
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Two-dimensional vortex quantum droplets
Yongyao Li, Zhaopin Chen, Zhihuan Luo, Chunqing Huang, Haishu Tan, Wei Pang, and

Boris A. Malomed
Phys. Rev. A 98, 063602 — Published  3 December 2018

DOI: 10.1103/PhysRevA.98.063602

http://dx.doi.org/10.1103/PhysRevA.98.063602


Two-dimensional vortex quantum droplets

Yongyao Li1, Zhaopin Chen2, Zhihuan Luo3, Chunqing Huang1, Haishu Tan1, Wei Pang4∗ and Boris A. Malomed2,1
1School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China

2 Department of Physical Electronics, School of Electrical Engineering,

Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
3College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China

4Department of Experiment Teaching, Guangdong University of Technology, Guangzhou 510006, China

It was recently found that the Lee-Huang-Yang (LHY) correction to the mean-field Hamiltonian
of binary atomic boson condensates suppresses the collapse and creates stable localized modes (two-
component “quantum droplets”, QDs) in two and three dimensions (2D and 3D). In particular, the
LHY effect modifies the effective Gross-Pitaevskii equation (GPE) in 2D by adding a logarithmic
factor to the usual cubic term. In the framework of the accordingly modified two-component GPE
system, we construct 2D self-trapped modes in the form of QDs with vorticity S embedded into
each component. Due to the effect of the logarithmic factor, the QDs feature a flat-top shape,
which expands with the increase of S and norm N . An essential finding, produced by a systematic
numerical investigation and analytical estimates, is that the vortical QDs are stable (which is a
critical issue for vortex solitons in nonlinear models) up to S = 5, for N exceeding a certain threshold
value, which is predicted to scale as Nth ∼ S4 for large S (for three-dimensional QDs, the scaling
is Nth ∼ S6). The prediction is corroborated by numerical findings. Pivots of QDs with S ≥ 2 are
subject to structural instability, as specially selected perturbations can split the single pivot in a set
of S or S + 2 pivots corresponding to unitary vortices; however, the structural instability remains
virtually invisible, as it occurs in a broad central “hole” of the vortex soliton, where values of fields
are very small, and it does not cause any dynamical instability. In the condensate of 39K atoms, in
which QDs with S = 0 and a quasi-2D shape were created recently, the vortical droplets may have
radial size . 30 µm, with the number of atoms in the range of 104 − 105. The role of three-body
losses is considered too, demonstrating that they do not prevent the creation of the vortex droplets,
but may produce a noteworthy effect, leading to sudden splitting of “light” droplets. In addition,
hidden-vorticity states in QDs, with topological charges S+ = −S− = 1 in their components, which
are prone to strong instability in other settings, have their stability region too. Unstable HV states
tend to spontaneously merge into zero-vorticity solitons. Collisions of QDs, which may lead to their
merger, and dynamics of elliptically deformed QDs (which form rotating elongated patterns or ones
with oscillations of the eccentricity) are briefly considered too.

I. INTRODUCTION

The mean-field approximation [1, 2] offers an extremely
accurate description of one-, two, and three-dimensional
(1D, 2D, 3D) matter-wave patterns in atomic Bose-
Einstein condensates (BECs), provided that the mul-
tidimensional states are not made unstable by the oc-
currence of the collapse [3]. However, the usual cubic
nonlinearity, which represents attractive interactions be-
tween atoms, gives rise to the critical and supercriti-
cal collapse in the 2D and 3D geometries, respectively
[4, 5], which makes search for physically relevant mech-
anisms stabilizing 2D and 3D solitons and solitary vor-
tices a challenging problem [3, 6]. If the physical setting
admits the inclusion of repulsive quintic nonlinearity in
addition to the cubic self-focusing, the balance of these
terms stabilizes 2D and 3D fundamental solitons, with
vorticity S = 0, as well as a part of 2D and 3D vortex-
soliton families, with S ≥ 1 [7–9] and S = 1 [10], re-
spectively. The stabilization of fundamental 2D solitons
by the cubic-quintic nonlinearity has been experimen-
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tally demonstrated in optics [11], while quasi-stable soli-
tary vortices were demonstrated only as transient modes,
using the instability-suppressing effect of the cubic loss
(two-photon absorption) [12]. However, the relevance of
the cubic-quintic nonlinearity in the context of BEC is
doubtful. A recently found possibility to create 2D vor-
tex solitons, which are stable, at least, up to S = 5,
was predicted in the framework of the binary BEC with
its two components coupled by a microwave field [13].
Stabilization of higher-order vortices with S > 1 is an
especially interesting issue in this and other contexts.

It was also recently found that the spin-orbit coupling
in binary BECs with the cubic attraction makes other-
wise unstable 2D solitons an absolutely stable ground
state [14–16], and creates metastable solitons in 3D
[17, 18]. However, all modes with overall vorticity S ≥ 1
added to them are completely unstable in the spin-orbit-
coupled system [14]. Thus far, no truly stable bright
vortex solitons have been created experimentally in any
uniform physical medium or in free space [3, 6] (it may
be easier to create 3D modes with embedded vorticity in
deeply structured media, such as quasi-discrete “optical
bullets” in a 2D waveguiding array [19]).

A new approach to the creation of stable self-trapped
2D and 3D states in the BEC was recently elaborated in
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Refs. [20, 21] in a binary BEC, with self-repulsion in each
component and dominating inter-component attraction.
In this setting, the stability against the collapse is pro-
vided by the Lee-Huang-Yang (LHY) correction to the
mean-field dynamics, originating from quantum fluctua-
tions around the mean-field states [22]. In terms of the re-
spective 3D Gross-Pitaevskii equations (GPEs), the LHY
correction is represented by quartic self-repulsive terms,
which arrest the collapse induced by the cross-attraction
between the components [20] (or by the three-body at-
traction in 1D [23]). The analysis predicts stable quan-

tum droplets (QDs) of an ultradilute superfluid, while
traditional solitons in BEC were created as quantum-gas
clouds [24]-[30]. A variant of this system, which includes
the linear Rabi coupling between the components, was
considered too [31]. The interplay of the LHY and spin-
orbit-coupling effects was addressed in Refs. [52], [16],
and [62] (the latter work applied these ingredients to a
Bose-Fermi mixture).

Beyond the framework of the corrected mean-field the-
ory, the zero-vorticity QDs and their stability were re-
cently explored, by means of the quantum Monte-Carlo
method in Ref. [63], and the stability of uniform media
filling broad “droplets” was studied, by means of nonper-
turbative treatment of correlations, in Ref. [64]. Further,
beyond-the-mean-field theory valid at finite temperature
was recently developed too [65].

QDs have been created in the binary BEC composed of
104− 105 atoms of 39K, kept in two different states, with
appropriate signs of the inter- and intra-component inter-
actions [32]-[35] (the corresponding scattering lengths in
39K may be adjusted by the Feshbach resonance [36, 37]).
In particular, in works [32] and [34] the QDs were pro-
duced with a quasi-2D (“pancake”) shape, imposed by
the strong confining potential applied perpendicular to
the pancake’s plane. On the other hand, the QDs re-
ported in Ref. [35] were nearly isotropic (spherically sym-
metric), as they were not essentially compressed by the
confining potential.

Another possibility for the creation of QDs was realized
in dipolar BEC, where the balance of attractive dipole-
dipole interactions and LHY repulsion makes it possible
to create single-component QD states, as demonstrated,
using 164Dy and 166Er condensates, in Refs. [38] and [39],
respectively. The dynamics of QDs in dipolar BECs was
analyzed in detail in recent works [40]-[49].

The availability of QDs in the current experiments sug-
gests to analyze a possibility of the creation of such states
with embedded vorticity. In single-component dipolar
condensates, the vortex states were recently found to
be unstable, because deformation of the vortex embed-
ded in the QD may lower its energy [50]. On the other
hand, it was demonstrated, also very recently, that two-
component QDs supported by the contact interactions in
3D may readily carry stable embedded vorticities with
winding number S = 1, and the QDs with very large
norms may also support stable embedded vorticity S = 2
[51].

The objective of the present work is to construct fam-
ilies of stable QDs with embedded vorticity in the ef-
fectively 2D setting. The reduction of the dimension
from 3 to 2 changes the form of the nonlinearity in the
underlying Gross-Pitaevskii equations (GPEs) including
the LHY correction [21], and thus gives rise to a specific
model in the framework of which the analysis produces
vortex solitons. A remarkable fact is that conspicuous
stability regions are found for the solitons with vortici-
ties up to S = 5.

The paper is structured as follows. The model is in-
troduced in Sec. II. Basic results for QDs with explicit
and “hidden” vorticities are presented in Sec. III [“hid-
den” means that two components of the QD have equal
norms and opposite vorticities, see Eq. (30) below]. In
addition to systematically collected numerical findings,
essential analytical results are reported too. They in-
clude estimates for the size of the inner “hole” of the
QDs, induced by the vorticity, and threshold (minimum)
value of the norm necessary for the stability of the vor-
tex QDs, in the form of Nth ∼ S4 [for three-dimensional
vortex QDs, it is replaced by Nth(S) ∼ S6]. Another
feature predicted by the analytical approach and con-
firmed numerically is the effect of the structural instabil-
ity of the multiple vortices, with S > 1: while the vortex
QD as a whole remains stable, small perturbations, with
their own intrinsic vorticities s = +1 and s = −1, split
the pivot of the multiple vortex in a set of unitary ones,
with the number of secondary pivots being, respectively,
S or S + 2. The split pivots stay close to each other,
without initiating the growth of a dynamical instability.
Estimates for experimentally relevant parameters of the
predicted stable modes, along with analysis an effect of
cubic loss, which may also be an experimentally relevant
factor, are given in Sec. V. Collisions between QDs, as
well as dynamics of elliptically deformed ones, are briefly
addressed in Sec. VI. The paper is concluded by Sec.
VII.

II. THE MODEL

The binary BEC in 3D is governed by the GPE sys-
tem with the cubic terms, supplemented by the above-
mentioned LHY-induced quartic self-repulsion [21]. For
the quasi-2D BEC, strongly confined in the transverse
direction, the GPE-LHY system reduces to a 2D form
[21], which essentially simplifies for modes with lateral
size l ≫ √

a±a⊥, where a± and a⊥ are, respectively,
the self-repulsion scattering lengths of each component,
and the transverse-confinement length [16]. This condi-
tion definitely holds for values relevant to the current
experiments, l ∼ 10 µm, a± ∼ 3 nm, a⊥ . 1 µm
[32, 34, 35], leading to the reduced 2D system for scaled
wave functions ψ± of the two components [16, 21], with
coordinates and time additionally rescaled by (x, y) →
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(g/2
√
π) (x, y) , t→

(

g2/4π
)

t:

i
∂ψ±

∂t
= −1

2
∇2ψ± +

4π

g
(|ψ±|2 − |ψ∓|2)ψ±

+
(

|ψ+|2 + |ψ−|2
)

ψ± ln(|ψ+|2 + |ψ−|2)− iL3|ψ±|4ψ±,

(1)

where g > 0 is the coupling constant, and the symmetry
between the components is assumed, a+ = a−. In the
experimental situation, the latter condition holds only
approximately (in particular, in the setting reported in
Ref. [32], the relative difference between a+ and a− is
≃ 20% at magnetic fields close to 55.5 G). Here, we focus
on the symmetric system as the simplest one which may
be close enough to the experiment (cf. Refs. [20] and
[21]), while the detailed analysis of the asymmetric sys-
tem should be a subject for a separate work. Further, L3

in Eq. (1) is the scaled rate of three-body losses, which
should be taken into account in the realistic situation
[32, 34, 35].
For symmetric states with

ψ+ = ψ− ≡ ψ/
√
2, (2)

system (1) admits reduction to a single equation,

i
∂ψ

∂t
= −1

2
∇2ψ + |ψ|2ψ ln(|ψ|2)− i

L3

4
|ψ|4ψ. (3)

The symmetric states are characterized by the total
norm, N =

∫ ∫

|ψ(r)|2dxdy (it is subject to slow decay
under the action of the loss, if the latter is present). In
the case of L3 = 0, the Hamiltonian (energy) correspond-
ing to Eq. (3) is

E =
1

2

∫ ∫
[

|∇ψ|2 + |ψ|4 ln
( |ψ|2√

e

)]

dxdy (4)

(e is the base of natural logarithms). Equation (3) with
L4 = 0 also conserves the linear and angular momenta:
P = i

∫ ∫

ψ∗∇ψdxdy, and

M = i

∫ ∫

ψ∗

(

y
∂ψ

∂x
− x

∂ψ

∂y

)

dxdy ≡ i

∫ ∫

ψ∗ ∂ψ

∂θ
dxdy,

(5)
where ∗ stands for the complex conjugation, and (r, θ) is
the set of the polar coordinates in the (x, y) plane.
Our first objective is to construct 2D self-trapped

modes with embedded vorticity, and explore their sta-
bility, in the lossless model with L3 = 0 (previously, only
zero-vorticity 2D solutions, whose stability is obvious,
were addressed in the context of the QD models [21]);
then, the effect of the three-body loss will be considered.
This objective is relevant as the droplets created in re-
cent works [32, 34] feature a strongly oblate form, with
the ratio of the radial and transverse sizes & 10.
QD solutions to Eq. (3), with vorticities S = 0, 1, 2, ...

, are looked for, in the polar coordinates, as

ψ(r, t) = φ(r) exp (−iµt+ iSθ) , (6)

where µ < 0 is a chemical potential, and real amplitude
function φ(r) obeys a radial equation (with L3 = 0),

µφ = −1

2

(

d2φ

dr2
+

1

r

dφ

dr
− S2

r2
φ

)

+ φ3 ln
(

φ2
)

. (7)

Note that, as it follows from Eq. (5), the angular momen-
tum of QD (6) (its “spin momentum”) is proportional to
its integral norm,

Mspin = SN. (8)

The same equation (7) describes the radial structure of
two-component QDs with hidden vorticity (HV), in the
form of ψ±(r, t) = φ(r) exp (−iµt± iSθ) [53], although
their stability is completely different, as shown below,
and their total angular momentum is zero (hence the
name of “hidden vorticity”).
Localized solutions of Eq. (7) with fixed N and S were

obtained by means of the imaginary-time-integration
method (which may work for vortex configurations as
well as for ground states [54, 55]), applied to Eq. (3) with
L3 = 0 and input φ0(r) = CrS exp(−αr2 + iSθ), α > 0.
The stability of the stationary modes was analyzed by
means of the linearized Bogoliubov - de Gennes (BdG)
equations [1, 2] for perturbed wave functions, taken as

ψ± =
[

φ±(r) + w±e
−iΛt+imθ + v∗±e

iΛ∗t−imθ
]

e−iµt+iSθ,

(9)
where w± and v± are perturbation eigenmodes with inte-
ger azimuthal index m, and the imaginary part of eigen-
value Λ determines the instability growth rate, if any
(see, e.g., Ref. [56]). Note that perturbations which
break the symmetry of the underlying states [see Eq. (2)]
are admitted by Eq. (9). The system of BdG equations
was derived in a straightforward manner, by the substi-
tution of perturbed wave functions (9) in Eq. (1) and
subsequent linearization. Numerical solution of the lin-
earized equations produces a spectrum of eigenfrequen-
cies Λ, the stability condition being that they all must
be real. The so predicted (in)stability was then veri-
fied by direct simulations of the perturbed evolution in
the framework of Eq. (1), again admitting perturbations
which may break the symmetry relation imposed by Eq.
(2).

III. RESULTS

A. Zero-vorticity solitons and the flat-top state

The analysis demonstrates that all the QDs with S =
0, which represent the ground state of the system, are
stable. Similar to the situation with 1D QDs [60], they
feature quasi-Gaussian and flat-top shapes at relatively
small and larger norms (N < 48 and N > 48, respec-
tively), as shown in Fig. 1. Their effective area,

A ≡
[
∫

|φ(r)|4dr
]−1 (∫

|φ(r)|2dr
)2

, (10)
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FIG. 1: (a) Cross-sections of density patterns |φ(r)|2 for the QDs of the flat-top type with S = 0 (the system’s ground state)
and norms N = 100 (solid curve), 400 (dot curve), and 800 (dash curve). (b) Cross-sections of density patterns |φ(r)|2 for the
QDs of the Gaussian type with S = 0 (the system’s ground state) and norms N = 10 (dash curve), 25 (dot curve), and 48
(solid curve). (c) The effective area (10) for QDs with embedded vorticities S = 0 (solid line) ,1 (short dash line),2 (dot line),3

(dash-dot line), vs. N . The long dashed line represents the TF prediction, A = N/n
(TF)
p for S = 0, see Eq. (11). (d1,d2) The

largest (peak) local density, |φp|2 ≡ np [dash-dot curve in panel (d1)], and chemical potential µ [dash-dot curve in penal (d2)]

vs. N . Solid lines in these two panels show the TF limit values, n
(TF)
p = 1/

√
e and µTF = −1/ (2

√
e), see Eqs. (13) and (14),

respectively. The rhombus in panel (d1) designates the border between the QD profiles of the Gaussian and flat-top types.

is displayed, as a function of norm N , along with the
peak local density, |ψ (r = 0) |2, and chemical potential
µ, in Fig. 1. The border between the quasi-Gaussian
and flat-top shapes [designated by the the red rhombus
at N = 48 in Fig. 1(d1)] corresponds to the maximum of
the peak density. In this and other figures,the length and
time units correspond to ∼ 1 µm and ∼ 1 ms respectively,
with N = 100 corresponding to ∼ 5000 atoms, in terms
of the 39K condensate [32, 34]. Note that the µ(N) curve
satisfies the necessary stability condition in the form of
the Vakhitov-Kolokolov criterion [4, 5, 57], dµ/dN < 0.

The flat-top structure of fundamental and vortical soli-
tons (for norms which are not too small) is demonstrated
by models which include competing self-attraction and
repulsion terms, such as the nonlinear Schrödinger equa-
tions with cubic-quintic [7, 8, 58, 59], cubic-quartic [51]
and quadratic-cubic [60] nonlinearities. This feature is
demonstrated by the solitons in one [58–61], two [7, 8]
and three [51] dimensions alike. However, in the present
system the reason is different, as Eq. (7) includes a sin-
gle nonlinear term, φ3 ln

(

φ2
)

. This term switches its
sign from attraction to repulsion due to the reversal of
the sign of ln

(

φ2
)

as its argument changes from φ2 < 1

to φ2 > 1. This mechanism arrests the critical collapse

[4, 5] in the present 2D system, driven by the cubic self-

attraction, and, thus, it suggests the possibility of the
existence of stable solitons.
The flat-top states may be analyzed, first, by means of

the Thomas-Fermi (TF) approximation, which neglects
the derivatives in Eq. (7) with S = 0. The respective
energy density of the flat field, which carries the peak
(largest) density, np ≡ |φp|2, of the QD profile [see Fig.
1(a)] is ǫ(np) = n2

p ln(np/
√
e), as per Eq. (4). With area

A ≈ N/np (11)

of the flat-top QD, its bulk energy, which dominates the
total energy (4), is

Ebulk ≈ Aǫ(np) = Nnp ln(np/
√
e). (12)

Then, np is determined by the minimization of the energy
for the given norm: dE/dnp = 0, yielding

n(TF)
p = 1/

√
e ≈ 0.6065, (13)

which is very close to the numerically found values, see
Fig. 1(c) [and Fig. 3(b1) below]. The respective chemical
potential is

µTF = n(TF)
p ln(n(TF)

p ) = −1/
(

2
√
e
)

≈ −0.3033, (14)
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in agreement with numerical data displayed in Figs.
1(d2) and 3(b2).
The same results for the peak density and chemical po-

tential can also be obtained in a different way. Indeed, for
broad flat-top QDs, radial equation (7) becomes quasi-
one-dimensional,

µφ = −1

2

d2φ

dr2
+ φ3 ln

(

φ2
)

. (15)

The respective formal Hamiltonian, which remains con-
stant in the course of the spatial evolution of the field
along r, is

h =
µ

2
φ2 +

1

4

(

dφ

dr

)2

− 1

4
φ4 ln

(

φ2√
e

)

. (16)

For localized QDs with φ(r = ∞) = 0, one should set h =
0 in Eq. (16). Finally, in the limit of very broad QDs the
derivative terms in Eqs. (15) and (16) may be dropped,
which yields an algebraic system, µ = φ2 ln

(

φ2
)

, µ =

(1/2)φ2 ln
(

φ2/
√
e
)

. A solution of this system is identical
to the values given by Eqs. (13) and (14).

B. Vortex solitons

1. The shape

Typical examples of numerically found vortex QDs
with N = 1000 are displayed in Figs. 2(a,b), which
shows that they are flat-top rings, with inner and outer
radii growing with the increase of S. The inner radius
can be roughly predicted using the TF approximation
(which may be relevant for vortices [66]), applied to Eq.
(7). This yields either φ = 0 or

µ− φ2 ln
(

φ2
)

=
S2

2r2
. (17)

Equation (17) shows that φ(r) keeps decreasing, following
the decrease of r towards r = 0, up to φmin = 1/

√
e.

Substituting here φ = φmin and µ = µTF from Eq. (14),
we find that φ = φmin is attained at

rmin =

√

e/(2−
√
e)S ≈ 2.8S. (18)

At r < rmin, the TF solution given by Eq. (17) cannot
be used, hence it jumps to φ = 0. Thus, rmin can be used
as an estimate for the radius of the inner “hole” of the
vortex soliton.
The area of the vortex QDs, defined as per Eq. (10),

is shown, as a function of N , in Fig. 1(c), which implies
that it is well estimated, as above, by relation A =

√
eN ,

that directly follows from Eqs. (11) and (13). Further,
Figs. 2 and 3(a1) demonstrates that the vortex’ internal
radius grows quasi-linearly with S and does not depend
on N , as predicted by Eq. (18), the numerically found
values of the radius being relatively close to those given

by Eq. (18). Figures 3(b1,b2) demonstrate that, with the
increase of N , the peak density of vortex rings quickly
tends to the TF limit value given by Eq. (13), while the
chemical potential approaches the respective limit, given
by Eq. (14), much slower, due to the contribution of the
vorticity.

2. Dynamical stability: numerical results and analytical

estimates

To address the stability of the vortices, we first note
that, if they are shaped as relatively narrow annuli (see
Fig. 2), it is possible to produce an estimate based on
the consideration of the azimuthal modulational instabil-
ity (MI) in the 1D reduction of Eq. (1) for the narrow
ring; we stress that this consideration admits perturba-
tions violating the equality between the components, see
Eq. (2). The result is that MI does not occur if the

density is large enough, n ≡ |ψ|2 > 1/e ≈ 0.6 n
(TF)
p .

Coupling constant g from Eq. (1) does not appear in
this condition, suggesting that the full stability may be
insensitive to g. For the HV states the analysis produces
a more restrictive condition for the absence of MI, which
includes g:

(

n− πgS2/R2
)

ln (en) > (2πS/R)
2
, where R

is the ring’s radius, suggesting that HV modes are more
prone to instability, depending on the value of g. These
qualitative predictions are confirmed by numerical results
reported below.
Data produced by the numerical solution of the lin-

earized equations for eigenmodes of small perturbations,
and fully confirmed by direct simulations of the per-
turbed evolution (not shown here in detail), reveal that
vortex QDs in the system without the three-body loss
exist above a minimum value of the norm, N > Nmin

[which is not surprising, as, in the framework of the cu-
bic GPE, (unstable) 2D solitons with each value of S
exist at a single value of N [4, 5]], and they are stable
above a certain threshold value, i.e., atN > Nth > Nmin,
see Fig. 3(a2), which shows that Nth steeply grows with
S. As a result, stable vortices were found up to S = 5,
but not for S ≥ 6. In this connection, it is relevant to
mention that the recent analysis of the three-dimensional
QD model has revealed stability solely for S = 1 and 2,
with an extremely large Nth(S = 2) [51]. In addition to
Fig. 3(a2), numerically exact values of Nmin and Nth are
collected in Table 1.
S 1 2 3 4 5
Nmin 25 100 260 340 450
Nth 60 200 510 1380 3550

Table 1: numerically exact values of lower boundaries in terms

of the norm, necessary for the existence (Nmin) and stability

(Nth) of vortex QDs with winding number S. The same data

are displayed graphically in Fig. 3(a2).

In the interval of Nmin < N < Nth, unstable vortices
with winding number S split, typically, into S + 1 frag-
ments, see an example for S = 1 (splitting into a pair
of fragments, each being, approximately. a zero-vorticity
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FIG. 2: Panels (a1)-(a4) display density patterns of vortex QDs with S = 1,2, 3, 4 and norm N = 1000. The first three QDs
are stable, while the one corresponding to S = 4 is not, see Fig. 3(a2). (b) Cross-sections of the density patterns from panels
(a1)-(a4) (dot, dash, dash-dot, and solid curves represent S = 1, 2, 3, and 4, respectively). (c) The same as in (b), for S = 1
and different values of N (solid, dot and dash curves represent N = 300, 700, and 1000, respectively). All vortex QDs shown
in (c) are stable.

FIG. 3: (a1) The numerically found radius of the vortex’ inner hole vs. S [each point corresponds to Nth(S) in panel (a2)],
the dashed line showing the prediction given by the TF approximation, according to Eq. (18). (a2) Minimum norms, Nmin,
necessary for the existence of the vortex QDs (circles), and threshold values of the norm necessary for their stability, Nth

(triangles), vs S. The dashed curve shows the fit to analytically predicted scaling (24), Nth = 6S4. Numerically exact values
of Nmin(S) and Nth(S) are additionally produced in Table 1. (b1,b2) The peak density and chemical potential of QDs with
different vorticities, vs. N (dash-dot, dash, and solid curves represent S = 1, 3, and 5, respectively ). Horizontal dot lines

show the TF-predicted limit values n
(TF)
p and µTF, see Eqs. (13) and (14), respectively. (c) The evolution of an unstable QD

with (N,S) = (30, 1). The inset shows the respective spectrum of stability eigenvalues Λ. The above panels pertain to L3 = 0
(no three-body loss). (d) The evolution of the density pattern of the QD with S = 1 and initial norm N = 1000, produced by
simulations of Eq. (3) with L3 = 0.01, starting from t = 0 (d1). Other plots pertain to t = 464 (d2), 1584 (d3), 3008 and 3120
(d4,d5).

soliton) in Fig. 3(c). Splitting is a typical outcome of the
evolution of unstable vortex solitons in previously studied
models [7]-[9], [53].

We stress that, although the full GPE-LHY system
(1) contains coupling constant g, the stability boundary,
Nth(S), does not depend on g (in agreement with the
above-mentioned prediction produced by the azimuthal-
MI analysis), i.e., Nth(S) is determined by the analysis
performed in the framework of Eq. (3), from which g was
scaled out, while perturbations breaking the symmetry

constraint (2), which reduces Eq. (1) to Eq. (3), do not
introduce additional instabilities.

The dependence ofNth on S can be explained by means
of an analytical approximation, based on the energy es-
timate for the vortex QDs of a large radius, R (i.e., with
a large norm, N), cf. a similar estimate for the 3D vor-
tical QDs developed in Ref. [51]. Indeed, the splitting
of the flat-top vortical QD in two or several fundamental
solitons, which also feature the flat-top shape, in the first
approximation does not alter the bulk energy, which is
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proportional to the conserved total norm of the solitons,
as per Eq. (12). Then, the stability against the split-
ting is determined by the balance of three other terms:
the surface energy, Esurf , the vortical (phase-gradient)
energy of the unsplit vortex, Evort, and the kinetic en-
ergy of the splinters, Ekin, which is determined by the
conservation of the angular momentum.
First, taking into regard that radius rmin of the inner

“hole” in the first approximation does not depend on the
outer radius, R, the contribution of the hole’s edge to
Esurf is negligible in comparison with that of the outer
edge, for R ≫ rmin. Thus, one concludes that, in the
simplest case of the splitting of the vortical soliton of
radius R in two fundamental ones [as in Fig. 3(c)], radii
of the splinters are determined by the conservation of the
total norm:

Rsplinter = R/
√
2. (19)

Then, the resultant splitting-induced increase of the sur-
face energy is

∆Esurf = 2πσ
(√

2− 1
)

R, (20)

where σ is an efficient surface tension, which is a fixed
constant for flat-top solitons with the fixed density, close
to one given by Eq. (13).
The vortical-energy term in total Hamiltonian (4) may

be readily estimated as

Evort = π

∫ ∞

0

∣

∣

∣

∣

∂ψ

∂θ

∣

∣

∣

∣

2
dr

r
≈ πS2np ln

(

R

rmin

)

. (21)

Lastly, assuming that the two splinters emerge be-
ing separated by distance equal to their diameter, i.e.,
2Rsplinter =

√
2R, pursuant to Eq. (19), and they start

to move with velocities ±V in opposite directions, V can
be estimated by equating the respective orbital momen-
tum, Morbit =

√
2RVN (the soliton’s dynamical mass is

equal to its norm) to the original “spin” momentum (8):

V = S/
(√

2R
)

. Thus, the kinetic energy of the emerging
soliton pair is

Ekin =
1

2
NV 2 ≡ π

4
npS

2, (22)

where the norm was substituted by

N = πR2np, (23)

as per Eq. (11). Analyzing the energy balance for the
possible splitting of the vortex solitons with large R, in
the lowest approximation one may neglectR-independent
term (22) in comparison with those given by Eqs. (20)
and (21), which are growing functions of R.
Thus, the stability against the splitting may be pre-

dicted for (large) values of R at which, for given (suf-
ficiently large) S, the splitting-induced increase of the
surface energy, estimated by Eq. (20), exceeds the en-
ergy drop due to the disappearance of the vortical energy,

FIG. 4: Panels (a1)-(a4) display density patterns of vortex
QDs with S = 1,2,3 and 4 and norms N = 60, 200, 510
and 1380, respectively, which are selected from the stability
boundary of the QDs, see Fig. 3(a2). (b) Cross-sections of
the density patterns from panels (a1)-(a4).

which is given by Eq. (21): ∆Esurf(R) ≥ Evort(R). Sub-
stituting here expressions (20) and (21), and taking into
regard that ln (R/rmin) is a slowly varying function of its
argument, the stability boundary (threshold value of the
norm) corresponds to the following scaling relation:

N ≥ Nth ≃ const · S4, (24)

where Eq. (23) was used to eliminate R in favor of N .
As shown in Fig. (3(a2), Eq. (24), with a properly ad-
justed value of const, provides quite an accurate fit to
the numerically found dependence Nth(S). It is wor-
thy to mention that this consideration is quite general,
and the asymptotic scaling given by Eq. (24) should
apply to other 2D models which support stable vortex
solitons with the flat-top shape. For three-dimensional
QDs with embedded vorticity, a similar approximation,
which extends that developed in Ref. [51] for S = 1,

yields N
(3D)
th ≃ const · S6. This very steep dependence

explains why the stability for three-dimensional vortex
QDs was found only for S = 1, and also for S = 2 with
extremely large values of N , but not for S > 2.
Profiles of vortex QDs with S = 1, 2, 3, 4, selected pre-

cisely at the stability boundary, are displayed in Fig. 4.
It is observed that their shape indeed develops towards
the flat-top pattern with the increase of S, cf. typical
patterns of the vortex states found in the depth of the
stability area, which are displayed in Fig. 2 [except for
the state with S = 4 in Figs. 2(a,b), which is still unsta-
ble, as its norm falls slightly below Nth(S = 4)].

3. Structural instability of higher-order vortex solitons

While, as shown above, solutions for QDs with mul-
tiple vorticity, up to S = 5, can be easily found as sta-
ble ones, that are actually very robust against relatively
strong perturbations, it is relevant to mention that all the
higher-order vortices, with S > 1, demonstrate structural
instability, which implies that a specially selected small
perturbation, without causing any dynamical instability,
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may split the pivot of the S-multiple vortex into sets of
S or S + 2 pivots corresponding to unitary vortices, al-
though the splitting remains almost invisible, as it occurs
in the broad central “hole” induced by the multiple vor-
ticity, where values of the wave fields remain extremely
small. In fact, this structural instability is not specific to
the current model, but is quite a generic effect, therefore
we aim to briefly present it here in an explicit form.
In a small vicinity of the pivot of a multiple vortex

with S ≥ 2, placed at the origin (x = y = 0), a small
disturbance with relative amplitude −ε (generally, a com-
plex one), which carries vorticity s = 1, may be added,
producing a perturbed configuration,

ψpert (x, y) ≈ (x+ iy)S − ε (x+ iy) (25)

≡ (x+ iy)
[

(x+ iy)
S−1 − ε

]

.

Pivots of individual (unitary) vortices, into which the
small disturbance splits the multiple vortex, are zeros of
|ψpert (x, y)|. As seen from Eq. (9), these are points

x
(1)
piv = y

(1)
piv = 0, (26)

and (S − 1) additional points, determined as (S − 1)
branches of the root of degree 1/ (S − 1):

x
(1+j)
piv + iy

(1+j)
piv = ε1/(S−1), (27)

where j takes values 1, ..., S − 1.
Another possibility is to consider a small disturbance

with vorticity s = −1 (rather than +1, as considered
above):

ψpert (x, y) = (x+ iy)
S − ε (x− iy) . (28)

In this case, the pivots are located at points defined by

equation (x+ iy)
S
= ε (x− iy), i.e., (x+ iy)

S+1
= εr2.

After simple manipulations, the latter equation yields a
set of S + 2 pivots:

x
(k)
piv + iy

(k)
piv = ε1/(S+1) |ε|2/(S

2−1) , (29)

where k takes values 1, ..., S + 1, plus the central pivot
defined by Eq. (26).
These simple arguments were verified by direct sim-

ulations, as shown in Fig. 5. Strong magnification of
numerical data in the nearly empty area of the central
“hole” precisely confirms the splitting of the S-multiple
pivot into S or S+2 sets of unitary-vortex pivots, under
the action of the small initial perturbation with its own
vorticity s = +1 or s = −1, respectively. Note that the
original vortex with S = 1 is not subject to the split-
ting in either case. It is also relevant to stress that the
splitting remains virtually invisible on the normal scale
of |ψ (x, y)|, hence it does not imply any conspicuous in-
stability of the solitons carrying the multiple vorticity.

FIG. 5: (a) A zoom (in domain |x, y| ≤ 8) of the density
pattern, |ψ (x, y)|2, for a QD with (S,N) = (3, 1000), which
was initially perturbed as per Eq. (26), with s = +1 and
ε = 0.0013 + 0.0023i. The pattern is produced by the sim-
ulation of Eq. (3) up to t = 5000. (b) The corresponding
phase pattern clearly identifies three unitary vortices, whose
pivots are located at zeros of the local amplitude. (c) and (d):
The same as in (a) and (b), but with the initial perturbation
carrying vorticity s = −1, as per Eq. (28). In this case, the
amplitude and phase patterns demonstrate splitting into a
set of five pivots: one with winding number −1 located in the
middle, surrounded by four satellites with winding numbers
+1. Note the extremely small scale of the local amplitude,
|ψ (x, y)| ∼ 10−7 in (a) and (c). On the normal scale, such as
one in Figs. 2 and 4, these splitting patterns remain invisible.

C. Hidden-vorticity (HV) modes

On the contrary to the modes with explicit vorticity,
the stability of those carrying the HV, viz.,

S+ = −S− = 1, (30)

strongly depends on interaction constant g in Eq. (1),
making it necessary to the use the full system, given by
Eq. (1), for the identification of the corresponding sta-
bility area, see Fig. 6(a). As a result, it is found that the
stability is restricted to sufficiently large values of g, viz.,

4π/g < 0.13, (31)

and to values of the norm which are bounded both from
above and below:

N
(low)
th < N < N

(upp)
th , (32)

with N
(low)
th ≈ 112 being nearly constant in almost entire

interval (31), as seen in the inset to Fig. 6(a). However,
at extremely large values of g, namely, 2π/g . 10−3,

N
(low)
th drops from 112 to 60. Note that the latter value

exactly coincides with the stability boundary, Nth, for
the corresponding state with the explicit vorticity, S+ =
S− = 1 [cf. Eq. (30)], as seen in Table 1. Further,
Fig. 6(a) identifies an optimum value of the coupling
constant, g ≈ 114, at which the stability region of the
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FIG. 6: (a) The stability area of HV modes, defined as per
Eq. (30), in the plane of (N, 4π/g), in the model based on
Eq. (1) with L3 = 0. The indigo (medium gray) area is
bounded by the lower and upper limit values, see Eq. (32),

with nearly constant values of N
(low)
th , as seen in the inset.

(b) Density and phase plots showing opposite vorticities of
the two components of a stable HV mode, with (N, 4π/g) =
(8000, 0.11), which corresponds to point A in (a), as a result
of the evolution simulated up to t = 10000.

HV modes extends to extremely large values of the norm.
A typical example of a stable mode, with HV defined as
per Eq. (30), and large N is displayed in Fig. 6(b) for
(N, g) = (8000, 114). A caveat is that the applicability
of the underlying model to so large values of g is not
obvious, but the possibility of the existence of stable HV
states is worth noting (in particular, because such stable
states were not revealed by the recent analysis of three-
dimensional vortex droplets [51]). All higher-order HV
states, with S+ = −S− ≥ 2, were found to be unstable.
Simulations of the perturbed evolution of unstable HV

states (not shown here in detail) demonstrate that vortex
cores in their two components split and start drifting in
different directions, being eventually expelled from the
pattern. The final outcome is, in many cases, merger of
the unstable HV state into a zero-vorticity soliton.

IV. PHYSICAL ESTIMATES

Translating the scaled units into physical ones (in par-
ticular, as per Refs. [32, 34]), we conclude that the pre-
dicted vortex modes may have radial size R up to . 30
µm and transverse thickness. 1 µm, containing 104−105

atoms, with density ∼ 1014 cm−3. The radial size may
be essentially larger than observed in recent experiments
for zero-vorticity oblate droplets [32, 34], as they tend to
swell under the action of the embedded vorticity, as seen
in Figs. 2(a,b) and 2.
To address the role of the three-body loss, we note

that the loss rate in physical units for 39K is ≃ 10−27

cm6/s [67]. With the above-mentioned typical densi-
ties, n ∼ 1014 cm3, this implies the decay time tdecay ≃
10

(

Kn2
)−1 ∼ 1 s, which is t ∼ 1000 in terms of our

scaled notation. Then, the respective estimate for the
scaled loss coefficient is L3 ∼ 0.01. Figure 3(d) displays
the simulated evolution, in the framework of Eq. (3),
of the density pattern for an originally stable vortex QD

with (S,L3) = (1, 0.01) and initial norm N0 = 1000. The
loss gives rise to shrinkage of the QD, which keeps the

flat-top shape, with the fixed density, |ψ|2 ≈ n
(TF)
p , as per

Eq. (13), until the slowly decaying norm drops below the
stability threshold, Nth [see Fig.. 3(a2)], causing quick
spitting of the vortex mode. Similarly, sudden splitting
into S+1 fragments, on the experimentally relevant time
scale, is caused by the loss-induced evolution of originally
stable droplets with S > 1, provided that N0 is not too
large.
The loss-induced shrinkage of the flat-top droplets can

be easily predicted analytically. As follows from the full
equation (3), the total norm decays in time as

dN

dt
=
L3

2

∫ ∫

|ψ|6dxdy. (33)

Further, it follows from here that external radius R of
the flat-top QD with inner density np given by Eq. (13),
which is related to N according to Eq. (23), shrinks in
the course of the loss-induced evolution as

R(t) = R0 exp

(

−L3t

4e

)

, (34)

where R0 is the initial radius, the corresponding decay
law of the norm being

N(t) =

(

π√
e

)

R2
0 exp

(

−L3t

2e

)

. (35)

Predictions produced by Eqs. (34) and (35) are well cor-
roborated by the numerical simulations.
The present analysis is performed in the zero-

temperature limit (the condensation point in the experi-
mentally relevant setting is TBEC ≃ 150 nK [70]). Finite-
T effects for zero-vorticity droplets were recently studied
in Ref. [68], by means of the Hartree-Fock-Bogoliubov-
Popov [69] theory, with a conclusion that the thermal
component forms a halo around the droplets. A similar
prediction is expected for the vortex QDs, with some den-
sity of thermal atoms to be found in the droplet’s inner
hole too. Detailed studies of the finite-T setting should
be a subject for a separate work.

V. INTERACTIONS BETWEEN QUANTUM
DROPLETS AND DYNAMICS OF

ELLIPTICALLY DEFORMED ONES

Collisions between effectively one-dimensional QDs
were recently analyzed in Ref. [60], where both quasi-
elastic interactions and strongly inelastic outcomes, in
the form of merger of colliding QDs, were reported.
These results suggest to simulate collisions in the 2D set-
ting too. Here, we aim to briefly consider this issue, while
a detailed analysis will be a subject of a separate work.
Simulations, performed in the framework of Eq. (3)

with L3 = 0, demonstrate that the interaction between
initially separated fundamental (S = 0) QDs with zero
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phase difference leads, in the lossless model, to their
merger into a single prolate droplet (which is a natu-
ral outcome for the fluid phase), that performs strong
oscillations of eccentricity, as shown in Fig. 7(a1)-(a4).
This excited mode resembles eccentricity oscillations per-
formed by elliptically deformed circular kinks in the 2D
sine-Gordon model [71].
Another option is the merger of two fundamental QDs,

with opposite kicks initially applied to them in the trans-
verse (y) direction (in other words, with torque applied
to the QD pair), as shown in Fig. 7(b1)-(b4). This pair
merges into a rotating prolate droplet. A different dy-
namical regime revealed by the simulations is rotation of
an oval-shaped vortex with embedded vorticity S = ±1,
see Fig. 7(c1)-(c4). The sign of embedded S = +1 or −1
correlates with the counter-clockwise or clockwise direc-
tion of the rotation. The consideration of these rotational
regimes is suggested by recent studies of spinning helium
nanodroplets [72, 73].
Collisions between moving QDs were investigated too.

The conclusions are similar to what is known about
other nonintegrable models [7, 14], including the above-
mentioned model for one-dimensional QDs [60]: fast
moving QDs pass through each other quasi-elastically,
while slowly moving ones collide inelastically (not shown
here). In particular, slowly colliding QDs with S = 0
merge into a single droplet, while slowly colliding vor-
tices suffer destruction.

VI. CONCLUSION

The objective of this work is to investigate possibili-
ties for the creation of effectively two-dimensional self-
trapped QDs (quantum droplets) in the model based on
nonlinearly coupled GPEs (Gross-Pitaevskii equations)
for the binary BEC, with self-repulsion in each compo-
nent and dominating attraction between them, the stabi-
lization against the collapse being provided by the LHY
(Lee-Huang-Yang) effect. As recently demonstrated, the
nonlinearity in such an effective two-dimensional system
takes the form of cubic terms multiplied by the addi-
tional logarithmic factor. We have constructed families of
two-component QDs, with equal vorticities S, or opposite
ones ±S, embedded in each component, the latter species
being called the HV (hidden-vorticity) mode. While the
entire family with S = 0 is stable, an essential finding is
the stability region for the modes with the explicit vortic-
ity (identical in both components), 1 ≤ S ≤ 5 (while the
recent consideration of the vortex QDs in the 3D model
reveals their stability solely for S = 1 and 2 [51]). All the
modes with S ≥ 6 are unstable in the region of norms, N ,
which are accessible for the analysis. Both the existence
and stability boundaries for the vortex QDs have been
identified, respectively, as Nmax(S) and Nth(S). The
steep growth of the latter value, Nth(S) ∼ S4, and a
still steeper scaling, Nth(S) ∼ S6, predicted for three-
dimensional QDs, has been explained analytically, con-

sidering the energy balance between the vortex mode and
a set of fragments which may be produced by its splitting.
At the stability boundary, the modes with S = 1, 2, 3
seem as usual solitons with embedded vorticities, but
deeper into the stability area, all vortex QDs develop
a flat-top shape. While this feature may look similar to
that known in models with competing self-focusing and
defocusing nonlinear terms (e.g., the cubic-quintic NLS
equation in two dimensions), the present system is essen-
tially different, as it contains the single nonlinear term,
∼ |ψ|2ψ ln

(

|ψ|2
)

, as mentioned above.

It was demonstrated here too that pivots of all modes
with multiple vorticities, S ≥ 2, are subject to the struc-
tural instability, in the sense that specially selected small
perturbations may split the single pivot into sets of S or
S + 2 ones representing unitary vortices. However, the
structural instability remains virtually invisible, as it oc-
curs in the broad central “hole” of the multiple-S vor-
tex, where values of the fields are extremely small, and
it does not cause any dynamical instability of the states
with S ≥ 2.

The nearly-constant value of the density in the flat-top
area, and radius rmin of the central “hole” of the vortex
mode (which is asymptotically independent of S) have
been identified in the approximate analytical form, rmin

being found by means of the Thomas-Fermi approxima-
tion. The role of the three-body loss, which may be an
essential factor in the real experiment, was explored too,
showing that it does not preclude the possibility of the
creation and observation of stable vortex droplets (ones
with relatively low initial norms may suddenly split un-
der the action of the loss). The existence and stability
boundaries for the QDs with all values of the explicit
vorticity do not depend on the value of the coupling con-
stant, g, of the GPE system. A possible stability region is
also identified for HV modes, with vorticities +1 and −1
in its two components. Unlike the QDs with the explicit
vorticity, stability of the HV states strongly depends on
g, all states with S+ = −S− ≥ 2 being unstable. More
complex robust dynamical modes were constructed and
briefly considered too, viz., elliptically deformed QDs,
with S = 0 and S = 1, which exhibit, severally, either
strong eccentricity oscillations or steady rotation.

These results may find realizations in the ongoing ex-
periments with QDs, some of which actually address
nearly-2D configurations [32, 34]. This possibility is quite
important as, thus far, no stable bright vortex solitons
have been created experimentally in free space or in any
uniform physical medium. The vorticity may be im-
parted to the QD by a laser beam carrying an orbital op-
tical momentum [74]. The necessary condition for that is
that the droplet’s size must be essentially larger than the
wavelength of light, which definitely holds in the present
setting.

In addition to the vortex states studied in this work,
it may be relevant to address excited 2D states with a
more complex radial structure. It may be also inter-
esting to extend the systematic analysis to asymmetric



11

FIG. 7: (a1)-(a4) Merger of two zero-vorticity QDs into a single droplet with strongly oscillating eccentricity, initiated by
ψ(r, t = 0) = φ(x−x0, y)+φ(x+x0, y), with x0 = 12 and norm N = 100 of each QD. (b1)-(b4) Merger of two transversely kicked
zero-vorticity QDs, with S = 0, into a rotating elongated droplet, initiated by ψ(r, t = 0) = φ(x−x0, y)e

−iky+φ(x+x0, y)e
iky,

with x0 = 12, N = 100, and kick k = 0.015. (c1)-(c4) Steady rotation of an oval-shaped vortex QD with vorticity S = 1 and
N = 200. These results are produced by simulations of Eq. (3) with L3 = 0.

two-component systems, with unequal scattering lengths
accounting for the self-repulsion in the two components,
and/or with unequal atomic masses (heteronuclear mix-
tures [75]), as well as with unequal numbers of atoms
in the two components. In particular, at finite temper-
ature, the imbalance may imitate a controllable thermal
bath [34].
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[4] L. Bergé, Wave collapse in physics: principles and ap-
plications to light and plasma waves, Phys. Rep. 303,
259-370 (1998).

[5] G. Fibich, The Nonlinear Schrödinger Equation: Singu-

lar Solutions and Optical Collapse (Springer: Heidelberg,

2015).
[6] B. A. Malomed, Multidimensional solitons: Well-

established results and novel findings, Eur. Phys. J. Spe-
cial Topics 225, 2507-2532 (2016).

[7] M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal
stationary state in quintic nonlinear media, J. Opt. Soc.
Am. B 14, 2004-2009 (1997).

[8] R. L. Pego and H. A. Warchall, Spectrally stable encap-
sulated vortices for nonlinear Schrödinger equations, J.
Nonlinear Sci. 12, 347-394 (2002).

[9] T. A. Davydova and A. I. Yakimenko, Stable multi-
charged localized optical vortices in cubic-quintic non-
linear media, J. Opt. A: Pure Appl. Opt. 6, S197-S201
(2004).

[10] D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A.
V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and



12

F. Lederer, Stable spinning optical solitons in three di-
mensions, Phys. Rev. Lett. 88, 073902 (2002).

[11] E. L. Falcão-Filho, and C. B. de Araújo, G. Boudebs, H.
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Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A.
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and T. Pfau, Self-bound droplets of a dilute magnetic
quantum liquid, Nature 539, 259-262 (2016).

[40] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler,
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