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We report on the design, fabrication and experimental characterization of reflective geometric
phase optical elements enabling the generation of scalar and vectorial high-order Laguerre-Gauss
optical beams over a broad spectral range. This is made possible by combining azimuthal and radial
structuring of helix-based liquid crystal films exhibiting the circular Bragg reflection phenomenon.
By extending the previously introduced concept of Bragg-Berry optical elements to the polychro-
matic shaping of the radial degrees of freedom and showing their combination with azimuthal ones,
this work suggests that spectrally broadband spin-orbit processing of optical information over mul-
tiple spatial degrees of freedom can be further considered on experimental grounds.

I. INTRODUCTION

Taming light is at the heart of photonics technologies,
which implies the development of optical components en-
abling agile control of amplitude, phase and polariza-
tion state of light, ideally both in time and space and
over a broad spectral range. Despite the development of
optical devices with ever-increasing performances, com-
bining all these asset remains an ideal that motivates
for further researches. Present study takes place in the
context of geometric (Berry) phase flat-optics made of
space-variant optically anisotropic slabs following a con-
cept proposed two decades ago [1]. Usually, practical
implementations correspond to transmissive optical ele-
ments based on inhomogeneous uniaxial slabs having in-
plane two-dimensional distribution of the optical axis ori-
entation denoted by the angle ψ and uniform birefringent
phase retardation. Phase shaping of the transmitted light
occurs as the polarization (i.e., ‘spin’) and the spatial
(i.e., ‘orbit’) degrees of freedom mutually couple through
the spin-orbit interaction, as detailed in the review paper
[2]. In short, considering an incident circularly polarized
light field, the two circularly polarized components of
the transmitted field acquire a dynamic phase associated
with the average optical thickness of the element while
only the contra-circularly polarized component picks up
an extra geometric phase Φgeom = ±2ψ, where ± sign
refers to the handedness of the incident circular polar-
ization state. As its name suggests, the key feature of
the latter phase change is that it is solely coded into
the geometry of the material structure while the birefrin-
gent phase retardation merely dictates the fraction η of
the output photons that are spin-flipped and geometric-
phase shaped. A noticeable consequence is the achro-
matic nature of the spatially modulated phase, which is
an asset for the emergence of broadband spin-optics.
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However, the drawback of above-mentioned geometric
phase elements is that they operate efficiently only for a
discrete set of wavelengths {λi} for which the birefringent
phase retardation ∆ satisfies the “half-wave plate condi-
tion” ∆(λi) = nπ, hence η(λi) = 1. Several approaches
have been discussed to circumvent this practical issue by
exploiting the third spatial dimension. This is done by
breaking the translational invariance of the permittivity
tensor along the propagation direction of light [3–7]. In-
deed, this allows to partly compensate for the intrinsic
dispersion of the birefringent phase retardation of a ma-
terial, as early explored in the 1950s in the case of non-
space-variant birefringent retarders [8–10]. In 2016, it
was proposed to use helix-based modulation of the per-
mittivity tensor to create geometric phase mirrors op-
erating over a large spectral bandwidth, using spatially
patterned chiral liquid crystal (cholesteric) slabs for ex-
perimental demonstrations [11–15]. The idea consists in
combining the naturally broadband reflective half-wave
plate behavior associated with the circular Bragg reflec-
tion of chiral anisotropic media [16] with the spatial mod-
ulation of the Berry phase via in-plane modulation of
the helix azimuthal positioning. The latter is described
by the liquid crystal molecular orientation angle ψ at
the boundaries of the cholesteric slab of thickness L, as
sketched in Fig. 1. We refer to the introductory section of
Ref. 17 for a generic presentation of such ‘Bragg-Berry’
optical elements.

Since the first experimental demonstrations of beam
shaping capabilities (deflection, lensing, vortex gener-
ation) using cholesterics-based Bragg-Berry flat-optics
[11–15] and the understanding of the geometrical na-
ture of the phenomenon [13, 15], several following stud-
ies explored various facets of the possibilities offered by
this novel approach. In particular, the concept was ex-
tended to other chiral mesophases such as cholesteric
blue phases that are chiral liquid crystals with three-
dimensional periodicity [18]. Other demonstrations in-
clude spin-controlled wide-angle diffuse reflection from
random patterns [19], spin-controlled holography [20],
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FIG. 1. (a) Illustration of our Bragg-Berry optical elements
made of a cholesteric liquid crystal film sandwiched between
glass substrates provided with identical photo-patterned ori-
entational boundary layers. (b) Sketch of the helical ordering
of the liquid crystal molecules along the normal to the plane
of the film, here in the case of a right-handed cholesteric. Note
that the drawing is not on scale since in practice L/p ∼ 30.

and spin-controlled digital optics [21]. Clearly, state-
of-the-art liquid crystal patterning techniques [22, 23]
now allow considering Bragg-Berry reflectors having arbi-
trary optical functionalities. On the other hand, develop-
ments made in the optics of cholesterics towards circular
photonic bandgap broadening and polarization indepen-
dent reflective behavior [24] have been generalized to the
space-variant case. Namely, the fabrication of gradient-
pitch ultra-broadband (i.e. with a bandwidth of several
hundreds of nanometers) Bragg-Berry optical elements
[17, 25] as well as spin-independent highly reflective de-
vices [26] have been reported.

Specifically, spin-to-orbital optical angular momentum
mapping ensured by geometric phase optical elements
satisfying the half-wave plate condition presents a large
set of promising applications in the classical and quan-
tum regimes that has been recognized several years ago
[27] and the deployment of versatile technologies remains
an open issue with a lot of technical and conceptual ex-
pectations [28]. In this framework, here we aim at ex-
ploring the ability of Bragg-Berry optical elements to
shape polychromatic fundamental Gaussian modes into
arbitrary Laguerre-Gauss modes that form an orthogonal
basis for the scalar paraxial Helmholtz equation [29], each
mode being associated with two indices. Namely, the az-
imuthal index l ∈ Z proportional to the orbital angular
momentum carried by photon [30] and the radial index
p ∈ N that refers to the number of nodes of the wavefunc-
tion along the radial coordinate (r > 0). Note that these
two independent transverse degrees of freedom provide
with an attractive basis for the optical information that
could add to wavelength and spin channels. Also, pre-
vious Bragg-Berry demonstrations were restricted so far
to Laguerre-Gauss modes with fundamental radial order
p = 0 [12–14, 17, 21, 25, 26]. Therefore, using p as an
additional degree of freedom, the present study suggests
that spectrally broadband spin-orbit processing of optical

information over multiple spatial degrees of freedom can
be further considered on experimental grounds. More-
over, polychromatic high-order vectorial Laguerre-Gauss
beams constructed from the coherent superposition of or-
thogonally polarized scalar beams are obtained, which
generalizes previously discussed spin-to-orbital angular
momentum mapping [26] by adding another independent
transverse spatial degree of freedom.

II. PREPARATION OF THE BRAGG-BERRY
OPTICAL ELEMENTS

A. Paraxial design

At first, we recall the electric field complex amplitude
of a Laguerre-Gauss beam with indices (l, p) and waist
radius w in its focal plane. Namely, up to an unimportant
prefactor,

El,p(r, φ) =
( r
w

)|l|
L|l|p

(
2r2

w2

)
exp

(
− r

2

w2
+ ilφ

)
, (1)

where (r, φ) are the usual polar coordinates in the trans-

verse plane and L
|l|
p (X) =

∑p
k=0

(|l|+p)!
(|l|+k)!(p−k)!k! (−X)k

refers to the generalized Laguerre polynomials. Of
course, ideal Laguerre-Gauss beam shaping from an inci-
dent fundamental Gaussian beam with planar wavefront
(l = 0, p = 0) by using a two-dimensional transfer func-
tion implies both amplitude and phase spatial modula-
tion. Dealing here with optical elements designed to op-
erate with a spectrally flat maximal reflectance, our ap-
proach consists to encode the information on l as a con-
tinuous linear azimuthal structuring of the orientational
boundary layer while the information on p is encoded as
a discrete set of radial structural jumps. Namely,

ψl,p(r, φ) =
l

2
φ+

(
1− sgn

[
L|l|p

(
2r2

W 2

)])
π

4
, (2)

where sgn(X) refers to the sign of X and the distance W
is the radial design parameter. In that case, the geomet-
ric phase ±2ψl,p(r, φ) acquired by the Bragg-reflected cir-
cular component (which corresponds to co-handed elec-
tric and material helices) is that of a Laguerre-Gauss field
with azimuthal index ±l, radial index p, and waist W .
This option is a standard one in the context of high-
order Laguerre-Gauss beam generated by phase-only spa-
tial modulation [31–33], though other phase-only options
have also been developed [34–37]. Still, there is always
a compromise between the purity of the generated mode
and the efficiency of the process, which always makes the
use of given approach open to debate.

Here, the chosen orientational design given by Eq. (2)
implies to find the ratio between the incident Gaussian
beam waist, win and the design parameter W that opti-
mizes the output modal content. The latter is evaluated
in the far field from the projection coefficient cl,p of the
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output far-field on the far-field of a Laguerre-Gauss beam
with indices (l, p), which is given by

cl,p =

∫ 2π

0

∫∞
0
ẼoutẼ

∗
l,p κdκdθ√∫ 2π

0

∫∞
0
|Ẽout|2κdκdθ

∫ 2π

0

∫∞
0
|Ẽl,p|2κdκdθ

, (3)

where F̃ (κ, θ) =
∫ 2π

0

∫∞
0
F (r, φ) exp[−iκr(cos θ cosφ +

sin θ sinφ)]rdrdφ is the Fourier transform of the func-
tion F (r, φ) and asterisk denotes complex conjugation.
Noting that when F (r, φ) = F(r)eimφ the Fourier trans-

form simplifies to F̃ (κ, θ) = 2π(−i)meimθ F̂(κ) where

F̂(κ) =
∫∞
0
F(r)Jm(κr)rdr is the Hankel transform and

Jm is mth-order Bessel function of the first kind, the frac-
tion of the total output power carried by the mode (l, p)
in the far-field, ηl,p = η−l,p = |cl,p|2, simplifies to

ηl,p =

∣∣ ∫∞
0
ÊoutÊ∗l,pκdκ

∣∣2∫∞
0
|Êout|2κdκ

∫∞
0
|Êl,p|2κdκ

. (4)

The sought-after design thus corresponds to the opti-
mization of the modal purity ηl,p with respect to the
two independent parameters win/W and w, recalling
that the dependence on w is associated the the fact
that the decomposition of a paraxial light field on the
Laguerre-Gauss basis is not unique [38, 39]. Using
Eout = exp[−r2/w2

in ± 2iψl,p(r, φ)] we calculate the opti-

mal values ηoptl,p for l = (0, 1, 2) and p = (1, 2, 3), which
are reported in Table I. The corresponding values for the
experimental parameter W/win are presented in Table II.

ηoptl,p l = 0 l = 1 l = 2

p = 1 0.817 0.825 0.804
p = 2 0.778 0.785 0.778
p = 3 0.758 0.763 0.761

TABLE I. Optimal values of the modal purity for the first
high-order Laguerre-Gauss modes.

(W/win)opt l = 0 l = 1 l = 2
p = 1 1.73 1.97 2.17
p = 2 2.17 2.35 2.52
p = 3 2.55 2.67 2.84

TABLE II. Optimal values of the ratio W/win for the first
high-order Laguerre-Gauss modes.

B. Fabrication

The photo-patterned samples as sketched in Fig. 1(a)
were prepared from glass substrates with 2 cm× 1.5 cm
that are single-side spin-coated (at 500 rpm for 5 s fol-
lowed by 4000 rpm for 30 s) with a photo-alignment agent
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FIG. 2. Maps of the orientational boundary conditions for
l = (0, 1, 2) and p = (1, 2, 3) given by the optimized design
procedure described in the text. The right part of each panel
(except for l = 0) displays the fabricated discretized version
while the left part refers to the continuous ideal version given
by Eq. (2). The shown area actually corresponds to the struc-
tured area of the fabricated samples.

(LIA-03, from DIC). Then, the substrates are assembled
using a photo-curable adhesive (NOA68T, from Norland)
and calibrated spacers into a plane-parallel cell with 9 µm
gap.The orientational pattern is photo-inscribed simul-
taneously on the two inner sides on the cell by using a
projection exposure setup made of a linearly polarized
liquid crystal display projector having 1024 × 768 pix-
els (ELP-820, from Epson), a bandpass filter at 436 nm
wavelength and 10 nm bandwidth, a motorized half-wave
plate, and relay optics. The cell is sequentially irradiated
over a 3.43 mm× 2.57 mm area by light patterns whose
linear polarization state direction dictates the alignment
orientation, that are mutually perpendicular. The pixel
size of the recorded structure therefore corresponds to
3.3 µm, however, because the photoalignment layer can-
not be developed like a photoresist and the liquid crys-
tal orientation changes continuously on a substrate, the
achieved effective resolution is expected to be less. Still,
the quality of the recorded structures is high enough to
ensure the fabrication of clean photonic functionalities,
as reported here.

Since W/win is fixed by design (Table II), the finite
size of the sample imposes a trade-off for the choice
of the incident beam waist. If the latter is too large,
the multi-zone pattern for ψ does not fit the alignment
area whereas if it is too small, the gradients of ψ are
not resolved at the photo-inscription step. Practically,
win is chosen as a fourth of the smallest dimension of
the rectangular photo-aligned layer and we measure
win = 655 µm. The corresponding ψ-map given by
Eq. (2) is shown in the left part of each panel in Fig. 2.
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FIG. 3. Typical reflectance spectrum of a sample recorded at
normal incidence using an incident circularly polarized light
that is co-handed with the cholesteric helix. The correspond-
ing circular photonic bandgap has a spectral width of approx-
imately 70 nm.

Another practical constraint is associated with the irradi-
ation duration needed to ensure proper photo-alignment.
This led us to use a discretized design made of contiguous
sectors having a 10◦ angular increment for ψ along the
azimuthal coordinate, see the right part of each panel in
Fig. 2. Each sector being irradiated during 5 min, the
whole process takes 10 min for l = 0 and 90 min for l ≥ 1.

Towards an experimental demonstration in the visi-
ble domain, we use a cholesteric liquid crystal prepared
by doping the achiral nematic material MLC-2140 (from
Merck) with the left-handed chiral molecular dopant S-
5011 (from Merck) with the wt%-proportions (97.3 : 2.7).
This gives a circular photonic bandgap around 530 nm,
see the reflectance spectra shown in Fig. 3 for an incident
circularly polarized light field whose electric field helix
has the same handedness as that of the cholesteric he-
lix, which corresponds to the Bragg reflection condition.
High-order Laguerre-Gauss Bragg-Berry optical compo-
nents are then obtained by capillary-filling the cells with
the cholesteric mixture in the isotropic phase—namely,
at 100◦C whereas the clearing point of MLC-2140 is at
88◦C—followed by slow cooling down to room tempera-
ture at 0.3◦C min−1.

C. Structural characterization

The orientational structure of fabricated optical
elements is characterized by interferometry. This is
done by replacing one of the two mirror of a Michelson
interferometer by the sample and observing the fringes
located at the input facet of the sample. The results are
shown in Fig. 4 when the light source is an halogen lamp
spectrally filtered at 532 nm using a bandpass filter with
a bandwidth of 10 nm and left circularly polarized using
a linear polarizer and an achromatic quarter-wave plate.

(), *) = (0,1) (), *) = (0,2) (), *) = (0,3)

(), *) = (1,1) (), *) = (1,2) (), *) = (1,3)

(), *) = (2,1) (), *) = (2,2) (), *) = (2,3)

500	µm

FIG. 4. Interferogram in the plane of the sample obtained at
532 nm wavelength obtained from a Michelson interferometer
by using the Bragg-Berry optical element as one of the two
mirror of the interferometer for l = (0, 1, 2) and p = (1, 2, 3).

Both the radial index p and azimuthal index l can be
assessed from the interferograms. Indeed, p is the num-
ber of dark circles that refers to the zeros of the func-
tion L

|l|
p (2r2/W 2). The latter are associated with a π/2

jump for the angle ψ, hence high local gradients for the
molecular orientation leading to strong light scattering.
The width δr of these disordered rings between adja-
cent regions having distinct azimuthal orientation for the
cholesteric helix is measured by collecting the data for all
the fabricated samples and we find δr = 9.2±1.9 µm. The
corresponding π geometric phase jump can be grasped by
looking at half-fringe jumps on the interferograms. On
the other hand, l is the number of extra fringes forming
the forked intensity pattern associated with an optical
phase singularity with topological charge l.

III. HIGH-ORDER LAGUERRE-GAUSS
BEAM SHAPING

A. Far-field optical characterization

Beam shaping capabilities of our elements are tested
using the setup sketched in Fig. 5, where the light source
is a laser source at 532 nm wavelength and a lens is used
to image the far-field by placing it in a 2f configuration
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with respect to the sample and the camera in order to
perform optical Fourier transform with the lens. The
Bragg-reflected field at normal incidence is recorded on
a camera, taking care to suppress the unavoidable un-
wanted Fresnel reflection from the input air/glass inter-
face of the element. This is done by preparing a lin-
early polarized incident polarization state and selecting
the orthogonal polarization state for the observations. In
that case, the polarization-preserved Fresnel reflection is
therefore blocked by the output polarizer while there is
always a contribution of the circularly polarized Bragg-
reflected light that passes through the output polarizer.

As shown in Fig. 6, the incident Gaussian beam is
shaped into an intensity profile that qualitatively pos-
sesses all the expected attributes. Namely, there are p
circles with null intensity and on-axis intensity is null
when l 6= 0 as expected from the presence of an op-
tical phase singularity. These features are retrieved in
the far-field fringe pattern obtained by superimposing a
coherent Gaussian reference beam, see Fig. 7. Indeed,
both the topological charge of the on-axis singularity
and the oscillating electric field amplitude (i.e., the π
phase jump associated with location of null intensity) can
be easily grasped. More quantitatively, Laguerre-Gauss
beam shaping is assessed by maximizing the overlap in-
tegral ζl,p between the experimental (Iexp) and expected
(Il,p ∝ |El,p|2) intensity profiles according to

ζl,p =

∫ 2π

0

∫∞
0
IexpIl,prdrdφ√∫ 2π

0

∫∞
0
I2exprdrdφ

∫ 2π

0

∫∞
0
I2l,prdrdφ

, (5)

where the waist parameter w in Il,p, see Eq. (1), is the
only adjustable parameter. The results are shown in
Fig. 8, which exhibits an overall fair agreement.

B. Spin-to-orbital angular momentum mapping

As recalled in the introduction, a major asset of
transmissive geometric phase optical elements devel-
oped so far is that they enable the mapping of two-
dimensional orbital angular momentum subspaces from
two-dimensional spin angular momentum basis at a given
wavelength. The latter feature is a consequence of the
spin-controlled reversal of the geometric phase. In the

camera

BBOE

L
PCout

BS PCin
laser

FIG. 5. Experimental setup for far-field optical characteriza-
tion. BBOE: Bragg-Berry optical element; BS: beamsplitter;
L: lens; PCin/out: input/output polarization controller.
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FIG. 6. Far-field intensity patterns reflected off the Bragg-
Berry optical elements for l = (0, 1, 2) and p = (1, 2, 3). Here
the light source is a supercontinuum laser spectrally filtered
at 532 nm with a 10 nm bandwidth.
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FIG. 7. Fringe patterns obtained from the interference of
the far-field reflected off the Bragg-Berry optical elements for
l = (0, 1, 2) and p = (1, 2, 3). The light source is the same as
in Fig. 6.
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case of Bragg-Berry optical elements, the polychromatic
benefit however comes with a major drawback, since the
geometric phase reversal is lost using an element as de-
scribed in Fig. 1(a). Indeed, the reflective beam shaping
is only achieved for co-handed electric and material he-
lices. Still, this constraint is released by adding a stan-
dard rear-mirror, as demonstrated in a recent work [26]
in the case of optical vortex generation.

Applying this recipe, we obtain high-order Laguerre-
Gauss modes with spin-controlled azimuthal index, as
illustrated in the first two rows of Fig. 9 in the case
(l, p) = (1, 3), by placing a standard mirror at ∼ 1 mm
from the back side of the Bragg-Berry element. In-
deed, a left-handed circularly polarized incident field,
Ein ∝ (x + iy)/

√
2, generates a left-handed Laguerre-

Gauss beam with indices (l, p) as light is reflected off
the front side of the structured cholesteric layer, see
Fig. 9(a), as discussed in the previous section. On the
other hand, a right-handed circularly polarized incident
field, Ein ∝ (x − iy)/

√
2, is not Bragg-reflected by the

front side of the optical element but nevertheless gener-
ates a right-handed Laguerre-Gauss beam with indices
(−l, p) as light is reflected off the element, see Fig. 9(e).
In that case, beam shaping can be understood accord-
ing to the following ray-optics reasoning. At first, the
incident beam propagates through the cholesteric and is
reflected by the rear mirror. Since the latter flips the
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FIG. 9. Left-handed (LH) and right-handed (RH) output
circular components in the case of a mirror-backed Bragg-
Berry optical element (M-BBOE) for LH circular [panels (a)
and (b)], RH circular [panels (d) and (e)], and linear [panels
(g) and (h)] incident polarization state, here for (l, p) = (1, 3)
and recalling that we use a left-handed cholesteric liquid crys-
tal. These results are obtained by proper setting of the in-
put/output polarization controllers as shown in Fig. 5. The
light source is the same as in Fig. 6 for incident LH/RH
circular polarization state whereas a continuous-wave diode-
pumped solid-state laser at 532 nm is used for incident linear
polarization state in order to preserve the temporal coherence
between the two circular components. The sketches on the
right part [panels (c) and (f)] illustrate the spin-dependent
azimuthal index of the generated high-order Laguerre-Gauss
beam. This is experimentally identified by looking at the
Michelson fringe pattern, as shown in the inset panels for
LH/LH and RH/RH cases.

circular polarization handedness, the field then acquires
its geometric phase spatial modulation as it is Bragg-
reflected by the back side of the structured cholesteric
film, towards the rear mirror. The circular polarization
handedness is therefore flipped one more time by the rear
mirror and the structured light eventually passes through
the optical element and exits.

These two situations are respectively sketched in
Figs. 9(c) and 9(f), which also display the residual frac-
tion of the incident light that is not structured, see
Figs. 9(b) and 9(e). Indeed, in practice the circular Bragg
phenomenon is not associated with an ideal 100% re-
flectance, see Fig. 3. Therefore, any Bragg reflected light
experiencing geometric phase shaping is associated with
a small fraction of unstructured light, which adds to the
residual unstructured contribution arising from Fresnel
reflections at air/glass interfaces.
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FIG. 10. Characterization of the high-order Laguerre-Gauss
vector beam generated by a mirror-backed Bragg-Berry op-
tical elements with (l, p) = (1, 3). (a) Measured intensity
and polarization state azimuth to the total reflected field in
the case of incident linear polarization state. The luminance
refers to the intensity and the colormap refers to the azimuth
angle, Ψ = 1

2
arctan(s2/s1). (b) Degree of linear polarization,

DOLP =
√
s21 + s22. In the latter expressions s1,2 refers to the

usual reduced Stokes parameters.

D = 450 nm D = 500 nm D = 532 nm D = 550 nm D = 600 nm

FIG. 11. Experimental set of spectral components for
the far-field intensity profiles of the generated high-order
Laguerre-Gauss beam by a Bragg-Berry optical element with
(l, p) = (1, 3). The displayed wavelengths refer to the central
wavelength of bandpass filter with 10 nm bandwidth. The
acquisition and exposure time depends on the wavelength to
exploit the full dynamic range of the used 8-bit camera.

Note that the situation is similar for a Bragg-Berry op-
tical element prepared from a right-handed cholesteric,
for which one only needs to account for the change
RH ↔ LH and l ↔ −l in Fig. 9 while keeping the same
orientational pattern given by Eq. (2).

From the superposition principle, the total reflected
field in the case of incident linear polarization is the sum
of equal weights high-order Laguerre-Gauss beams hav-
ing orthogonal circular polarization state, opposite l and
identical p, as shown in Figs. 9(g) and 9(h). Such a field
refers to a high-order Laguerre-Gauss vector beam char-
acterized by an inhomogeneously linearly polarized field
with azimuthally varying polarization state azimuth an-
gle Ψ that winds l times per full rotation around the
propagation axis. The latter characteristics are exper-
imentally assessed by Stokes polarimetric imaging [40],
see Fig. 10, where the the data for the intensity and po-
larization azimuth are combined in panel (a). On-axis
vector point singularity with Poincaré-Hopf index l [41]
is actually observed. In addition, the degree of linear po-
larization in everywhere close to the ideal unit value, see

Fig. 10(b).
C. Broadband features

Although experimental data presented above are all
made at 532 nm wavelength, which is approximately in
the center of the circular photonic bandgap (Fig. 3), one
can easily extend obtained results to a polychromatic
field, as demonstrated in earlier works on optical vortex
generation [12, 14, 17, 26]. This is done here for the sake
of illustration in the case of high-order Laguerre-Gauss
beam generation with (l, p) = (1, 3) under co-handed in-
cident circular polarization without rear mirror, by using
a supercontinuum laser source and a set of interferen-
tial filters. Observations are made between crossed lin-
ear polarizers in order to minimize the effect of Fresnel
reflections. Still as the amount of Bragg-reflected light
decreases outside the bandgap, the effect of all residual
mismatches come at play. This leads to nontrivial in-
terference patterns, as shown in Fig. 11 at 450 nm and
600 nm wavelengths for which a pair of vector point sin-
gularities with half-integer Poincaré-Hopf index are re-
vealed by the output polarizer.

IV. CONCLUSION

Summarizing, we have extended previous development
of Bragg-Berry optical elements to the generation of a
spin-orbit optical basis in the paraxial regime based on
both azimuthal and radial spatial degrees of freedom
for polychromatic light. Present demonstration made in
the visible domain using helix-based liquid crystals with
space-variant rotational positioning of the supramolecu-
lar helices could be extended to other frequency domains.
In particular, near-infrared domain could be accessible by
mere detuning of the cholesteric pitch. One can also men-
tion the recent demonstration of Bragg-Berry concept in
the microwave domain using metallic helices [42], which
invite to design and test other options such as micro-
fabricated solid-state options that could be used in the
terahertz domain.

Finally, recalling recent advances in the fabrication
of chiral materials endowed with photo-activity at the
molecular scale [43], spin-orbit photonics based on chiral
materials may revealed itself as a powerful strategy to
manipulate multiple degrees of freedom of a light field
(polarization, space, frequency, time) at once with a sin-
gle device.
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