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The University of Maryland at College Park, College Park, MD 20742, USA

In this work, we have developed a method for describing the dynamics of an arbitrary quantum
system under a bidirectional time-delayed feedback loop. For this purpose, we have described the
evolution in terms of the time propagation of the quantum system of interest without feedback
together with several identical systems which represent the history of the quantum system under
study. This technique provides a numerically efficient solution for describing a system’s dynamics
in the case of significant time delays in which direct investigation of the state of the reservoirs
becomes numerically intractable. Using this method, we have studied two scenarios of multiple
scatterings of photons incident on a cavity with a two-level atom positioned inside it, coupled to
two waveguides that are connected at their ends. In the first scenario, two photons impinge on the
cavity through separate waveguides with a delay between them. We have demonstrated that the
maximum difference between the two output photon numbers occurs when the delay between the
incident photons becomes close to the inverse of their linewidth. In the second scenario, multiple
photons impinge on the cavity through the same waveguide and go through multiple interactions.
We have shown that for a fixed atom-cavity coupling rate, the transmission rate enhances as the
number of photons increases and have quantified this enhancement. The developed method enables
us to study a broad range of nonlinear dynamics in complex quantum networks.

INTRODUCTION

Feedback has proven to be of fundamental importance
for controlling and stabilizing classical systems [1–6].
Quantum computation and processing also require the
design of feedbacks to control and manipulate the dy-
namics of quantum systems [7–16]. For this purpose, in
the past decade, scientists have employed measurement-
based feedback for such systems. In this technique the
output signal of an open quantum system is measured
to tune the system accordingly in real time. More re-
cently, coherent quantum feedback, in which a quantized
field scattered by the quantum system is redirected back
into the system, has been proposed. This technique can
provide faster control relative to the more conventional
measurement-based feedback due to its ability to preserve
the quantum character of the feedback [17].

In previous studies, scientists have mostly treated co-
herent quantum feedbacks by assuming that time delays
in the connections are negligible. There are techniques
[18–22] to describe a quantum network [23–25] made out
of different quantum systems connected together when
time delays in the connections can be ignored. These
techniques also work in the presence of finite time de-
lays for the special case of cascaded systems [26], in
which each system drives the subsequent one without
the presence of any feedback connection. Nonetheless,
time delays are generally unavoidable in practice [27–
34]. This is particularly true for optical approaches of
implementing coherent quantum feedbacks in large, com-
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plex quantum networks. Recently, Grimsmo has devel-
oped a theory for time-delayed coherent quantum feed-
back [35]. In this work, he has studied a general quantum
system coupled at two different points to a bosonic reser-
voir. In this configuration, the out-coupled field from
the first point returns back and interacts with the sys-
tem at the second point, creating a unidirectional feed-
back [35]. He has demonstrated that the dynamics of
such system can be explained by the dynamics of an ar-
tificial series of cascaded quantum systems, in which the
past versions of the system drive the current version. A
separate study [36, 37] has treated unidirectional time-
delayed feedback by directly analyzing the state of the
reservoir (which represents the feedback connection) as
a one dimensional bosonic chain using a matrix product
state [38–49]. Nonetheless, the above-mentioned tech-
niques, developed to model unidirectional feedbacks, are
unable to describe systems with more complex feedback
configurations.

In this work, we have developed a theoretical method
to study the dynamics of an arbitrary quantum system
driven by a bidirectional feedback loop. In this configu-
ration, the system of interest interacts at two points with
a closed bosonic reservoir. Similar to a system under uni-
directional feedback, the out-coupled field from the first
point returns back and interacts with the system at the
second point. However, in contrast to a unidirectional
feedback, the out-coupled field from the second point
also returns back and interacts with the system at the
first point. Thus, this configuration creates two consec-
utive time-delayed feedbacks. In the developed method,
we obtain the evolution of the system under the effect of
feedback via the evolution of a quantum cascade of the
actual system together with its replicas which represent
its past history [26]. We then obtain the system’s density
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matrix using a generalized trace operation of the evolu-
tion operator in the Hilbert space of the system and its
replicas. By viewing the system of interest as a scatterer,
one can use this method to study the scattering proper-
ties of multiple incident photons. Based on this view,
the developed method provides a platform to study the
scattering of multiple photons from an arbitrary num-
ber of atoms separated from each other which has been
the subject of recent investigations [50–58]. Here, we use
this method to study two different systems. First, we
consider the case of a cavity under a bidirectional feed-
back made out of two waveguides. In contrast to a cavity
under a unidirectional feedback in which the cavity pho-
ton number reaches a steady state value, in this case the
cavity photon number shows an oscillatory behavior over
time. Secondly, we consider an atom-cavity coupled to
two waveguides. We study two different scenarios of scat-
terings from this system which cannot be described using
a unidirectional feedback. In the first scenario, two pho-
tons impinge on the cavity through separate waveguides
with a delay between them. We demonstrate that the
maximum deviation of the output photon numbers from
one occurs when the delay becomes close to the inverse of
the linewidth of photons. In the second scenario, multiple
photons impinge on the cavity through the same waveg-
uide and go through multiple interactions. We show that
for a fixed atom-cavity coupling rate, the transmission
rate increases as the number of photons increases. Our
calculations quantify the enhancement of transmission by
increasing the number of photons during each round of
interaction.

THEORETICAL ANALYSIS

We consider the effect of a bidirectional feedback loop
made out of two feedbacks with arbitrary time delays in a
general quantum system. As Fig. 1a shows, we have as-
sumed that the output of the system coupled to the delay
line will interact with the system after a delay time of τ1
and the resulting output will interact again with the sys-
tem after another delay time of τ2. The delay line in this
configuration can in practice be implemented through
waveguides. The coupling operators between the delay
line and the system are defined as L1 and L2. The possi-
ble extra phase shift of photons passing through the delay
line (caused for instance by the reflection from a mirror)
can be absorbed into these coupling operators. Extend-
ing the method of system replicas introduced in ref. [35],
we have obtained a full description for the evolution of a
system under a bidirectional time-delayed feedback loop.
The details of the method can be found in the appendix.
In the first part of the appendix, the case of feedbacks
with similar time delays (τ2 = τ1 = τ) is considered. The
more general case of feedbacks with different time delays
(τ2 6= τ1) is considered in the subsequent part. The use
of system replicas to describe the evolution of the system
under a time-delayed feedback loop is beneficial for long

L1 L2

delay : τ1

delay : τ2

S

(a)

γ

γ

ωc+δ
|e>

|g>

1 2

4 3

(b)

Figure 1: (a) A system under a bidirectional feedback
loop made out of two feedbacks with arbitrary time

delays. (b) A system of an atom-cavity that is coupled
to two waveguides connected at their ends.

delays as it does not require storing the reservoir’s state
[36, 37].

In this method, by defining the base unit of the time
delay τ as the common factor of τ1 and τ2, in order
to obtain the evolution of the system to any time t
with kτ < t < (k + 1) τ , k replicas are required as
explained in the appendix. Denoting the time propa-
gation of the system and its k replicas between time
t1 and t2 as Uk (t1, t2), the evolution operator for the
actual system under the feedback can be expressed in
terms of the generalized trace operation of Uk (t1, t2)
as U = TrSk+1,Sk

. . . T rS2,S1
[Uk−1 (τ, s)Uk (s, 0)]. More-

over, all the statistics of the out-coupled photons at the
two ports of L1 and L2, such as their rates as well as
their second correlations, can be expressed with similar
generalized trace operations. Note that the case of unidi-
rectional time-delayed feedback, considered in ref. [35],
can be treated as a special case of bidirectional feedback
considered here by τ1 = τ and τ2 =∞.

The time propagation of the system and its k replicas
is obtained based on the effective Hamiltonian and the
Lindblad operators of the stacked systems. The effective
Hamiltonian of the stacked systems is given by Heff =∑k
q=0H

(q+1)
S + Vint, in which the interaction term Vint

depends on the ratio of τ2/τ1. For the special case of
τ2 = τ1, the interaction term is given by:
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Vint =
i

2

k−1∑
q=0

k∑
j=q+1

L
(q+1)†
q mod 2+1L

(j+1)
j mod 2+1

+
i

2

k−1∑
q=0

k∑
j=q+1

L
(q+1)†
(q+1) mod 2+1L

(j+1)
(j+1) mod 2+1 + h.c.

In these equations, L(j)
1,2 and H

(j)
S represent the cou-

pling operators and the Hamiltonian for jth system, re-
spectively. The Lindblad operators of the stacked sys-
tems are also dependent on τ2/τ1 ratio. For the special
case of τ2 = τ1, there exists two Lindblad operators that
are given by:

LF =

k∑
q=0

L
(q+1)
(q+1) mod 2+1

LB =
k∑
q=0

L
(q+1)
q mod 2+1

Similar expressions can be obtained for other choices
of τ2/τ1 ratios. For several of such choices, the corre-
sponding effective Hamiltonian and Lindblad operators
have been obtained in the appendix.

This method can be utilized to study multiple scatter-
ing events of photons passing through connected waveg-
uides from an arbitrary system that is coupled to them.
Note that the waveguides are assumed to be chiral so that
the out-coupled photons traverse through them in one-
direction [29, 59, 60]. Moreover, the parameters of the
system under investigation, such as its Hamiltonian and
its coupling operators, can in general be variable with
time. For instance, by assuming that one of the coupling
operators (e.g., L1) is zero during the first time delay,
and by tuning the other coupling operator (e.g., L2) as
well as the initial Hamiltonian, we have the flexibility
to adjust the characteristics of the out-coupled photons,
such as their frequency and line-width.

By applying this method to the simple case of a cavity
under a bidirectional time-delayed feedback loop, we have
studied the evolution of the cavity for several choices of
τ1 and τ2. These results are summarized in the appendix.
In the following sections, however, we have applied the
method to study the scattering of photons from a cavity
with a single two-level atom positioned inside it during
multiple rounds of interactions. In this study, we assume
that the atom-cavity interaction Hamiltonian is given by
Hint = ~g(a†σ−+aσ†−), in which σ− is the atomic lower-
ing operator and a is the cavity mode annihilation opera-
tor and g is the atom-cavity coupling rate. The schematic
of the system under study is shown in Fig. 1b. First, we
analyze the effect of delay between two photons moving
along separate waveguides impinging on an atom-cavity
system. In the subsequent section, we investigate several
rounds of interaction of multiple photons impinging on
the cavity with an atom inside.

THE EFFECT OF DELAY BETWEEN TWO
INCIDENT PHOTONS TO A CAVITY

Using the developed method, in this section we study
the scattering of two photons moving along separate
waveguides that are connected at their ends from a cav-
ity with a resonant atom inside. In order to initialize the
two impinging photons, a feeder cavity in addition to the
actual cavity is needed. Assuming that the waveguides
provide similar time delays (τ1 = τ2 = τ), in the first
time delay, the photon inside the actual cavity decouples
into the bottom waveguide (through path #2 in Fig. 1b)
and the photon inside the feeder cavity decouples into
the top waveguide (through path #4 in Fig. 1b). Note
that the atom-cavity coupling rate is set to zero for the
Hamiltonian in this first initialization time delay. In the
subsequent time delay, the couplings of the feeder cavity
are set to zero while the actual cavity is equally coupled
to the two waveguides. In order to provide a delay, ∆,
between the out-coupled photons in reaching the inter-
acting cavity, the coupling rate for the feeder cavity can
be set to zero for a specific fraction of the first time delay.
The interaction between the two photons and the cavity
occurs during the second time delay (between τ and 2τ).
By integrating the photon rates in the two waveguides
during this time delay, we calculate the average number
of photons that decouple to the top or bottom waveg-
uides. The results of these calculations are summarized
in Fig. 2.

As it can be inferred from this figure, depending on
the delay between the impinging photons, the average
number of photons that decouple to the top or bottom
waveguides varies. It is clear based on the symmetry that
for the case of zero delay, these average photon numbers
should be equal to one. Moreover, for a zero atom-cavity
coupling rate, these average numbers are again equal to
one. However, for non-zero delays, increasing the atom-
cavity coupling rate will induce a difference between these
two average numbers, which will diminish to zero for
very large values of atom-cavity coupling rates. Fig. 2a
exhibits the results for the case when the two incident
photons are generated by decoupling from cavities with
similar decay rates as the interacting cavity (γinc = γ).
Fig. 2b depicts the results for the case when the two
incident photons are decoupled from cavities with 0.04-
times the decay rate of the interacting cavity, resulting
in a much narrower line width of the interacting photons
(γinc = 0.04γ). These figures show that the maximum
deviation of the output photon numbers from one occurs
when γinc∆ ∼ 1. Note also that there is a small dip in
the average photon numbers in both cases for very small
atom-cavity coupling rates, g. This is due to the finite
amount of delay time, τ , which will lead to a non-zero
excitation of the atom after the delay time for such atom-
cavity coupling rates. To minimize these issues, we chose
a delay time that is large enough for the preparation of
the initial incident photons, such that γτ = 1024 and
γτ = 128, respectively, for the cases of γinc = 0.04γ and
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Figure 2: Average photon numbers decoupled to the top
or bottom waveguides as a function of atom-cavity

coupling rate for different delays between the incident
photons and their decoupled rate of (a) γinc = γ and

(b) γinc = 0.04γ.

γinc = γ.
In addition to the g1 calculations, we can also obtain

other statistics of the output photons. Of special interest
is the second order correlation function, which is defined
as:

g2 (t) =

〈
b†out (t) b†out (0) bout (0) bout (t)

〉
〈
b†out (0) bout (0)

〉〈
b†out (t) bout (t)

〉
For the case of γinc = 0.04γ, which closely models

monochromatic photons, the second order correlation
function for the decoupled photons in the top waveguide
is shown in Figs. 3a and 3b. In these figures, two cases of
zero delay, as well as γinc∆ = 1.23, have been considered.
As we expect, g2 (t) is zero before the delay time since the
other photon has not arrived yet. After this delay time,
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Figure 3: g2 (t) as a function of time for the photons
decoupled to the top waveguide for delays of (a)

γinc∆ = 0 and (b) γinc∆ = 1.23.

g2 (t) ramps up and reaches its peak value caused by the
stimulated emission. Time variation of g2 (t) is followed
by damped oscillations until reaching the steady state
value, with a settling time proportional to 2π/g.

INTERACTION OF PHOTONS WITH THE
CAVITY DURING MULTIPLE TIME LOOPS

The developed method can also be used for the investi-
gation of the several interactions of multiple photons and
a cavity with either atoms inside it or not. The case of
a single photon interaction with the cavity with an atom
inside it has been studied analytically [61, 62]. In this
case, the scattering of a single photon impinging upon a
cavity can be described as [61, 62]:

[
aout
bout

]
=

[
S11 S12

S21 S22

] [
ain
bin

]
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in which,

S11 = S22 =
−i∆ω + ig2/ (∆ω − δ)
−i∆ω + γ + ig2/ (∆ω − δ)

and

S12 = S21 =
−γ

−i∆ω + γ + ig2/ (∆ω − δ)

Moreover,aout and bout are the annihilation operators
of the output ports, and ain and bin are the annihilation
operators of the input ports, while ∆ω = ωph − ωc, δ =
ωatom−ωc, and γ is the rate of coupling from the cavity to
each waveguide, and g is the atom-cavity coupling rate.

Based on these analytical solutions, without the pres-
ence of the atom, the cavity acts as a beam splitter
[62] for any number of incident photons. For complete-
ness, however, we have shown the numerical results of
this case in Fig. 4. Assuming that the incident pho-
ton(s) are decoupled from the cavity with a decay rate
of γinc and with a resonance frequency that is detuned
by ∆ω from the interacting cavity, the spectrum of
the incident pulse is given by the Lorentzian form of
S (ω) = 2γinc

π
1

4(ω−∆ω−ωc)2+γ2
inc

. Using this fact and the
above-mentioned scattering matrix, the total reflection
in the first round of interaction is given by:

R =
2γ(2γ + γinc)

(2γ + γinc)2 + 4∆ω2

This analytical result is consistent with the reflection
obtained numerically for two cases of γinc = γ and γinc =
0.04γ, shown in Fig. 4a and 4b, respectively.

Furthermore, the scattering behavior for the more in-
teresting case of the interaction of the out-coupled pho-
tons impinging on a cavity with a two-level atom inside
is depicted in Fig. 6a. Here, we have assumed that the
atom and incident photons are in resonance. For the case
of a single photon, by assuming zero detuning between
the cavity resonance frequency and the two-level atom
and using the above-mentioned Lorentzian spectrum for
the decoupled photon, the average number of reflected
photons can be obtained by:

R =
2γinc
π

∞̂

−∞

dω

4∆ω2 + γ2
inc

γ2

γ2 + (g2/∆ω −∆ω)
2

When γinc = γ, this results in R = 0.5 for g = γ/2.
The numerically calculated reflection of a single photon
as a function of atom-cavity coupling rate (Fig. 5a) is
consistent with this analytical expression. The results of
the interaction of multiple photons with a single atom
located in a resonant cavity are also depicted in Fig. 5a.
As this figure shows, by increasing the number of incident
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Figure 4: Reflection and transmission of the incident
photons from a cavity as a function of their frequency
shift from the cavity resonance frequency for the first
two rounds of interactions. The incident photons are
decoupled from the cavity with decay rates of (a)

γinc = γ and (b) γinc = 0.04γ.

photons, the atom-cavity coupling rate must increase in
order to reach a 50/50 splitting of the output photon
ratios. This is consistent with our intuition, as more
coupling is needed to redirect the path of a higher number
of photons compared with the case of a single photon.

In addition, the number of photons transmitted or re-
flected are calculated as a function of atom-cavity cou-
pling rate in the second interaction. The results of these
calculations are shown for the case of a single photon
and two photons in Fig. 5b. There are deviations in
both rounds of interactions between the results of these
two cases. However, in the second round the scattering
behavior for these two cases becomes closer as compared
with the first round of interaction.

By assuming a smaller decay rate for the cavity from
which incident photons are decoupled, we can also excite
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Figure 5: Reflection and transmission of the incident
photons from a cavity as a function of atom-cavity
coupling rate for the first two rounds of interactions.

The incident photons are decoupled from a cavity with
a decay rate of γinc = γ.

photons with smaller line-widths. The numerically ob-
tained results for the reflection and transmission of mul-
tiple incident photons with a line-width of γinc = 0.04γ in
the first round are shown in Fig. 6a. The corresponding
results in the second round for the case of a single photon
or two incident photons are shown in Fig. 6b. These re-
sults again reveal the requirement of higher atom-cavity
coupling rates to achieve a similar amount of transmis-
sion and reflection for the case of multiple photons as
compared with a single photon.

For the case of γinc = 0.04γ, which closely models
monochromatic photons, the second order correlation
function for the decoupled photons in the top waveg-
uide for the first round and in the bottom waveguide
for the second round is shown in Figs. 7a and 7b, re-
spectively. In the first round, g2(t) starts from 0.5 as
dictated by the fixed photon number and increases due
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Figure 6: Reflection and transmission of the incident
photons from a cavity as a function of atom-cavity
coupling rate for the first two rounds of interactions.
The incident photons are decoupled from the cavity

with a decay rate of γinc = 0.04γ.

to stimulated emission to reach a maximum at a certain
time. However, g2 (t) then starts decreasing and asymp-
totically approaches 0.5 after a settling time proportional
to 2π ⁄ g, indicating that the photons are scattered by
separate atom transitions. In the second round, there is
similar initial and asymptotic behavior for g2 (t). How-
ever, it starts with a descent and then moves toward a
peak value.

In the systems considered in this work, we have as-
sumed zero detuning between the two-level atom and the
cavity. Moreover, any non-radiative loss mechanism is
assumed to be zero. Nevertheless, the developed method
can be used for analyzing multiple interactions of pho-
tons and the cavity under more general circumstances,
including for instance an arbitrary detuning between the
photons and the two-level atom or the cavity. Further-
more, any loss mechanism other than decoupling to the
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Figure 7: g2 (t) for photons decoupled to the bottom
and upper waveguides as a function of time in the (a)

first and (b) second round, respectively.

waveguides, such as two-level atom non-radiative losses,

can be included straightforwardly as extra collapse oper-
ators.

CONCLUSION

In this work, we have developed a method to obtain the
evolution of a system under a bidirectional time-delayed
feedback loop. For this purpose, we have expressed this
evolution in terms of the time propagation of the ac-
tual system without feedback in addition to several sys-
tems identical to it which represent the system’s past
history. This method provides a numerically efficient so-
lution when the time delays become comparable to the in-
verse of the decay rates. Under such conditions, directly
tracking the state of the reservoirs representing the time-
delayed feedbacks becomes numerically expensive. We
have applied this method to investigate the scatterings
of multiple photons incident on an atom-cavity system
coupled to two waveguides that are connected at their
ends. We have demonstrated how the number of inci-
dent photons as well as the delay between them affect
their reflection and transmission from the atom-cavity
system. The developed method can be used for studying
a broad range of nonlinear dynamics in complex quantum
networks.
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APPENDIX:

ANALYSIS OF FEEDBACK LOOPS WITH
SIMILAR TIME DELAYS

Following the approach introduced in [35], the evolu-
tion of the system under the feedback loop after several
time delays can be expressed in terms of the evolution
of the system and its replicas during a time delay, τ ,
followed by a generalized trace over the replicas. More
precisely, in order to obtain the state of the actual system
at time t = kτ + s, we should obtain the evolution of the
system and its k replicas from time 0 to s, as well as the
evolution of the system and its k − 1 replicas from time
s to τ .

In order to get a sense of the evolution of the system
and its replicas, we have considered in Fig. 8a (based on
Penrose’s tensor notation [35, 63, 64]) the evolution of the
stacked systems after two time delays, 2τ < t < 3τ . The
analysis can easily be extended to the subsequent time
delays. In this figure, UL1 and UL2 blocks represent the
unitary superoperators acting on the system (horizon-
tally) and the reservoir (vertically) that are connected to
them. Specifically, UL1 and UL2 represent the evolution
of the connected system and reservoir for an infinitesi-
mal amount of time ∆t corresponding to the coupling
operators of L1 and L2, respectively.

As it can be seen from Fig. 8, the infinitesimal evolu-
tion of the stacked systems by ∆t can itself be divided
into four steps. Here, we represent the density matrix
of the jth system replica by ρSj

and the density matrix
of the two connected reservoirs with ρα1

and ρα2
. More-

over, the annihilation operator for these two reservoirs
are shown with bn and cn in which n represents the cur-
rent time bin number. In addition, L(j)

1,2 and H(j)
S repre-

sent the coupling operators and the Hamiltonian for jth
system, respectively.

In the first step, we will have:

ρS1
⊗ ρα1

→ e
− i∆t

2 H
(1)
S +

√
∆t
(
L

(1)
2 b†n−L

(1)†
2 bn

)
ρS1 ⊗ ρα1

× e
i∆t
2 H

(1)
S −

√
∆t
(
L

(1)
2 b†n−L

(1)†
2 bn

)

Therefore, up to (∆t)
3
2 , for ρα1 = |v〉α1

〈v|α1
+

O
(√

∆t
)

in which |v〉α1
represents the vacuum state,

we have:

S1

S2

S3

α1α2

UL1 UL2

UL2UL1

UL1 UL2

First stepSecond stepThird stepFourth step

(a)

S1

S2

S3

α1α2

UL1 UL2

UL1

UL2

UL2

UL1

First stepSecond step

(b)

Figure 8: (a) An infinitesimal time evolution by ∆t at
time 2τ < t = n∆t < 3τ for the stacked systems (b)

The same evolution by interchanging the blocks in every
other row

ρS1
⊗ ρα1

→ ρS1
⊗ ρα1

+
√

∆t
[
L

(1)
2 b†n − L

(1)†
2 bn, ρS1 ⊗ ρα1

]
− ∆t

2

(
i
[
H

(1)
S , ρS1

]
+
{
L

(1)†
2 L

(1)
2 , ρS1

})
⊗ |v〉α1

〈v|α1

+ ∆tL
(1)
2 ρS1

L
(1)†
2 ⊗ b†n |v〉α1

〈v|α1
bn

+
∆t

2
L

(1)2
2 ρS1

⊗ b†2n |v〉α1
〈v|α1

+
∆t

2
ρS1L

(1)†2
2 ⊗ |v〉α1

〈v|α1
b2n

In the second step, we will have:
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ρS1,2
⊗ ρα2

→ e
− i∆t

2 H
(2)
S +

√
∆t
(
L

(2)
2 c†n−L

(2)†
2 cn

)

× e−
i∆t
2 H

(1)
S +

√
∆t
(
L

(1)
1 c†n−L

(1)†
1 cn

)
ρS1,2

⊗ ρα2

× e
i∆t
2 H

(1)
S −

√
∆t
(
L

(1)
1 c†n−L

(1)†
1 cn

)
e

i∆t
2 H

(2)
S −

√
∆t
(
L

(2)
2 c†n−L

(2)†
2 cn

)

In which ρS1,2
= ρS1

⊗ ρS2
. We can define X and Y

as:

X = − i∆t
2
H

(2)
S +

√
∆t
(
L

(2)
2 c†n − L

(2)†
2 cn

)

Y = − i∆t
2
H

(1)
S +

√
∆t
(
L

(1)
1 c†n − L

(1)†
1 cn

)
Since

[
cn, c

†
n

]
= 1, it follows that:

[X,Y ] = ∆t
(
L

(1)†
1 L

(2)
2 − L

(1)
1 L

(2)†
2

)
Moreover, [X, [X,Y ]] = O

(
(∆t)

3
2

)
and [Y, [X,Y ]] =

O
(

(∆t)
3
2

)
. Therefore, up to O

(
(∆t)

3
2

)
, from

the Baker–Campbell–Hausdorff formula, eXeY =

eX+Y+ 1
2 [X,Y ]. Consequently, up to O

(
(∆t)

3
2

)
, for ρα2 =

|v〉α2
〈v|α2

+O
(√

∆t
)
, we have:

ρS1,2
⊗ ρα2

→ ρS1,2
⊗ ρα2

+
√

∆t
[
L

(1)
1 c†n + L

(2)
2 c†n − L

(1)†
1 cn − L(2)†

2 cn, ρS1,2
⊗ ρα2

]
− i∆t

2

[
H

(1)
S +H

(2)
S , ρS1,2

]
⊗ |v〉α2

〈v|α2

+
∆t

2

[
L

(1)†
1 L

(2)
2 − L

(1)
1 L

(2)†
2 , ρS1,2

]
⊗ |v〉α2

〈v|α2

− ∆t

2

{(
L

(1)
1 + L

(2)
2

)† (
L

(1)
1 + L

(2)
2

)
, ρS1,2

}
⊗ |v〉α2

〈v|α2

+ ∆t
(
L

(1)
1 + L

(2)
2

)
ρS1,2

(
L

(1)
1 + L

(2)
2

)†
⊗ c†n |v〉α2

〈v|α2
cn

+
∆t

2

(
L

(1)
1 + L

(2)
2

)2

ρS1,2
⊗ c†2n |v〉α2

〈v|α2

+
∆t

2
ρS1,2

(
L

(1)
1 + L

(2)
2

)†2
⊗ |v〉α2

〈v|α2
c2n

Similarly, in the third step:

ρS2,3
⊗ ρα1

→ e
−i∆t

2 H
(3)
S +

√
∆t
(
L

(3)
2 b†n−L

(3)†
2 bn

)

× e
−i∆t

2 H
(2)
S +

√
∆t
(
L

(2)
1 b†n−L

(2)†
1 bn

)
ρS2,3 ⊗ ρα1

× e
i∆t
2 H

(2)
S −

√
∆t
(
L

(2)
1 b†n−L

(2)†
1 bn

)
e

i∆t
2 H

(3)
S −

√
∆t
(
L

(3)
2 b†n−L

(3)†
2 bn

)

In which ρS2,3 = ρS2 ⊗ ρS3 . Therefore, up to (∆t)
3
2 ,

for ρα1
= |v〉α1

〈v|α1
+O

(√
∆t
)
, we have:

ρS2,3
⊗ ρα1

→ ρS2,3
⊗ ρα1

+
√

∆t
[
L

(2)
1 b†n + L

(3)
2 b†n − L

(2)†
1 bn − L(3)†

2 bn, ρS2,3 ⊗ ρα1

]
− i∆t

2

[
H

(2)
S +H

(3)
S , ρS2,3

]
⊗ |v〉α1

〈v|α1

+
∆t

2

[
L

(2)†
1 L

(3)
2 − L

(2)
1 L

(3)†
2 , ρS2,3

]
⊗ |v〉α1

〈v|α1

− ∆t

2

{(
L

(2)
1 + L

(3)
2

)† (
L

(2)
1 + L

(3)
2

)
, ρS2,3

}
⊗ |v〉α1

〈v|α1

+ ∆t
(
L

(2)
1 + L

(3)
2

)
ρS2,3

(
L

(2)
1 + L

(3)
2

)†
⊗ b†n |v〉α1

〈v|α1
bn

+
∆t

2

(
L

(2)
1 + L

(3)
2

)2

ρS2,3 ⊗ b†2n |v〉α1
〈v|α1

+
∆t

2
ρS2,3

(
L

(2)
1 + L

(3)
2

)†2
⊗ |v〉α1

〈v|α1
b2n

Finally, in the fourth step, we have:

ρS3
⊗ ρα2

→ e
− i∆t

2 H
(3)
S +

√
∆t
(
L

(3)
1 c†n−L

(3)†
1 cn

)
ρS3 ⊗ ρα2

× e
i∆t
2 H

(3)
S −

√
∆t
(
L

(3)
1 c†n−L

(3)†
1 cn

)

Therefore, up to (∆t)
3
2 , for ρα2

= |v〉α2
〈v|α2

+

O
(√

∆t
)
, we have:

ρS3
⊗ ρα2

→ ρS3
⊗ ρα2

+
√

∆t
[
L

(3)
1 c†n − L

(3)†
1 cn, ρS3 ⊗ ρα2

]
− ∆t

2

(
i
[
H

(3)
S , ρS3

]
+
{
L

(3)†
1 L

(3)
1 , ρS3

})
⊗ |v〉α2

〈v|α2

+ ∆tL
(3)
1 ρS3L

(3)†
1 ⊗ c†n |v〉α2

〈v|α2
cn

+
∆t

2
L

(3)2
1 ρS3

⊗ c†2n |v〉α2
〈v|α2

+
∆t

2
ρS3L

(3)†2
1 ⊗ |v〉α2

〈v|α2
c2n

After the above four steps and by starting from vacuum
states for ρα1

and ρα2
, followed by tracing over them and

after simplification we obtain:

ρ = ρS1
⊗ ρS2

⊗ ρS3
→ ρ− i∆t [Heff , ρ]

+ ∆t
(
L

(1)
1 + L

(2)
2 + L

(3)
1

)
ρ
(
L

(1)
1 + L

(2)
2 + L

(3)
1

)†
− ∆t

2

{(
L

(1)
1 + L

(2)
2 + L

(3)
1

)† (
L

(1)
1 + L

(2)
2 + L

(3)
1

)
, ρ

}
+ ∆t

(
L

(1)
2 + L

(2)
1 + L

(3)
2

)
ρ
(
L

(1)
2 + L

(2)
1 + L

(3)
2

)†
− ∆t

2

{(
L

(1)
2 + L

(2)
1 + L

(3)
2

)† (
L

(1)
2 + L

(2)
1 + L

(3)
2

)
, ρ

}
In which:
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Heff = H
(1)
S +H

(2)
S +H

(3)
S

+
i

2

(
L

(1)†
1 L

(2)
2 + L

(2)†
1 L

(3)
2 − L

(1)
1 L

(2)†
2 − L(2)

1 L
(3)†
2

)
+
i

2

(
L

(1)†
1 L

(3)
1 + L

(2)†
2 L

(3)
1 − L

(1)
1 L

(3)†
1 − L(2)

2 L
(3)†
1

)
+
i

2

(
L

(1)†
2 L

(2)
1 + L

(1)†
2 L

(3)
2 − L

(1)
2 L

(2)†
1 − L(1)

2 L
(3)†
2

)
Noting the fact that the series blocks can be inter-

changed with each other, we could also obtain the same
result based on the schematic depicted in Fig. 8b. Based
on this schematic, the time evolution for infinitesimal
time ∆t at time t can be explained in terms of two con-
secutive steps. In the first step, we would have:

ρ⊗ ρα1 → e
−i∆t

2 H
(3)
S +

√
∆t
(
L

(3)
2 b†n−L

(3)†
2 bn

)

× e
−i∆t

2 H
(2)
S +

√
∆t
(
L

(2)
1 b†n−L

(2)†
1 bn

)
e
−i∆t

2 H
(1)
S +

√
∆t
(
L

(1)
2 b†n−L

(1)†
2 bn

)

× ρ⊗ ρα1
e

i∆t
2 H

(1)
S −

√
∆t
(
L

(1)
2 b†n−L

(1)†
2 bn

)

× e
i∆t
2 H

(2)
S −

√
∆t
(
L

(2)
1 b†n−L

(2)†
1 bn

)
e

i∆t
2 H

(3)
S −

√
∆t
(
L

(3)
2 b†n−L

(3)†
2 bn

)

In the next step, we would have:

ρ⊗ ρα2
→ e

−i∆t
2 H

(3)
S +

√
∆t
(
L

(3)
1 c†n−L

(3)†
1 cn

)

× e
−i∆t

2 H
(2)
S +

√
∆t
(
L

(2)
2 c†n−L

(2)†
2 cn

)
e
−i∆t

2 H
(1)
S +

√
∆t
(
L

(1)
1 c†n−L

(1)†
1 cn

)

× ρ⊗ ρα2
e

i∆t
2 H

(1)
S −

√
∆t
(
L

(1)
1 c†n−L

(1)†
1 cn

)

× e
i∆t
2 H

(2)
S −

√
∆t
(
L

(2)
2 c†n−L

(2)†
2 cn

)
e

i∆t
2 H

(3)
S −

√
∆t
(
L

(3)
1 c†n−L

(3)†
1 cn

)

Using the Baker–Campbell–Hausdorff formula for each
of these steps as it was used above, we obtain for the first
step:

ρ⊗ ρα1
→ e

−i∆t
2 Heff,1st+

√
∆t
((
L

(1)
2 +L

(2)
1 +L

(3)
2

)
b†n−h.c.

)

× ρ⊗ ρα1
e

i∆t
2 Heff,1st−

√
∆t
((
L

(1)
2 +L

(2)
1 +L

(3)
2

)
b†n−h.c.

)

in which, Heff,1st = H
(1)
S + H

(2)
S + H

(3)
S +

i
(
L

(1)†
2 L

(2)
1 + L

(2)†
1 L

(3)
2 + L

(1)†
2 L

(3)
2 − h.c.

)
.

Similarly, for the next step, we would obtain:

ρ⊗ ρα2
→ e

−i∆t
2 Heff,2nd+

√
∆t
((
L

(1)
1 +L

(2)
2 +L

(3)
1

)
c†n−h.c.

)

× ρ⊗ ρα2
e

i∆t
2 Heff,2nd−

√
∆t
((
L

(1)
1 +L

(2)
2 +L

(3)
1

)
c†n−h.c.

)

in which, Heff,2nd = H
(1)
S + H

(2)
S + H

(3)
S +

i
(
L

(1)†
1 L

(2)
2 + L

(1)†
1 L

(3)
1 + L

(2)†
2 L

(3)
1 − h.c.

)
.

Starting from vacuum states for ρα1
and ρα2

, followed
by tracing over them, we obtain a similar result as the
one obtained above using four steps.

The above results can easily be generalized to the case
when we are considering more than three time delays. If
we show the delay as τ with t = kτ+s, such that 0 < s <
τ , then we need to consider k+1 identical systems. Using
the above approach, we find that the time evolution for
infinitesimal time ∆t for ρ = ρS1

⊗ · · · ⊗ ρSk+1
can be

represented as the consecutive actions of the following
two steps. In the first step, we would have:

ρ⊗ ρα1 →

e
−i∆t

2 H
(k+1)
S +

√
∆t
(
L

(k+1)

(k+1) mod 2+1
b†n−L

(k+1)†
(k+1) mod 2+1

bn
)

× · · · e
−i∆t

2 H
(1)
S +

√
∆t
(
L

(1)
2 b†n−L

(1)†
2 bn

)
ρ⊗ ρα1

× e
i∆t
2 H

(1)
S −

√
∆t
(
L

(1)
2 b†n−L

(1)†
2 bn

)
· · ·

× e
i∆t
2 H

(k+1)
S −

√
∆t
(
L

(k+1)

(k+1) mod 2+1
b†n−L

(k+1)†
(k+1) mod 2+1

bn
)

= e
− i∆t

2 Heff,1st+
√

∆t
(
b†n
∑k

q=0 L
(q+1)

(q+1) mod 2+1
−h.c.

)
ρ⊗ ρα1

× e
i∆t
2 Heff,1st−

√
∆t
(
b†n
∑k

q=0 L
(q+1)

(q+1) mod 2+1
−h.c.

)

in which, Heff,1st =
∑k
q=0H

(q+1)
S +

i
∑k−1
q=0

∑k
j=q+1

(
L

(q+1)†
(q+1) mod 2+1L

(j+1)
(j+1) mod 2+1 − h.c.

)
.

And in the second step, we would have:

ρ⊗ ρα2
→ e

−i∆t
2 H

(k+1)
S +

√
∆t
(
L

(k+1)
k mod 2+1c

†
n−L

(k+1)†
k mod 2+1cn

)

× · · · e
−i∆t

2 H
(1)
S +

√
∆t
(
L

(1)
1 c†n−L

(1)†
1 cn

)
ρ⊗ ρα2

× e
i∆t
2 H

(1)
S −

√
∆t
(
L

(1)
1 c†n−L

(1)†
1 cn

)
· · ·

× e
i∆t
2 H

(k+1)
S −

√
∆t
(
L

(k+1)
k mod 2+1c

†
n−L

(k+1)†
k mod 2+1cn

)

= e
− i∆t

2 Heff,2nd+
√

∆t
(
c†n
∑k

q=0 L
(q+1)
q mod 2+1−h.c.

)
ρ⊗ ρα2

× e
i∆t
2 Heff,2nd−

√
∆t
(
c†n
∑k

q=0 L
(q+1)
q mod 2+1−h.c.

)

in which, Heff,2nd =
∑k
q=0H

(q+1)
S +

i
∑k−1
q=0

∑k
j=q+1

(
L

(q+1)†
q mod 2+1L

(j+1)
j mod 2+1 − h.c.

)
.

Combining them we realize that the stacked systems’
evolution can be described by the following Lindblad op-
erators and effective Hamiltonian for time 0 to s.
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Heff =

k∑
q=0

H
(q+1)
S +

i

2

k−1∑
q=0

k∑
j=q+1

L
(q+1)†
q mod 2+1L

(j+1)
j mod 2+1

+
i

2

k−1∑
q=0

k∑
j=q+1

L
(q+1)†
(q+1) mod 2+1L

(j+1)
(j+1) mod 2+1 + h.c.

LF =

k∑
q=0

L
(q+1)
(q+1) mod 2+1

LB =

k∑
q=0

L
(q+1)
q mod 2+1

The evolution from time s to τ can be described by
the above operators, however, by changing k with k − 1
for k > 1 and by unitary operation for k = 1.

ANALYSIS OF FEEDBACK LOOPS WITH
DIFFERENT TIME DELAYS

We can generalize the above approach to feedback
loops with different time delays. For this purpose, we as-
sume that the two delays can be represented as an integer
multiplied by their common factor, such that τ1 = n1τ
and τ2 = n2τ . We are interested to obtain the evolu-
tion of the system up to t = kτ + s. We first obtain the
evolution from time 0 to s for the stacked systems. The
evolution from s to τ will be obtained by replacing k with
k − 1.

Let us consider the evolution from time 0 to time s. For
this, we should consider the stack of k + 1 system repli-
cas. In this more generalized scheme, the output field
of the first L(q+1)

2 block is connected to the input of the
L

(q+n2+1)
1 block and its output correspondingly is con-

nected to the input of L(q+n1+n2+1)
2 , and this trend con-

tinues. Similarly, L(q+1)
1 , L(q+n1+1)

2 , and L
(q+n2+n1+1)
1

blocks and so on are connected. Therefore, there exists
the following effective Hamiltonian and Lindblad opera-
tors:

Heff =

k∑
q=0

H
(q+1)
S + Vint

LF,l =
∑
j=0

(
L

(l+jnt+1)
2 + L

(l+jnt+n2+1)
1

)
0 ≤ l < n1

LB,p =
∑
j=0

(
L

(p+jnt+1)
1 + L

(p+jnt+n1+1)
2

)
0 ≤ p < n2

In the above equations, nt = n1 + n2 and Vint rep-
resents the interaction terms between system replicas
caused by L blocks connections, which is a summation
of the terms each with the form of i

2

(
Lq†1,2L

j
2,1 − h.c.

)
.

Moreover, a note should be added that in the above
summations, the upper limit is determined by the fact
that we only consider terms L(l)

1,2 for l ≤ k + 1.
For instance, let us consider the case that τ2 = mτ1 =

mτ . The L operators are as the followings:

LF =
∑
j=0

(
L

((m+1)j+1)
2 + L

((m+1)j+m+1)
1

)
LB,p =

∑
j=0

(
L

((m+1)j+p+1)
1 + L

((m+1)j+p+2)
2

)
0 ≤ p < m

The interaction term in this case is given by:

Vint =
i

2

∑
j=0

∑
l=j+1

L
((m+1)j+1)†
2

(
L

((m+1)l+1)
2 + L

((m+1)l)
1

)
+
i

2

∑
j=0

∑
l=j+1

L
((m+1)(j+1))†
1

(
L

((m+1)l+1)
2 + L

((m+1)(l+1))
1

)

+
i

2

m−1∑
p=0

∑
j=0

∑
l=j+1

L
((m+1)j+p+1)†
1 L

((m+1)l+p+1)
1

+
i

2

m−1∑
p=0

∑
j=0

∑
l=j+1

L
((m+1)j+p+1)†
1 L

((m+1)(l−1)+p+2)
2

+
i

2

m−1∑
p=0

∑
j=0

∑
l=j+1

L
((m+1)j+p+2)†
2 L

((m+1)l+p+1)
1

+
i

2

m−1∑
p=0

∑
j=0

∑
l=j+1

L
((m+1)j+p+2)†
2 L

((m+1)l+p+2)
2 + h.c.

For the case of m = 2, these can be simplified even
further to:

Vint =
i

2

∑
J=1

∑
l=0

L
(J)†
1

(
L

(J+3l+3)
1 + L

(J+3l+1)
2

)
+
i

2

∑
J=1

∑
l=0

L
(J)†
2

(
L

(J+3l+2)
1 + L

(J+3l+3)
2

)
+ h.c.

and:

LF =
∑
j=0

(
L

(3j+1)
2 + L

(3j+3)
1

)
LB,0 =

∑
j=0

(
L

(3j+1)
1 + L

(3j+2)
2

)
LB,1 =

∑
j=0

(
L

(3j+2)
1 + L

(3j+3)
2

)
For the case of τ1 = 2τ and τ2 = 3τ , the L operators

are as follows:
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LF,l =
∑
j=0

(
L

(l+5j+1)
2 + L

(l+5j+4)
1

)
0 ≤ l < 2

LB,p =
∑
j=0

(
L

(p+5j+1)
1 + L

(p+5j+3)
2

)
0 ≤ p < 3

The interaction term in this case can be simplified to:

Vint =
i

2

∑
J=1

∑
l=0

L
(J)†
1

(
L

(J+5l+5)
1 + L

(J+5l+2)
2

)
+
i

2

∑
J=1

∑
l=0

L
(J)†
2

(
L

(J+5l+3)
1 + L

(J+5l+5)
2

)
+ h.c.

Similar results can be obtained for the general case of
τ1 = n1τ and τ2 = n2τ for integer values of n1 and n2.

In the simple case of a cavity with a single photon
inside, we can investigate the effect of a bidirectional
time-delayed feedback loop based on the above presented
method. We have considered cavity photon number vari-
ation for two overall phase shifts of φ = 0 and φ = π, in
Figs. 9a and 9b, respectively. For each phase, assuming
γτ = 1, four cases of τ1 = τ , τ2 = ∞ and τ2 = τ1 = τ
and τ2 = 2τ1 = 2τ , as well as τ1 = 2τ , τ2 = 3τ are shown
for comparison. In the special case of τ1 = τ , τ2 = ∞
[35], the constructive and destructive interference hap-
pening for two phases of φ = 0 and φ = π will lead to a
zero or a constant occupation number in the steady state,
respectively. However, in the other three cases, these fig-
ures show that there is an oscillatory behavior for the
occupation number as a function of time.
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Figure 9: The variation of cavity photon number as a
function of time under different bidirectional

time-delayed feedback loops for two overall phase shifts
of (a) φ = 0 and (b) φ = π between the ports.
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