics
and performance in this form, considerably enhancing its
power and utility.

The system of equations in Eq. 3 is linear (and in-
homogeneous), since it may be solved in sequence and
the time-dependent field modifies only the input arising
from previously solved systems of equations. However,
solving these differential equations in this form is incon-
venient; they are expressed in terms of rank 4 linear op-
erators, instead of the typical matrix operators. It is
therefore preferable to recast these equations by rewrit-
ing, e.g., each ρ̂ as a vector ρ̄, the internal and ampli-
fication superoperators as matrices, and the coupling to
other density matrices as an input vector. A common
scheme for this conversion is to take %̄i·n+j = %̂j,i; in this
case superoperators may be converted using the relation

¯
(Ôρ̂Q̂)= (Q̂T ⊗ Ô)ρ̄, where ⊗ is the Kronecker product.
However, this transformation is not necessarily optimal,
and we will employ others as is convenient. For evalua-
tion of the output records from Eq. 7 the amplification
operators X̂i become X̄i =

∑
j χij x̄ij , where x̄ij is the

vectorized form of x̂ij and 〈X̂i〉(t) = X̄i · ρ̄MATTER(t) =
X̄i
†ρ̄MATTER(t). For later convenience we also define

x̂i =
∑
j x̂ij and its vectorized form x̄i, which are projec-

tors onto the monitored internal states.
Thus we have for the average dynamics

˙̄%N,M (t) = Ā%̄N,M (t) + β̄N,M (t)

with

β̄N,M (t) = |E|2
√
MN S̄%̄N−1,M−1(t)

+ e−iωtE(t)
√
M L̄+%̄N,M−1(t)

+ eiωtE∗(t)
√
N L̄−%̄N−1,M (t).

Here Ā contains the coefficients of the matrix elements as
written above, the matrices S̄ and L̄± contain the field
couplings to density matrices with lower mode indices.
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The use of + and − superscripts in L̄± is intended only
to distinguish the two objects rather than denote any op-
eration. Importantly, Ā contains the information on the
internal structure of the photodetector. In the following
we will assume that Ā is time-independent for simplicity.
Assuming the system is in an initial state ρ̄(t0) before
the wavepacket arrives, the solution is

%̄N,M (t) = δN,MeĀ(t−t0)%̄N,M (t0) +

∫ t

t0

dτeĀ(t−τ)β̄N,M (τ).

(8)

Unless otherwise noted, we will assume that %̄(t0) is
an eigenstate of Ā (e.g., a ground state), so that

eĀ(t−t0)%̄N,M (t0) = %̄N,M (t0), and take t0 = −∞ for con-
venience. Computing %̄N,M (t) iteratively from %̄00(t0),
we can see that our final expression is a set of nested in-
tegrals propagating the initial system state through suc-
cessive interactions with the field. While this may ap-
pear similar to a perturbative expansion in an interaction
with a semiclassical field, we emphasize that the physical
meaning of the series is distinct. The computed evo-
lution is exact, having been derived from the complete
evolution of the combined, fully quantized light-matter
system. For each interaction the field is implicitly modi-
fied to account for changes in the field occupation arising
from the interaction. Thus, the expansion terminates
due the finite occupation of the field, rather than as an
approximation. We note that the only approximation
made thus far, beyond the treatment of the detector as
point-like, is regarding a timescale separation between
the degrees of freedom of the detector that interact with
light and the ones that carry the amplified information.
This enables us to make the Markov approximation, and
describe the amplification as a weak measurement. Cru-
cially, no timescale separation is assumed between the
field dynamics and initial detector states, as is typical in
traditional photodetection theory [13].

Writing Ḡ(t − τ) = eĀ(t−τ), we note that Ḡ(t − τ)
propagates the input from the field-system interaction at
τ to t, and thus defines a set of Green’s functions that are
independent of the field degrees of freedom. Therefore,
they characterize the internal modes and amplification of
our detector. In particular, the elements of Ḡ will take
the form of sums of exponentials with eigenvalues of Ā as
factors of time in the arguments. Thus the eigenvalues of
Ā play an important role in characterizing the detector
performance as we will see below.

In many cases, Ā, and therefore Ḡ(t), will be block
diagonal, and L̄± will be block off-diagonal. This occurs
when elements coupled by the field interaction are not
coupled by internal processes. As a result, states within
blocks will only evolve under the action of Ḡ(t) within
their blocks, while L̄± will map one block of states to
another. This can simplify both analysis and solution
significantly.

We note that this Green’s function formalism can be
related to the conventional POVM formulation of a quan-
tum measurement on the incoming field, see Appendix B.

III. PERFORMANCE

To obtain detector performance metrics, typically the
stochastic master equation consistent with Eqs. (8) (this
is explicitly given in Appendix C) and the measurement
record in Eq. (7) must be numerically integrated. These
are stochastic trajectories of the system, and thus one
has to resort to Monte Carlo averaging over these trajec-
tories to obtain average detector metrics, which can be
expensive and cumbersome. However, in many practical
parameter regimes it is possible to exploit the properties
of Green’s functions to obtain estimates of these metrics
using only the average evolution equation, Eq. (8).

In particular, we desire an expression for the probabil-
ity Πi(N, t) that at time t the ith channel has recorded
a hit for an incoming field with N photons. A hit
is recorded when the output Ii(t) exceeds a threshold
IHIT,i. In the strong amplification regime, the stochastic
trajectories become jump-like [23], and the signal por-
tion of the measurement current, Eq. (7), dominates. In
this case, Πi(N, t) can be estimated as the cumulative
probability that the monitored states are populated by
the internal dynamics, and stay populated long enough
to register a hit.

In Appendix C we present in detail how these proba-
bilities are determined from the average dynamics, which
determine the probability of a photo-excitation being
transduced into the monitored subsystem, and then the
likelihood that the created population will persist long
enough to record a hit. We find that the upper bound
for a single detection channel is given by

Πi(t) = x̄i
†Ḡ(tMIN)x̄i

[
x̄i
†ρ̄(t− tMIN)−

(x̄†i Āx̄i)
∫ t−tMIN

t0

dτ x̄i
†ρ̄(τ)

]
,

(9)

where tMIN is the minimum time for a detection event to
be registered.

If the monitored subsystem is stable and population

loss from it can be neglected, x̄†i Ḡx̄i = 1 and x̄†i Āx̄i = 0.
In this case, the above reduces to

Πi(t) = x̄i
†ρ̄(t− tMIN). (10)

Thus, in this case, the performance can be directly ap-
proximated from the average population in the monitored
subsystem, consistent with previous results [23].

A. Efficiency

The total probability that N photons are detected
given M incoming photons is PN (M, t) = pN [Πi(M, t)],
where pN is a function that maps the outcomes of all out-
put channels into a detection probability. In the case of
a single photon P1(1, t) =

∑n
i=1 Πi(1, t), where n is the
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number of detector elements. In that case the mapping
function p1 is a simple summation, but for multiple pho-
tons it is more complex, as discussed in Appendix C. In
general, the total probability of detecting exactly N pho-
tons in a field containing N photons is then PN (N,∞);
in this case we will often simply write PN (N).

B. Dark Counts

Dark counts for a detector element occur when a hit
is recorded in the absence of a field due to total noise
exceeding IHIT,i. This noise may include thermal fluctu-
ations of the system (i.e., the system has a finite prob-
ability of entering the monitored state in the dark) and
fundamental noise to the amplification process, as well
as noise arising after the amplification due to additional
(classical) signal processing and transduction. Here we
consider only the former contributions, both of which are
captured in Eq. (7), and ignore the dark counts due to the
classical signal processing chain. Since the amplification
noise is Gaussian, the dark count rate ri can be obtained
straightforwardly from the amplification and integration
time tm using Eq. (7) as

ri =
Πi(0, tm + t0)

tm
+

0.5

tm
erfc

(
2
√
ktm∆IHIT,i

)
where Πi(0, tm+t0) is the probability of obtaining a hit in
time tm due to noise (when no photons are present in the
field), and ∆IHIT,i is the difference in signal between hit
and non-hit states of the detector. When amplification
noise is the dominating contributor to the dark counts,
minimization of the dark count rate requires stronger am-
plification and/or longer integration times, which in some
cases will limit performance. The overall dark count rate
for the photodetection system is given by RN = pN (ri)
where pN is the same mapping function as for the effi-
ciency.

C. Jitter and Latency

The ultimate limits to jitter and latency in a detector
are imposed by the temporal spread of an electromag-
netic pulse. While these quantities can be simply defined
in the case of a single photon pulse, more care is re-
quired when defining them for multiphoton pulses. We
shall define jitter and latency with respect to a temporal
distribution determined by the pulse profile E(t)

f(t) = N |E(t)|2
[∫ t

t0

dτ |E(τ)|2
]N−1

,

which we show below to correspond to the behavior of an
ideal intensity detector and arrival time it would register
for the Nth photon of a multiphoton pulse.

We compare this quantity to the distribution of detec-
tion times for the Nth photon in an M photon pulse.

Since PN (M, t) gives the cumulative probability of hav-

ing registered such a hit at time t, ṖN (M, t)∆t represents
the probability of a hit being obtained in a short inter-
val ∆t centered at t, which, when normalized to the to-
tal probability of a hit, yields a distribution of detection
times

g(t) =
ṖN (M, t)

PN (M,∞)

For example, in the case of a single detection element
i = 1 this can be expressed as

g(t) =
x̄i
†Ḡ(tMIN)x̄ix̄i

†
(

˙̄ρ(t− tMIN)− x̄†i Āx̄iρ̄(t− tMIN)
)

Π1(M,∞)
.

The latency in the detection is then defined as the dif-
ference between the mean detection time from this dis-
tribution and the mean time from f(t), i.e.,

µ =

∫ ∞
t0

dt t [g(t)− f(t)] .

Similarly, the standard deviation of the detection time
for the Nth photon gives the jitter, i.e.,

σ =

√∫ ∞
t0

dt t2g(t)−
(∫ ∞

t0

dt tg(t)

)2

.

For convenience we define σSYS as the jitter originating
from the detector so that

σ =

√
(σ0)

2
+ (σSYS)

2

with

σ0 =

√∫ ∞
t0

dt t2f(t)−
(∫ ∞

t0

dt tf(t)

)2

.

IV. IDEAL DETECTION

The above naturally leads to a definition of ideal detec-
tion: a pulse arriving at time t is immediately and fully
transduced to a monitored state, such that g(t) = f(t),
and thus

PN (N, t) =

[∫ t

−t0
dτ |E(τ)|2

]N
. (11)

Since |E(τ)|2 is normalized to 1 (see Appendix A), we
have PN (N,∞) = 1 in this case, corresponding to 100%
efficiency. Additionally, since the distribution of the de-
tection times is equivalent to the temporal distribution
of the photon(s) in the pulse, µ = 0 and σ = σ0. Fur-
thermore, one can choose an amplification rate, k �
1/(χ2tm), to make RN ≈ 0, and achieve dark count rates
that are arbitrarily close to zero.
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FIG. 3. The two- and three-state systems analyzed in Section
V. A single mode couples the ground state 0 and excited state
1 with strength γ. (a) In the two-state system the 1 state is
directly amplified with strength χ and rate k. (b) In the
three-state system there is an incoherent decay from state 1
to a state C, which is amplified.

The above conditions on the metrics can be translated
into conditions on the Green’s functions governing the
dynamics and the underlying architecture. In general, Ḡ
will have two effects on the signal propagation: one, it
may directly attenuate the signal, and two, it may act
to alter the shape of the signal that is passed on to the
next integral, which will reduce the efficiency. To obtain
Eq. (11) from Eq. (10), Ḡ must act as a delta function
when acting on density vectors diagonal in the field, and
must be a constant (i.e., only comprise modes with zero
eigenvalues) when acting on density vectors off-diagonal.
Additionally, the overall magnitude must be unity. This
will be shown concretely in the Examples.

V. SINGLE-PHOTON, SINGLE ELEMENT
DETECTOR

To illustrate the Green’s functions formalism we have
developed, we first consider the simplest model for a de-
tector, a two-state system (see Fig. 3(a)). A single mode
couples states 0 and 1 with strength γ, while state 1 is
amplified with strength χ and rate k. The matrices gov-
erning the dynamics are

L̂ =

[
0 γ
0 0

]
, X̂ =

[
0 0
0 χ

]
, Ĥ =

[
0 0
0 ω1

]
.

Then, with

ρ̄ =

 ρ̂00

ρ̂11

ρ̂01

ρ̂10

 ,

we have

Ā =


0 γ2 0 0
0 −γ2 0 0

0 0 −γ
2+2kχ2

2 + iω1 0

0 0 0 −γ
2+2kχ2

2 − iω1

 ,
which can be exponentiated to obtain

Ḡ(t) =


1 1− e−γ

2t 0 0

0 e−γ
2t 0 0

0 0 e

(
iω1− 2kχ2+γ2

2

)
t

0

0 0 0 e

(
−iω1− 2kχ2+γ2

2

)
t

 .
The field coupling is described by

L̄+ = −L̄−† =

 0 0 0 −γ
0 0 0 γ
γ −γ 0 0
0 0 0 0

 .
For an incident resonant single-photon field, the den-

sity matrix is given by %̄11 and we have

%̄11(t) =

∫ t

−∞
dτ Ḡ(t− τ)L̄+E(τ)e−iωτ

×
∫ τ

−∞
dτ ′Ḡ(τ − τ ′)L̄−E∗(τ ′)eiωτ

′
ρ̄(t0) + h.c.,

or explicitly in terms of the population of the excited
state,

%̂11
11(t) = 2γ2

∫ t

−∞
dτe−γ

2(t−τ)E(τ)

×
∫ τ

−∞
dτ ′e−

2kχ2+γ2

2 (τ−τ ′)γE∗(τ ′).

In order to obtain estimates for the detector metrics we
apply the estimation scheme described by Eq. (9). Using
the above definitions for Ḡ(t) and X̄,

P1(1, t) = e−γ
2tMIN

∫ t−tMIN

−∞
dτ2γ2E(τ)

×
∫ τ

−∞
dτ ′e−

2kχ2+γ2

2 (τ−τ ′)E∗(τ ′). (12)

With this we can compare against the results obtained
in Ref. [23] via direct simulation. Using a Gaussian pulse
with σE = 1ns and γ2 = 1ns−1, we compute P1(1,∞)
using the intervals t− τ corresponding to thresholds that
yield the dark count rate in that work (i.e., a probability
of 1% for obtaining a dark count in a 15ns interval) and
plot it against the efficiency obtained from direct simu-
lation (Fig. 4). In this case the estimation scheme pro-
vides a good approximation of the efficiency. The estima-
tion deviates more for low (2k)1/2χ, which is expected:
the approximation of the dynamics being jump-like is
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FIG. 4. The estimated efficiency vs simulated efficiency (up-
per panel) and the estimated jitter and latency (lower panel)
for the system in Fig. 3(a). The simulation results are taken
from Ref. [23] and the estimation is performed using the same
parameters and Eq. (12). The estimated quantity deviates

from the calculated quantity in the small (2k)1/2χ region be-
cause the approximations that go into the estimated quantity
(i.e., jump-like trajectories) are not valid in this very weak
measurement regime.

less valid, the contribution of noise is increased, and the
longer integration times increase the likelihood that a di-
rect simulation signal will be split across two integration
windows and fail to produce a hit, an event that is not
captured by the estimation scheme as presented. We also
plot the estimated jitter and latency, shown in the lower
panel. These are reduced for stronger amplification con-
sistent with the trends observed in Ref. [23].

We next consider the system containing three states:
0,1, and C (Fig. 3(b)). A single, resonant mode couples 0
and 1 with strength γ, while state 1 decays incoherently
to state C according to Γ, which is amplified according
to χ and k. We previously demonstrated that this config-
uration can lead to ideal detection with 100% efficiency,
negligible dark counts, and minimal jitter, provided that
certain conditions are met for γ and Γ [23].

For this system we have

L̂ =

 0 γ 0
0 0 0
0 0 0

 , Ŷ =

 0 0 0
0 0 0
0 Γ 0

 ,
X̂ =

 0 0 0
0 0 0
0 0 χ

 , Ĥ =

 0 0 0
0 ω1 0
0 0 ωC

 .

We construct the vectorized density matrix as

ρ̄ =


ρ̂00

ρ̂11

ρ̂CC
ρ̂01

ρ̂10

 .
Coherences with the C state are omitted as they will
always be zero for the given interactions and initial state
ρ̂(t0) = |0〉 〈0|. Then

Ā =


0 γ2 0 0 0
0 −(γ2 + Γ2) 0 0 0
0 Γ2 0 0 0

0 0 0 −γ
2+Γ2

2 + iω2
1 0

0 0 0 0 −γ
2+Γ2

2 − iω2
1


and

L̄+ = −L̄−† =


0 0 0 0 −γ
0 0 0 0 γ
0 0 0 0 0
γ −γ 0 0 0
0 0 0 0 0

 .
This leads to

Ḡ(t) =



1 γ2 1−e−(Γ2+γ2)t

Γ2+γ2 0 0 0

0 e−(Γ2+γ2)t 0 0 0

0 Γ2 1−e−(Γ2+γ2)t

Γ2+γ2 1 0 0

0 0 0 e

(
iω1−Γ2+γ2

2

)
t

0

0 0 0 0 e

(
iω1−Γ2+γ2

2

)
t


.

We note two features of the above matrices: first, the
top 3 × 3 diagonal block of Ā only has a single nonzero
eigenvalue, a decay mode, and second, none of these
matrices have a dependence on the overall amplification
(2k)1/2χ. The separation of the unmonitored and moni-
tored subspaces by an incoherent decay, and the fact that
there are only incoherent processes within the monitored
subspace implies that the amplification does not directly
effect the dynamics.

For a single photon at the resonant field frequency and
a system initially in state 0, we find that the probability
of a hit, which is equal to the population in the C state
in this case, is

P1(1, t) = %̂11
CC(t) = 2

Γ2γ2

γ2 + Γ2

×
∫ t

−∞
dτ
(

1− e−(γ2+Γ2)(t−t′)
)
E(τ)

×
∫ τ

−∞
dτ ′e

−
(
γ2+Γ2

2

)
(τ−τ ′)

E∗(τ ′).

(13)
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When γ2+Γ2 � 1/σE , where σE is the width of a smooth
pulse described by E(t), the exponential decay can be
approximated by a delta function. Then

P1(1, t) = 2
γ2Γ2

γ2 + Γ2

∫ t

−∞
dτ |E(τ)|2 2

γ2 + Γ2
,

P1(1) =4
γ2Γ2

(γ2 + Γ2)2
.

This expression satisfies Eq. (11) except for the prefac-
tor. It is evident by inspection that this prefactor is
unity when γ = Γ. Thus, Eq. (11) can be fully satisfied
and perfect efficiency is achieved when the two rates are
equal; the large coupling limit (γ2 + Γ2 � 1/σE) ensures
that the signal is not distorted as it is processed by the
system, while the coupling matching condition (γ = Γ)
ensures the photon is fully converted to population in
C. We emphasize that as long as the pulse is sufficiently
long, this result is obtained regardless of pulse shape.

We also note that the fast incoherent process (large Γ)
will widen the detection bandwidth and decrease sensi-
tivity to the resonance condition. Repeating the above
calculation for an off-resonant pulse we obtain

P1(1, t) = 2
Γ2

γ2 + Γ2

∫ t

−∞
dτE(τ)

∫ τ

−∞
dτ ′γ2

× cos [∆ω(τ − τ ′)] e
−
(
γ2+Γ2

2

)
(τ−τ ′)

E∗(τ ′),

P1(1) =4
γ2Γ2

(γ2 + Γ2)2 + 4∆ω2
,

where ∆ω is the detuning from resonance. The band-
width of the detector is therefore determined by the rate
γ2 + Γ2. The requirement that the pulse be temporally
wide can also be understood as requiring that the pulse
frequency distribution be narrow compared to this band-
width, such that it is approximately constant over the
frequencies in the pulse.

It is also evident from this calculation that any ad-
ditional sources of decoherence, such as amplification
or decays to unmonitored states, will reduce the effi-
ciency; they will appear in the denominator of the pref-
actor and the maximum efficiency will no longer be unity.
For example, suppose that we have additional dephasing
of the excited state, modeled by the Lindblad operator
Ŷ1 = κ |1〉 〈1|. This will inhibit the formation of optical
coherence but will not affect the populations. Adding
this dynamics gives

P1(1, t) = 2
Γ2

γ2 + Γ2

∫ t

−∞
dτE(τ)

∫ τ

−∞
dτ ′γ2

× e
−
(
γ2+Γ2+κ2

2

)
(τ−τ ′)

E∗(τ ′),

P1(1) =4
γ2Γ2

(γ2 + Γ2)2

γ2 + Γ2

γ2 + Γ2 + κ2
.

These expressions indicate that the efficiency is the effi-
ciency obtained without the dephasing dynamics multi-
plied by an additional factor dependent on κ. This factor
– and the total efficiency – will always be less than 1.

Our formalism also reveals the critical role of the zero
eigenvalue mode of Ā in the dynamics; the presence of a
zero eigenvalue indicates a component of the population
that is persistent; the state will be populated indefinitely.
Decays or oscillations would prohibit an expression in
the form of Eq. (11) from being achieved. For example,
suppose that population decays from the C state to the
0 state at a rate δ2, so that the detector effectively resets
after time ∼ 1/δ2. Then, even with γ = Γ,

P1(1, t) =

∫ t

−∞
dτe−δ

2tMIN |E(t− tMIN)|2 ,

P1(1) = e−δ
2tMIN , (14)

so that the overall efficiency is limited by the possibil-
ity that population in C decays before sufficient time to
record a hit has passed. Maximizing efficiency requires
both separation of the amplification from the absorption
and propagation of the signal into such stationary system
mode where it can be amplified at leisure, i.e., shelving.
However, this extends the natural reset time, limiting
count rate in the absence of an active reset mechanism.

In practice the time required for the system to record
a hit places additional constraints on the amplification
(2k)1/2χ. The maximum threshold that can produce a
hit is ∆IHIT = χ. For a desired dark count rate R1, then

(2k)1/2χ ≥ erfc−1(2tmR1)√
2tm

. This is especially relevant if

relaxation from the C state to the ground state is present.
Maximizing the efficiency in Eq. (14) requires increasing
the amplification so that tm may be reduced, or reducing
the signal threshold and necessarily permitting more dark
counts.

VI. OTHER DETECTOR STRUCTURES

To demonstrate the broad applicability of the formal-
ism, we now apply it to several cases with other detection
mechanisms or detector configurations.

A. Two-State Quadratic Coupling Detector

In some cases the matter system couples to the field
quadratically; the interaction does not alter the pho-
ton number but the phase of the field. For example,
in circuit-QED architectures in the dispersive regime,
the interaction between matter and field takes the form
HI = a†aσ̂z [26]. In this case, the natural way to model
the field-matter interaction within our framework is to
couple through Ŝ rather than L̂ in Eq. (4). Instead of
creating optical coherence, the field scatters off the mat-
ter subsystem and causes a change. Consider a two-level
system such as that in Fig. 3(a), with the field scatter-
ing causing a general unitary operation on the matter
degrees of freedom. Then the system is described by the
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FIG. 5. System comprising two elements described by
Fig. 3(b). The elements collectively interact with the field
and may exchange population through the field. In systems
with more elements, the field couples each element with each
other element.

operators

Ŝ = e−i(axσ̂x+ayσ̂y+azσ̂z)θ/2, Ĥ =

[
0 0
0 ω1

]
, X̂ =

[
0 0
0 χ

]
,

where σ̂x, σ̂y, σ̂z are Pauli matrices and a2
x +a2

y +a2
z = 1.

This gives

Ḡ(t) =

 1 0 0 0
0 eiω1t 0 0
0 0 eiω1t 0
0 0 0 1

 ,
S̄ = sin2(θ/2)

(
α̂⊗ α̂T − I

)
+ i sin(θ/2) cos(θ/2)

(
α̂⊗ I− I⊗ α̂T

)
,

where α̂ = (axσ̂x + ayσ̂y + azσ̂z). This yields,

P1(1, t) = %̂11
11 =

sin2 θ

2(1− a2
z)

∫ t−tMIN

−∞
dτ |E(τ)|2 ,

so ideal detection is achieved when az = 0 and θ = π.
The quadratic field coupling does not produce a field-
driven decay, and can directly transfer population. As
a consequence there are no losses and the requirement
for ideal detection is straightforwardly satisfied with-
out requiring a shelving state. Even when ideal effi-
ciency is not obtained, the quadratic coupling ensures
that Ṗ1(1, t) = |E(t− tMIN)|2, meaning jitter is mini-
mized and latency is limited by the integration time of
amplification.

B. Single Photon, Multiple Degenerate Elements

We next consider n copies of the elements of Fig. 3(b)
collectively interacting with the incoming light pulse, il-
lustrated for two elements in Fig. 5. Each absorbing el-
ement is assumed to be degenerate in the sense that all
elements have the same transition energy between states
0 and 1, and each absorbing element has its own associ-
ated readout channel. The system Hilbert space is the

direct product of n three-state Hilbert spaces. There is
a single operator coupling the system with the field and
a bath coupled to each subsystem such that

L̂ =
∑
i

γ |0i〉 〈1i| , Ŷi = Γ |Ci〉 〈1i|

where 1i and Ci denote the 1 and C states of the ith el-
ement. As a result the field introduces coupling between
array elements whereas the baths Ŷi do not; following the
procedure introduced in Section II we find that

P1(1, t) =

n∑
i=1

Πi(1, t) =
∑
i

x̄i · %̄11(t)

= 2n
γ2Γ2

nγ2 + Γ2

∫ t

−∞
dτ
(

1− e−(nγ2+Γ2)(t−t′)
)

× E(τ)

∫ τ

−∞
dτ ′e

(
nγ2+Γ2

2

)
(τ−τ ′)

E∗(τ ′).

This is the same expression as for the single-element de-
tector with γ →

√
nγ, indicating that a multiple copy

detector can be made equivalent to a single copy detec-
tor with stronger field coupling, and the ideal detector is
now characterized by Γ =

√
nγ. The presence of multiple

degenerate elements enhances the effective field coupling,
a phenomenon recognized as superradiance [27].

It is important to note that the need to monitor
multiple states may introduce practical constraints on
detector performance. In particular there are three
main amplification schemes that are consistent with the
above description: i) a single amplification process sen-
sitive to all the C states, corresponding to a single
X̂ = χ

∑n
i |Ci〉 〈Ci|, ii) an amplification process moni-

toring each C state, so that there are n separate X̂i =
χ |Ci〉 〈Ci|, all of which are processed to determine hits
individually, and iii) amplification processes for each C
state, the combined signal of which is processed to de-
termine whether a hit has occurred. For a single photon,
both i and ii result in the same dark count rate for given
amplifications and times, since the hits are determined
based on the noise provided by a single amplification pro-
cess. However, for iii, the noise is the total contributed
by all amplification processes and will be larger than the
single-process noise by a factor of

√
n, increasing the dif-

ficulty of discriminating hits and dark counts.

C. Single Photon, Dispersive Band

In most cases the detector will contain multiple absorb-
ing elements that are not degenerate, resulting in a band
of possible excitations from the ground state. This is the
case in ensembles of atoms or solid state systems. It is
therefore essential to understand how the above results
can be extended to such systems.

We consider systems like those appearing in Fig. 3,
which have a single ground state that may be excited
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FIG. 6. Systems featuring excitation into a dispersive band.
A single mode couples the ground state 0 and all excited states
with strength γ. In (a) the states in the band are directly
amplified with strength χ and rate k, while in (b) the ex-
cited band states incoherently decay to a state (or potentially
multiple states) C, which are amplified.

with strength γ to n independent states with energies
ω distributed according to a normalized function D(ω).
First, we consider the case with no amplification dynam-
ics in order to isolate the effect of having a band of states
that are coupled to the field.

In the limit n → ∞, we treat the distribution of ex-
cited states as a continuous density, and in the case where
the distribution of these states is Lorentzian we can an-
alytically compute this excited state population. For a
Lorentzian with full-width-half-max ζ2/2 and centered at
the incoming pulse frequency ωE , the state distribution
is

D(ω) =
1

π

ζ2/2

(ζ2/2)2 + (ω − ωE)2
,

and the total population of the band is

u(t) =
∑
i

%̄11
ii (t) =

2γ2

nγ2 + ζ2

×
∫ t

dτ
(
nγ2e−(nγ2+ζ2)(t−τ) + ζ2

)
E(τ)

×
∫ τ

dτ ′e−
nγ2+ζ2

2 (τ−τ ′)E∗(τ ′)

where i indexes the states in the band.
The form of this expression is that of Eq. (13) and the

Green’s functions have the required form for ideal de-
tection. The energy dispersion results in dephasing that
suppresses emission allowing the excitation into the band
to be long lived. From the above expression it is clear
that the bandwidth can be tuned to obtain full collec-
tion of the photon when ζ2 = nγ2 � σ0. However, this
does not necessarily indicate ideal performance; unlike
the case of incoherent decay to a shelving state, amplifi-
cation will influence the absorption process with conse-
quences for performance. If the excited states are directly
amplified according to X̂ = χ

∑n
i |i〉 〈i| with rate k, then

we can write

P1(1, t) = u(t) =
2γ2

nγ2 + ζ2

×
∫ t

dτ
(
nγ2e−(nγ2+ζ2)(t−τ) + ζ2

)
E(τ)

×
∫ τ

dτ ′e−
nγ2+ζ2+2kχ2

2 (τ−τ ′)E∗(τ ′)

and in the limit ζ2 = nγ2 � σ0

P1(1, t) =
4γ2ζ2

(nγ2 + ζ2)2
× nγ2 + ζ2

nγ2 + ζ2 + 2kχ2
.

The amplification introduces decoherence that sup-
presses absorption and will limit efficiency; i.e., the Zeno
effect, see Ref. [23]. However, unlike the two-state sys-
tem, the band shelving-like effect allows for long measure-
ment intervals and correspondingly lower amplifications;
this suggests that higher efficiencies may be obtained at
the expense of increased latency.

We may circumvent such tradeoffs as before by intro-
ducing incoherent decays from each state in the band to
states that are not optically coupled (dark states) that
are then amplified. It is straightforward to alter the
above treatment to account for the additional dynam-
ics. For a decay rate Γ2 to a single state C (or multiple
C states), the band population becomes

u(t) =

∫ t

dτe−Γ2(t−τ)nγ
2e−(nγ2+ζ2)(t−τ) + ζ2

nγ2 + ζ2

× 2γE(τ)

∫ τ

dτ ′e−
nγ2+ζ2+Γ2

2 (τ−τ ′)γE∗(τ ′),

and

P1(1, t) = %̄CC(t) = Γ2

∫ t

dτp(τ)

=

∫ t

dτ
Γ2

nγ2 + ζ2

[
nγ2(1− e−(nγ2+ζ2+Γ2)(t−τ))

nγ2 + ζ2 + Γ2

+
ζ2(1− e−Γ2(t−τ))

Γ2

]

× 2γE(τ)

∫ τ

dτ ′e−
nγ2+ζ2+Γ2

2 (τ−τ ′)γE∗(τ ′).

When Γ2 + ζ2 + nγ2 � σ0, after the pulse passes

P1(1) =4
nγ2(Γ2 + ζ2)

(nγ2 + ζ2 + Γ2)2

which is unity when Γ2 +ζ2 = nγ2. Thus, in the presence
of a band, the optimal tuning of the decay rate Γ2 has
contributions from the bandwidth as well as the optical
coupling. However, the jitter and latency both may still
be impacted. For the above parameters,

P1(1, t) =

∫ t

dτ

[
1− e−Γ2(t−τ)

2 + Γ2/ζ2

]
|E(τ)|2 .
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If Γ is small, the second term in brackets is only zero at
long times, which delays and stretches the distribution of
arrival times. This adds latency

µ =
1

Γ2 (2 + Γ2/ζ2)

and increases the jitter by

σSYS = µ
√

3 + 2Γ2/ζ2.

D. Multiple Photons, Multi-element Detector

We can now ask how an ideal single-photon detector
performs in resolving photon number. For the array of
degenerate elements, we note that in the limit where
nγ2 + Γ2 � 1/σ0, the populations of the 1 states and
coherences between them are close to 0. Thus for two
photons we have

%̄22(t) ≈ [1− nyn(t)] ρ̄11
n:00 +

n∑
i

yn(t)ρ̄11
n:CiCi

where

yn(t) =
4γ2Γ2

(nγ2 + Γ2)
2

∫ t

−∞
dτ |E(τ)|2 .

Here ρ̄11
n:00 and ρ̄11

n:CiCi
represent the total system density

matrix in a compact notation, see Appendix D for details.
We can express %̄11(t) as

%̄11
n (t) = %̄00

n−1(t)⊗


1− yn(t)

0
yn(t)

0
0

 = ρ̄n−1(t0)⊗


1− yn(t)

0
yn(t)

0
0

 ,

and thus for a system illuminated by a two photon pulse

%̄22
n = ρ̄n(t0)−

[∫ t

−∞
dτeĀ(t−τ)

√
2E(τ)e−iωτ L̄

∫ τ

−∞
dτ ′eĀ(τ−τ ′)√2E∗(τ ′)eiωτ

′
L̄†%̄11

n (τ ′) + h.c.

]

We note that in order to determine photon number it is necessary for the amplification scheme to distinguish the
states with different numbers of C states occupied. At present we take each Ci state to be amplified by an operator
X̂i = χ |Ci〉 〈Ci|, so that, as discussed in Appendix C,

P2(2, t) =

n∑
i>j

(x̄i × x̄j) · %̄22
n (t) =

8γ2Γ2

((n− 1)γ2 + Γ2)
2

4γ2Γ2

(nγ2 + Γ2)
2

[∫ t
−∞ dτ |E(τ)|2

]2
2

(15)

where × represents element by element multiplication.
Repeating this procedure, we may find the population

of the state corresponding to collection of all N photons
at any time t. Accounting for the degeneracy of this
state via a binomial coefficient, we obtain the following
expression for the probability of complete absorption of
all incoming photons:

PN (N) =

(
n

N

)N−1∏
k=0

4n(k + 1)

(2n− k)2
. (16)

It is evident that this detector is only a perfect single pho-
ton detector; multiple photons are detected increasingly
inefficiently as the number of photons increases. This
may be understood by thinking about the absorption of
photons as a successive process. Absorption of the first
photon proceeds with maximal efficiency, filling state C.

However, the occupation of this state blocks further col-
lection by that state: if an element of the array absorbs
a photon, it is no longer available to absorb further pho-
tons. This is seen in Eq. (15) in the appearance of n− 1
instead of n multiplying γ2. Thus, the detector inter-
acting with successive photons is increasingly detuned
from the optimal ratio, as the effective field coupling is
reduced, but Γ is not. This suggests that high efficiency
photon resolution requires an array of many more ele-
ments than potential photons detected. In Fig. 7, the
number of detector elements required to detect all pho-
tons in a pulse with efficiencies of 80%, 95%, and 99%
is plotted against the number of photons in the pulse.
As shown, the minimum number of detector elements in-
creases dramatically as more stringent requirements for
efficiency are imposed.

This reveals an important design consideration for
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FIG. 7. Number of elements in a detector array required to
detect a number of photons with a certain efficiency. The
detector elements have the configuration in Fig. 5.

high-performance number-resolving detectors: the effec-
tive parameters of the detector will be altered by interac-
tion with the photon packet, and an ideal detector archi-
tecture is one that continues to be optimally tuned for
interaction with the remainder of the wavepacket. For
example, to avoid the need for excessive numbers of el-
ements, the array structure analyzed above must be re-
configured so that either the absorption properties are
unchanged as the system absorbs photons, or the decay
process is also modified so that the effective decay and
effective optical coupling remain matched following ab-
sorption.

VII. CONCLUSION

We developed a general framework, valid for any point-
like detector system under weak light coupling, for simu-
lating, analyzing, and engineering one and few photon de-
tection. Based on theoretical treatments of light-matter
interactions and open quantum systems, we constructed
a unified approach to modeling photodection, deriving an
expression that yields an output signal generated through
the propagation of the incoming photon occupation by
a Green’s function representing the matter system. This
expression provides a means of both explicitly calculating
detection trajectories for determination of performance
metrics as well as efficiently estimating these metrics from
averaged solutions. It naturally furnishes a definition
of ideal detection that places constraints on the system
Green’s function and ultimately the detector structure.
Using this we analytically analyze detector schemes and
show that they conform to this definition with appro-
priate parameters. We also generalize the description of
an ideal detector to systems with multiple excited levels,
with and without energy dispersion, as well as multiple
photon resolution.

We emphasize that this framework describes detection
abstractly and may encompass detectors utilizing very
different physical systems, allowing comparative analy-

sis of different detector architectures in a unified way.
While we find, in principle, that ideal detector perfor-
mance is possible, the structure of energy levels and cou-
plings between them or the physically allowed parameters
may prohibit the realization of this limit. By represent-
ing a detector implementation within the framework, it
may be evaluated against the ideal limit, clarifying the
constraints and tradeoffs imposed by the system physics.
This can guide engineering of the system architecture and
parameters to improve the detector performance as well
as facilitate the design of entirely novel detectors.
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Appendix A: Light Field Construction

We use fields constructed using the quantum noise
formalism where the field annihilation and creation op-

erators b̂(t) and b̂
†
(t) satisfy the commutation relation[

b̂
†
(t), b̂(t′)

]
= δ(t − t′). From this one may define the

objects

dBt =

∫ t+dt

t

dτ b̂(τ),

dΛt =

∫ t+dt

t

dτ b̂†(τ)b̂(τ),

|N〉 =
1√
N !

[∫
dτE(τ)b̂(τ)†

]N
|0〉 ,

dBt |N〉 = dt
√
NE |N − 1〉 , (A1)

where N is the number of photons in the ith
mode with temporal field profile E(t) defined so that∫∞
−∞ dt |E(t)|2 = 1. Then the light field is in general

ρ̂LIGHT(t) =
∑
N,M cN,M (t) |N〉 〈M |.

In this manuscript we consider only a single mode;
however, the consideration of multiple arbitrary modes is
straightforward, if cumbersome. In this case, each mode
will be associated with an index i denoting the mode tem-
poral profile Ei(t) and occupation Ni. The component
field states are written as |N〉 =

∏
i |Ni〉, where N is a

vector containing the Ni, so that the overall field density
matrix is ρ̂LIGHT(t) =

∑
N,M cN,M(t) |N〉 , 〈M|. As a re-

sult, the matter state is ρ̂MATTER(t) = cN,M(t0)%̂N,M(t)
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and the %̂NM(t) are dependent on all %̂N−1i,M(t),
%̂N,M−1i(t), and %̂N−1i,M−1i(t) where N−1i is the overall
occupation N less one photon in the ith mode.

Appendix B: Connection to POVM

Any quantum measurement can be mathematically
represented as a positive operator-valued measure
(POVM) [28, 29], which is a set of operators/elements
defined on the Hilbert space of the system being mea-
sured. Each of these operators is labeled by a measure-
ment outcome, and in our context where one is measuring
a continuous current, these POVM elements are labeled
by a continuous measurement record.

In this section we show how the Green’s functions we
have defined are related to a POVM on the field degrees
of freedom. We consider a single mode of the field for
simplicity, but the results can be generalized to more
complex fields.

Using Eq. (A1) we obtain a recursive operator

P(t) = 1+

∫ t

−∞
Ḡ(t− τ)

×
(
L̄dΛτ + L̄+dBτ + L̄−dB†τ

)
P(τ)

such that our final system state ρ̄(t) can be expressed as

ρ̄MATTER(t) =

TrLIGHT [P(t)ρ̄MATTER(t0)⊗ ρ̂LIGHT(t0)]

where ρ̂LIGHT(t0) is our initial field state constructed as
indicated above. We can now write operator expectation
values as a function of the input state

〈X̂i〉(ρ̂LIGHT(t0), t) =

TrLIGHT

[
X̄i · P(t)ρ̄MATTER(t0)⊗ ρ̂LIGHT(t0)

]
.

For a complete set of appropriately normalized am-
plification operators X̄i obtained from vectorization of
POVM elements X̂i on the system, when an initial state
is assumed, X̄i · P(t)ρ̄MATTER(t0) form a coarse-grained
POVM on the field.

Appendix C: Estimation of efficiency from average
dynamics

The stochastic term given by Eq. (5) unfortunately
contributes both explicit time dependence and nonlin-
earity due to the normalizing third term of the superop-
erator H, meaning that it cannot be described efficiently
using the machinery presented in the main text. Further-
more, since detection events are defined as the output
exceeding some threshold, which is a nonlinear condition
on the current, one usually has to resort to stochastic tra-
jectory simulations in order to estimate efficiencies[23].

However, as mentioned in the main text, under com-
monly prevailing conditions measurement metrics can
be estimated from the averaged dynamics. Under suf-
ficiently strong amplification, the trajectories become
jump-like, with the system being in either a monitored
or unmonitored state. We may thus write the probability
of the system being in the monitored subsystem at time
t as

PMON(t) = PMON|MON(t, t′)PMON(t′)

+ PMON|UN,MON(t, t′)PUN,MON(t′), (C1)

where Px|y(t, t′) is the probability of the system being
in subsystem x at t given that it was in subsystem
y at t′. Here, the subsystems are labeled MON and
UN,MON, which correspond to the monitored and un-
monitored states. Recall that x̂ projects onto the sub-
space of states being monitored through X̂. Therefore,
PMON(t) = Tr [x̂ρ̂(t)] = x̄†ρ̄(t), and hence rewriting the
above,

PMON(t) = PMON|MON(t, t′)x̄†ρ̄(t′)

+ PMON|UN,MON(t, t′) (I− x̄) †ρ̄(t′). (C2)

Now, we formulate a probability quantity that will
serve as an approximation of detection efficiency. Con-
sider a single detection channel for simplicity. Our proxy
for efficiency is based on the time-dependent probability
that a detection event is registered in the channel of in-
terest, which we denote by Π(t). This is the probability
of registering a detection event in the interval (t0, t] given
a photon in the field at time t0. We write this explicitly
as

Π(t) =

∫ t

t0+tMIN

dt′sMON|UN,MON(t′ − tMIN)×

PMON|MON(t′, t′ − tMIN), (C3)

where sMON|UN,MON(t) is the probability of transitioning
from the unmonitored subspace to the monitored sub-
space at time t. The integrand in this expression rep-
resents the joint probability of population transferring
from the unmonitored subspace (which includes the field
degrees of freedom) to the monitored subspace at time
t′, and that this population stays in the monitored sub-
space for time tMIN, which we take as the minimum time
that the monitored subspace has to be populated before
a detection is registered. (A more experimentally mo-
tivated condition for registering a detection is that the
measured current exceed some threshold value IHIT; how-
ever, since it is difficult to develop an expression based
on this condition we proceed with the temporal condi-
tion. The approximate relationship between the two is
that tMON ≈ IHITtm/χ.)

In order to proceed we require an expression for
sMON|UN,MON(t). To obtain this, we return to Eq. (C1)
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and consider the incremental quantity

∆PMON(t) ≡ PMON(t)− PMON(t−∆t)

=
[
PMON|MON(t, t−∆t)− 1

]
PMON(t−∆t)

+ PMON|UN,MON(t, t−∆t)PUN,MON(t−∆t).

Now, the first quantity in this expression corresponds to
the rate at which population is staying in the monitored
subspace while the second quantity corresponds to the
rate at which population is entering the monitored sub-
space from the unmonitored subspace at time t. This is
precisely the quantity sMON|UN,MON(t)∆t, and given this
expression for it, we can compute it explicitly in terms
of the density matrix and dynamics:

sMON|UN,MON(t)

=
d

dt

(
PMON|UN,MON(t, t′)PUN,MON(t− dt)

)
|t′=t

=
d

dt

(
PMON|UN,MON(t, t′) (I− x̄) †ρ̄(t′)

)
|t′=t

=
d

dt

(
x̄†ρ̄(t)− PMON|MON(t, t′)x̄†ρ̄(t′)

)
|t′=t

= x̄†
(
dρ̄(t)

dt
−
dPMON|MON(t, t′)

dt
|t′=tρ̄(t)

)
,

where in the third line we have used the identity in Eq.
(C2). PMON|MON(t, t′) is typically a function of the inter-
nal dynamics and can then be readily determined from
the system Ḡ. When Ā is time-independent, it can fur-
ther be written as a function of τ = t− t′ as

PMON|MON(t, t′) = x̄†Ḡ(τ)x̄.

Hence,

dPMON|MON(t, t′)

dt
|t=t′ = x̄†

dḠ(t)

dt
|t=0x̄

= x̄†Āx̄.

Finally, using this expression for sMON|UN,MON(t) in Eq.

(C3), results in

Π(t) =

∫ t

t0+tMON

dt′ sMON|UN,MON(t′ − tMON)×

PMON|MON(t′, t′ − tMON)

=

∫ t−tMON

t0

dτ sMON|UN,MON(τ)×

PMON|MON(τ + tMON, τ)

=

∫ t−tMON

t0

dτ PMON|MON(tMON)×

x̄†
(
dρ̄(τ)

dτ
− x̄†Āx̄ρ̄(τ)

)
= x̄†Ḡ(tMON)x̄

(
x̄†ρ̄(t− tMON)−

(x̄†Āx̄)x̄†
∫ t−tMON

t0

dτ ρ̄(τ)
)
,

where we have assumed that x̄†ρ̄(t0) = 0.
If the monitored subsystem is stable and population

loss from it can be neglected, PMON|MON(t, t′) = 1, and

therefore x̄†Ḡx̄ = 1 and x̄†Ax̄ = 0. In this case, the above
reduces to

Π(t) = x̄†ρ̄(t− tMON). (C4)

These expressions are the probability that a detection
event is registered in the measurement channel. In gen-
eral, there may be multiple measurement channels, each
associated with an operator X̂i, projection subspace x̂i,
and Πi(t). The probability that a given number of pho-
tons N are detected will depend in some fashion on the
combined behavior of all the channels, so that PN is some
function pN of all Πi.

As an example, we refer to the system discussed in Sec-
tion VI. Since each element has an associated measure-
ment channel, we must consider Πi, i ∈ 1..n. Since the
absorption of a photon corresponds to one measurement
channel registering a hit, we take the registering of a hit
on N channels to correspond to detection of an N photon
wavepacket. Thus, for a single photon, p1(Πi) =

∑
i Πi,

and for, e.g., three photons, p3(Πi) =
∑
i>j>k Πi|Πj |Πk,

where Πi|Πj is the probability of a detection event on
the ith channel given one on the jth channel. Since this
system satisfies the conditions of Eq. (C4), this can be
expressed as

Πi|Πj |Πk... = (x̄i × x̄j × x̄k...) †ρ̄(t− tMON)

where × represents an element-wise product.

Appendix D: Degenerate Multi Element

For a system of n elements, we can represent the total
system density matrix using the notation

ρ̂n:milimj ljmklk... = ρ̂imili ⊗ ρ̂
j
mj lj
⊗ ρ̂kmklk ⊗ ...
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where mi and li are one of 0i, 1i, Ci, corresponding to
the states of subsystem i. For example, ρ̂3:010112020313

represents a system with 3 subsystems and coherences
between the 0 and 1 states in subsystems 2 and 3. Since
the subsystems are all degenerate, for brevity only the

subsystems not in the ground state will be noted in the
subscript and we use, for example, ρ̂n:1001 to represent
all of the n(n−1)/2 configurations with this description.
The operators on the vectorized density matrix are then

ρ̄ =



ρ̂00

ρ̂n:11

ρ̂n:1001

ρ̂n:CC

...
ρ̂n:10

ρ̂n:01

...


so that

Ā =



0 nγ2 0 n(n− 1)γ2 0 0
0 −(γ2 + Γ2) 0 −(n− 1)γ2 0 0
0 Γ2 0 0 . . . 0 0 . . .
0 −γ2 0 −(n− 1)γ2 0 0

...
. . .

0 0 0 0 iω − nγ2+Γ2

2 0

0 0 0 0 0 −iω − nγ2+Γ2

2
...

. . .


,

L̄+ =



0 0 0 0 −nγ 0
0 0 0 0 γ 0
0 0 0 0 . . . (n− 1)γ 0 . . .
0 0 0 0 0 0

...
. . .

0 0 0 0 0 0
γ −γ −(n− 1)γ 0 0 0

...
. . .



Appendix E: Dispersive Band

Much of the machinery developed in other contexts
for manipulating Green’s functions may be brought to
bear as well. In some cases it is convenient to separate
Ā into an Ā0 and Ā1, where the former can be easily

exponentiated (e.g., it is diagonal) so that

Ḡ(t) = eĀt = e(Ā0t+Ā1t) = lim
dt→0

[
eĀ

0dt + Ā1dt
]t/dt

= ĝ(t) +

∫ t

0

dτ ĝ(t− τ)Ā1ĝ(τ)

+

∫ t

−∞
dτ ĝ(t− τ)Ā1

∫ τ

0

dτ ′ĝ(τ − τ ′)Ā1ĝ(τ ′) + ...

= ĝ(t) +

∫ t

0

dτ ĝ(t− τ)Ā1Ḡ(τ). (E1)

An example of this is provided by a system compris-
ing a ground state labeled 0 and a dispersive band of n
excited states labeled with the indices 1..n. All excita-
tions are characterized by the same light-matter coupling
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γ. For clarity we represent elements of ρ̄ with the nota-
tion ρ̄(ij) = ρ̂ij and the element of a matrix Ō coupling
density matrix elements ρ̂ij and ρ̂rs with the notation
Ō(ij)(rs).

Then Ā0 and Ā1 are, giving only nonzero elements,

Ā0
(ij)(ij) = i(ωi − ωj) i, j ∈ 0..n

Ā1
(00)(ij) = γ2

Ā1
(0i)(0j) = Ā1

(i0)(j0) = −γ2/2 i, j, r, s ∈ 1..n

Ā1
(ij)(rs) = −γ

2

2 (δir + δjs)

The total population of the band is given by

u(t) =
∑
i

%̄11
(ii)(t)

=
∑
ijrs

2

∫ t

−∞
dτγḠ(ii)(rj)(t− τ)E(τ)

×
∫ t

−∞
dτ Ḡ(r0)(s0)(t− τ)E(τ)P0(00)

Expanding
∑
s Ḡ(r0)(s0) according to Eq. (E1)∑

s

Ḡ(r0)(s0)(t)

= e−iωrt −
∑
r

γ2

2

∫ t

0

dτe−iωr(t−τ)e−iωsτ

+
∑
qs

γ4

4

∫ t

0

dτe−iωr(t−τ)

×
∫ τ

0

dτ ′e−iωq(τ−τ
′)e−iωsτ

′
+ ...

If we take the continuum limit n → ∞ and as-
sume a Lorentzian distribution of states D(ω) =
n
π

ζ2/2
(ζ2/2)2+(ω−ωE)2 around a center frequency ωE then∑
r eiωrt =

∫
σ(ωr)dωre

iωrt = ne−(ζ2/2)t and the series
can be evaluated analytically as∑
s

Ḡ(r0)(s0)(t)

= e−iωrt −
∑
s

γ2

2

∫ t

0

dτe−iωr(t−τ)ne−(ζ2/2)τ

+
∑
qs

γ4

4

∫ t

0

dτe−iωr(t−τ)

∫ τ

0

dτ ′ne−(ζ2/2)τ + ...

= e−iωrt − nγ2

2

∫ t

0

dτe−iωr(t−τ)

× e−ζ
2/2τ

(
1− nγ2

2
+
n2γ4

4
...

)
= e−iωrt − nγ2

2

∫ t

0

dτe−iωr(t−τ)e−
ζ2+nγ2

2 τ .

Following a similar procedure for
∑
r Ḡ(pq)(r0)(t), we can

ultimately write

u(t) =
2γ2

nγ2 + ζ2

∫ t

dτ
(
nγ2e−(nγ2+ζ2)(t−τ) + ζ2

)
× E(τ)

∫ τ

dτ ′e−
nγ2+ζ2

2 (τ−τ ′)E(τ ′).
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[10] J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and
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