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Using the analytic time-dependent effective range theory, we study two-color high-order harmonic
generation (HHG) involving a weak extreme ultraviolet (XUV) pulse and an intense infrared laser
field. Our analysis shows that XUV-assisted HHG spectra contain multiple additional plateau
structures originating from absorption of one or more XUV photons at the photorecombination step
of HHG. We show also that the HHG rate corresponding to the nth plateau can be presented in a
factorized form involving the XUV-assisted (multiphoton) photorecombination cross section (PRCS)
corresponding to absorption of n XUV photons of energy 2 and emission of a harmonic of energy
Q. This factorization allows one to extract the PRCS from the HHG spectrum and to retrieve
the cross section of the inverse process: the photoionization cross section involving absorption of
a single photon of energy €2;, and emission of n XUV photons of frequency 2. The analytic HHG
results are in excellent agreement with numerical solutions of the 3D time-dependent Schrodinger

equation.

I. INTRODUCTION

High-order harmonic generation (HHG), produced by
atoms or molecules in a strong infrared (IR) laser field,
has attracted unflagging attention over the past few
decades owing to the potential widespread impact of its
many practical applications, including, e.g., the gener-
ation of coherent soft X-ray radiation [1-3], the pro-
duction of attosecond pulses [4-6], and the detection
and monitoring of ultrafast phenomena [7, 8] (such as,
e.g., light-induced electron tunnelling [5, 6, 9] or nu-
clear motion [10]). The rapidly developing area of HHG-
based spectroscopy [11-13] provides a unique way of ob-
serving the electronic structure of atoms and molecules.
It allows one to obtain single-photon photoionization
cross sections (PICS) [12-19] and to image molecular
orbitals [11, 20-22]. The latter applications are based
on the factorization of HHG rates in terms of a target-
independent electron wave packet (EWP) and a single-
photon photorecombination cross section (PRCS) [14-
16, 23] that is related to the PICS by the principle of de-
tailed balance [24-26]. This factorization is based on the
well-established three-step scenario of HHG in an IR field
involving ionization, electron propagation in the laser
field, and recombination of the laser-accelerated electron
to the initial bound state of the target with emission of
a high-energy photon [27].

The range of HHG applications may be extended by
using a perturbative high-frequency XUV pulse in combi-
nation with a strong IR field. In experiments, the sources
of the external XUV field are either a harmonic generated
by the IR pulse itself [28-30] or the field of a synchronized
free-electron laser (FEL) [31]. The presence of an addi-
tional XUV field significantly increases the number of
possible channels in the HHG process and leads to novel
structures in the HHG spectrum. Enhancement of the
harmonic yield due to XUV-induced resonance-like pop-
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ulation of excited states of the target was investigated
in Refs. [32-35]. Studies of XUV-enhanced HHG on the
single-atom level have been carried out for either an at-
tosecond pulse train [36-39] or an isolated attosecond
pulse [40, 41]. These studies have shown that the XUV
pulse or pulses can be employed to control the ionization
step and to select a specific electron trajectory contribut-
ing to the HHG yield. The addition of a weak XUV field
was shown in Refs. [42, 43] to result in extensions of the
usual IR-field-induced HHG plateau. These plateau ex-
tensions were found to be one-electron phenomena and
were attributed to XUV-field-induced ac-Stark modula-
tions of the ground state and the returning EWP as re-
combination occurs [43]. Studies have also been carried
out concerning the effects of XUV field population of res-
onant excited states from the valence shell of an atom,
such as, e.g., Rabi oscillations [44-46].

If the energy of the XUV photon is large enough, inner-
shell electrons may become involved in the HHG process,
leading to an increase of the HHG plateau cutoff energy
owing to the larger binding energy of core electrons [47—
49]. The addition of an XUV field also leads to an ex-
tension of HHG spectroscopy methods that enable one to
obtain information about inner-electron dynamics. Such
extensions have been carried out to study Auger pro-
cesses [50, 51] and effects of resonant XUV-induced core-
valence shell transitions [52].

Most studies cited above are focused on the HHG chan-
nel involving absorption of an XUV photon during the
initial (ionization) step of the three-step HHG scenario.
However, even in the single-active-electron approxima-
tion, there exist other channels for XUV-assisted HHG
that remain so far insufficiently explored. Some of these
additional channels may be ignored. Indeed, if the XUV
photon is emitted at the ionization step, it effectively in-
creases the ionization energy of an intermediate (virtual)
state of the target thereby suppressing IR-tunneling from



a1 this virtual state [53]. Clearly that reduces the contribu-
& tion of this channel to the HHG process. If interaction
with the XUV field happens during the propagation step,
& then it induces multiple rescattering of the active elec-
& tron, which, although important for low-energy harmon-
ics, is negligible for the high-energy part of the harmonic
spectrum [54, 55]. Finally, the interaction with an XUV
s photon may be taken into account during the recombina-
tion step of HHG. In this case, emission of an XUV pho-
% ton leads to a shortening of the high-energy plateau and
o1 hence the contribution of this channel is always masked
e by the contribution of the direct (XUV-free) IR chan-
o3 nel. However, absorption of an XUV photon during the
o recombination step leads to an extension of the HHG
plateau [55].
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o6 In this paper, we focus on XUV-assisted HHG pro-
cesses involving this latter channel. When an XUV pulse
of frequency (2 is added to a strong IR field, multiplateau
structures are formed in the HHG spectrum [42, 43].
We show that the nth additional plateau is associated
with the absorption of n XUV photons at the recombi-
nation step. We also show that the harmonic rate on the
nth plateau is proportional to the PRCS with simulta-
neous absorption of n XUV photons of frequency 2 and
emission of a single photon having the higher frequency
Qp =nQ+ E, + I, where I, is the returning electron’s
kinetic energy and I, is the ionization potential of the
atom from which the active electron originated. [Atomic
units (a.u.) are used throughout this paper, unless spec-
ified otherwise.] Finally, we show that the HHG rate in
this channel can be presented in a factorized form in-
volving the XUV-free EWP and the XUV-assisted (mul-
tiphoton) PRCS. This factorization allows one to extract
the corresponding PRCS from the HHG spectrum and to
find the cross section of the inverse process, i.e., the PICS
involving absorption of a single photon of frequency
and emission of n XUV photons of frequency ().
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us  This paper is organized as follows: In Sec. II we dis-
cuss time-dependent effective range (TDER) results for
the HHG amplitude in a strong IR field and a weak XUV
field. We also extend our model TDER results to the
case of a neutral atomic system. In Sec. III we present
a comparison of our analytic TDER results for XUV-
assisted HHG with results obtained by numerical solution
of the 3D time-dependent Schrédinger equation (TDSE).
We also present the procedure for retrieving multipho-
ton atomic PRCSs from the XUV-assisted HHG spec-
tra. Our main results are summarized in Sec. IV and
we discuss there the possibility of experimentally mea-
suring the multiphoton PRCSs. Finally, in Appendix A
we present a detailed derivation of the factorized result
for the XUV-assisted HHG amplitude within the TDER
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II. THEORETICAL ANALYSIS

A. TDER Theory Results for the XUV-Assisted
HHG Amplitude

We consider the dipole interaction of an atomic system
with linearly polarized IR and XUV fields,
F(t) = 2 [F cos(wt) + Fq cos(Q)], (1)
where F, w and Fo, Q = kw (k is an integer, k > 1)
are the field strengths and frequencies of the IR and
XUV components, respectively. We assume the inter-
action of the atomic system with the IR field is real-
ized in the tunneling regime (i.e., the Keldysh parame-
ter v = kw/F <« 1, k = y/21,), while the interaction
with the XUV field may be treated in the perturbative
regime (vq = K€/ Fq > 1). In order to describe the in-
teraction of an atom with a two-color field (1), we use
the TDER, approach [56, 57]. General prescriptions for
obtaining the analytical [beyond the strong field approx-
imation (SFA)] result for the HHG amplitude within the
TDER approach have been presented in Ref. [23]. Here
we omit calculations which are specific to the TDER the-
ory (see Appendix A for details) and proceed directly to
the general results. Since the XUV field is weak, we ex-
pand the exact HHG amplitude in a series in Fg, while
keeping the nonperturbative contribution of the IR field.
The zero-order in the XUV field result for the the HHG
amplitude has the well-known factorized form [14-16, 23,
58]:

A Q) = a(Bo) £ (Eo),

rec

Eo=Qn—1, (2

where Fj is the returning electron’s energy and 2 is
the harmonic energy. The laser-induced factor a(FEy),
which describes the tunneling and propagation steps of
the three-step scenario, has the form,

T t
/ / dr' <
0 —00

where S(t,t') is the classical action for the active electron,
which moves along a closed trajectory in the IR field with
starting and ending times ¢’ and ¢, respectively:

i(Bo+1p)t—iS(t,t")

a(Ep) = G=0pE

(3)

t

St,t)y=1,(t—t)+ %/Pg(T;t,t/)dT,

t

(4)

t
1 1
PQ(T;t7t/) = E Ao(T) — m /AO(T/)dT/ ,

t

F
Ay(t) = —e,c—sin(wt).
w

approach, including the explicit form of the TDER result ¢ The recombination amplitude, £ (EO) is the amphtude

for a dipole transition from the continuum state w



wo (satisfying outgoing wave asymptotic boundary condi-
m tions, with kg = koz) to the bound state o (r):

FO(Eo) = (olzlul), Eo = k3/2.

12 For the case of an atomic system with a single bound
173 s-state, we have

Ll
7R

FO (Eo) = —iv/mrCo (5)

17 where Cp is the dimensionless asymptotic coefficient of
175 the field-free wave function in a short-range potential:

K e—K/T‘
Vo(r)| sy = Coy/ - H=+2L. (6)

s The HHG rate is given by the product of the EWP,
wr W(Ep), and the PRCS, o9 (Ey) [14-16, 23, 58],

QB
RO (@) = -5 A0 ()2 = W (Eo)o ) (Eo),  (7)

178
where

27TC3 ko
In the first order in Fg, the partial HHG amplitude
180 with absorption of an XUV photon at the recombination

1 step, A1 (), can be also presented in a factorized form
(for details, see Appendix A):

AW(Q) = Foa(By) £ (B,

W (Eo) = kola(Eo)?, o (Ep)

179

1i

©

182

9)
183 where Iy = Qp, — Q) — I, is the returning electron energy

1w and Fo fr(clc) (E7) is the amplitude for electron recombi-
nation (assisted by absorption of an XUV-photon) with
186 spontaneous emission of a photon having linear polariza-

17 tion along the z-axis. The matrix element fr(clc) (E7) can
188 be expressed in terms of the atomic Green function Gg:

fO(E) = <1/)0|ZGE1+QZ|1/)1(:)>
+<¢0|2GE1—Q,LZ|¢S)>,

1w where By = k?/2, k; = k2. For the case of an initial s-
100 state 1o(r), the dipole matrix element has the form [59]:

185

(10)

2
(1) E) = _\/WKCO kl 1
Tree(En) a0, \oo, T —a
1 K4k RSk} — ik — kg 1
Ro(E1) | —Q 300, (1)
101 where

k1 =/ 2E1, ko = \/Q(El +Q),
th = \/Q(El — Qh),

102 and Ro(FE) is defined by the s-wave scattering phase,
193 50(E):

(12)

Ro(E) = V2E|cot 6o (E) — i]. (13)

e We emphasize that the laser factor a(F;) has the same
s form as for the XUV-free case [see Eq. (3)], while, for the
ws same harmonic energy €1, the returning electron energy,
17 F, is shifted by the energy of the XUV photon from Ej.
w5 Although both amplitudes A (Q;,) and A™M (€,) con-
199 tribute to the total HHG amplitude, their contributions
are significant in two different energy ranges in €. In-

deed, A©) () contributes in the range Q, < Q)
1.3241,+ 3.17u, [where u, = F?/(4w?)] in which plateau
effects induced by the IR field are prominent; in this en-
ergy range [A©(Qy)| > [AD(Qy)]. For Q; > Qgg)t,
the amplitude A (Q;,) rapidly decreases, while A (€,)
oscillates with a smooth amplitude and gives the major

contribution. Thus, for 2, > Qgg)t, the contribution from

all other channels can be neglected and the HHG rate,
R = R(Q4), is given by the amplitude A™M (Qy,):

200

~
~

201
202
203

20:

b~

205
206
207
208

209

03
R~ RO () = AN (@)

=W(EN)eW(Er), W(E)=kla(E)f, (14)
where o(!) is the XUV-assisted PRCS with absorption of

a single XUV photon:

210

21

=

Q053

(1) —
o (E) 2k

[ (B)P2. (15)
The EWPs W(Ey,1) in Egs. (8) and (14) can be an-
alytically estimated for those energies at which only
one or two closed electron trajectories contribute signifi-
cantly [16, 58] (i.e., near the caustic energies [60-62]),

21

o

21

@

214

21

o

W(E) =Z(F,w)W(E), (16)

216 where the factors on the right side are defined as follows:
The donization factor, Z(F,w), is proportional to the
detachment rate in the “effective” static electric field [63],

217

218

472 ~
I(F,w) = — Lot (F), (17)
~ F _ 283
Lo (F) Ipcgﬁe 3F (18)

20 where F' &~ 0.95F is the instantaneous electric field (at
20 the moment of ionization) and ¥ = wﬁ/ﬁ is the corre-
2z sponding “effective” Keldysh parameter.

22 The propagation factor, W(E,), can be written in
23 terms of the Airy function Ai(¢):

\/E(CSF2)72/3 Ai® (C)

W(E,) = o a9)
En - Emax
C = Wu = 07 17

24 where At ~ 0.657 is the electron travel time in the laser
25 field, Eyax =~ 3.17up + 0.3241, is the maximum energy
26 gained, and § = 0.536.
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B. Generalization of the TDER Results to Real
Atomic Systems

Although our analytical TDER results are truly valid
for the case of a short-range potential supporting only a
single bound state [cf. Eq. (6)], they cannot be directly
applied for the case of a neutral or positively-charged sys-
tem involving the long-range Coulomb interaction of the
active (valence) electron with the core. However, based
on a quasiclassical analysis [64], it was argued that in
HHG the Coulomb field primarily affects the ionization
step, enhancing it by a few orders of magnitude [65, 66],
while its effect on the electron’s propagation in a strong
laser field is only a slight perturbation. We thus intro-
duce a Coulomb correction in accord with Ref. [64], which
in fact consists in the replacement of the detachment rate
in Eq. (16) by the corresponding atomic ionization rate:

23

- <?)2VW(EW), (20)

W(E,) — Wat(Ey)
where v = Z/k is an effective quantum number and Z is
the charge of the atomic core. The factorization proposed
in Egs. (7) and (14) requires also the replacement of the
TDER XUV-assisted PRCS by the corresponding atomic

counterpart: o™ (E,,) — ogtl) (En),n=0,1. As a result,

we obtain:
R () = War(En)ol (). (21)
III. RESULTS AND DISCUSSION

A. Numerical results

In order to check the accuracy of our analytical re-
sults, we first compare the HHG rate calculated using
the analytic Eq. (14) with first-order in XUV TDER re-
sults [55]. Calculations were done for an IR field with
w=1¢eV (A= 1.2 pum), intensity I = 2 x 10 W/cm?,
Q =41eV with Ig =1, Co =2, and I, = 13.65 eV. The
HHG spectra are presented in Fig. 1. It can be seen that
even for equal intensities of the IR and XUV field compo-

nents, for €2, < Qgﬂ{ the XUV-assisted HHG channel is

four orders of magnitude less than HHG rate produced by
the IR field alone. However, in the energy region above

the TR field cutoff (2 > Q) marked in Fig. 1 by the
left-hand vertical dotted line) the analytical result (14)
for the HHG rate is found to be in excellent agreement
with the TDER result [55] for energies > 113 eV.

In Fig. 2(a) we compare our analytic results appropri-
ate for a neutral system with numerical solutions of the
3D TDSE. The TDSE was solved by a split-step method
using a fast Fourier transform for propagation along the
z axis and a Hankel transformation for propagation in
the transverse direction [67]. The hydrogen atom sys-
tem in the TDSE calculations was modeled by using a
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FIG. 1. Comparison of HHG rates for an atomic system with
I, = 13.65 eV in the two-color field (1) obtained using the
analytic result in Eq. (14) (dot-dashed black line) with first-
order in XUV TDER model results [55] (solid red line). The
parameters of the IR field are w = 1eV (A = 1.2 um) and I =
2 x 10" W/cm?; the intensity of the XUV field is the same as
for the IR field and its frequency is 2 = 41 eV. Vertical dotted
lines mark HHG plateau cutoff positions. Left-hand dotted

line: Q) = Qﬁ?}t; right-hand dotted line: Q = Qg?,{ + Q.
soft-Coulomb potential:
U(r) = —asech?(r/a) — tanh(r/a)/r, (22)

with a« = 0.3, @ = 2.17, which supports a 1s bound state
having an ionization potential I, = 13.65 eV. In our cal-
culations the 1s state is the initial state. The laser pulse
in our TDSE calculations for the field (1) was chosen
to have a smoothed-trapezoidal envelope f(t) comprised
of a 6-cycle flat top of constant intensity and a 2-cycle
sin?-ramp for turn-on and turn-off,

sin?(wt/4T), 0<t<2T
1 2T <t < 8T
t)y=1¢" - 23
I cos?(mt/AT), 8T <t < 10T (23)
0, t<0,t> 10T,

where T' = 27 /w is the period of the IR field. We obtain
converged TDSE results for uniform grids of time and z
coordinates with At = 0.02 a.u., Az = 0.3 a.u., and a
total number of z-axis grid nodes N, = 2048. In the per-
pendicular plane, for the polar coordinate (p) we used a
nonuniform grid with ppax = 74 a.u. and a total number
of nodes in the radial direction of N, = 380. To avoid
wave reflection effects, in our calculations we introduced
absorption layers of width 30 a.u. [67].

It is seen from Fig. 2(a) that the XUV-assisted HHG
spectrum exhibits multiple plateau-like structures sepa-
rated by the XUV photon energy 2 with cutoffs near
99 eV, 141 eV, and 184 eV. The first plateau is pro-
duced by the IR field and its cutoff is found to agree
with the expected value of 3.17u,. The second plateau
results from the absorption of an XUV photon by an
electron in the strong IR laser field and its cutoff is given
by Q) = Qg?])t + Q. The shapes of both plateaus ob-
tained by our TDSE calculations agree with the results
of our analytic predictions in Eq. (21), where the cross
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FIG. 2. Comparison of analytic and TDSE results for (a)
XUV-assisted HHG spectra for a model system described
by the potential (22) having an ionization potential (I, =
13.65 V) equal to that of the H atom and (b)-(d) correspond-
ing multiphoton PICS results (for absorption of an XUV pho-
ton of energy €2, and emission of n XUV photons of energy
Q = 41eV) in three energy regions of the HHG spectra. The
laser field parameters are the same as in Fig. 1. The ver-
tical dotted lines mark plateau cutoff positions according to
Eq. (24), and the vertical solid thin lines mark the energy
regions over which the HHG rates R™ with n = 0,1,2 are
dominant. Curves in (a): Solid thin red line: TDSE results;
solid thick black line: analytic result (25); dashed green line:
analytic result (21) for n = 0; dot-dashed thick orange line:
analytic result (21) for n = 1. Curves in (b)—(d): Solid red
lines: TDSE results (see text for details); dashed black lines
show o™ retrieved from the HHG spectrum in (a).

. n .
sections, Uét), were calculated numerically. Moreover,

our highly precise TDSE calculations also show a third
plateau, which we associate with absorption of two XUV
photons in this XUV-assisted HHG process. This obser-
vation suggests an extension of Eq. (21) for any n > 0
with E, = Ey — n{) and U,(?) o F3", which is the n-
XUV-photon-assisted PRCS in the lowest order in F.

Each rate R("™ (£2;,) contributes significantly only in the

prescribed range of harmonic energies QEZ; YV <q, <
folji, where
Qgﬁz :Qgg)t—i—nﬂ, forn=0,1,2---, (24)
QO = 1.3241, + 3.17u,,.

Since each rate R(™ () contributes mainly in a unique
range of frequency 25, we propose the following general
expression for the “total” XUV-assisted HHG rate:

o0

R() =Y RM™().

n=0

(25)
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B. Retrieval of Multiphoton PICSs

The factorization (21) provides an extension of HHG-
based spectroscopy that allows one to retrieve multipho-
ton PICS. Consider HHG peaks in XUV-assisted HHG
spectra separated by the XUV photon energy 2. Ac-
cording to Eq. (21), HHG rates for these peaks are de-
termined by the same value of the EWP W, (F,). Thus
the ratio of any two rates is given by the ratio of the
corresponding XUV-assisted PRCSs:

R(n+0) (Qh +4qQ) O-E(i.?+q) (En+q)
R (Qp)

o™ (E,) ’

at

(26)

where n and ¢ are positive integers. If the “reference”
peak lies in the first (IR-field-induced) plateau, then we

can express the XUV-assisted PRCS, ogtl), in terms of the

field-free PRCS, Ugs) (which, for instance, can either be
retrieved from XUV-free HHG spectra [12-15, 17, 18, 21,
22] or calculated numerically [68, 69] using the principle
of detailed balance [24-26]):

B R(n) (Qh + TLQ) (0)

(n)
o (En) - R(Q) (Qh) o (EO) (27)

at at

The algorithm for obtaining an n-photon XUV-assisted
PRCS for an arbitrary atom comprises three steps: (i)
measuring the XUV-assisted HHG spectrum; (ii) calcu-
lating the ratio of HHG yields separated by the energy
of n XUV photons, and (iii) multiplying this ratio by the
XUV-free PRCS according to Eq. (27). The PRCS thus
obtained is directly related to the PICS in the field of
a two-color XUV pulse: the PRCS for the frequency
of the emitted photon and n absorbed (2-photons cor-
resonds to the PICS for the inverse process, namely, the
absorption of a single €;-photon and emission of n Q-
photons.

Figures 2(b)-(d) show PICSs corresponding to the
emission of n = 0, 1, and 2 XUV photons with energy
Q) = 41eV retrieved using Eq. (27) and the numerically
calculated HHG spectrum shown in Fig. 2(a). As ex-
pected for the H atom, the PICs are smooth, slowly-
decreasing functions of the absorbed XUV photon energy
Q. We compared retrieved PRCSs with the TDSE re-
sults obtained from numerical solution of the TDSE for a
long two-color linearly polarized XUV pulse with carrier
frequencies €2 and 5. In order to obtain the PICS from
the TDSE results, we calculate the momentum distribu-
tion of the photoelectrons along the field polarization axis
and select those peaks corresponding to absorption of a
single Qp-photon and emission of several {)-photons. Us-
ing the principle of detailed balance [24-26], we convert
the ionization cross section to the corresponding PICS.

As seen in Figs. 2(b)-(d), the results of these calcu-
lations agree everywhere except in the neighborhoods of
photoelectron energies &' = nf2 — I, forn = 1, 2. In
these energy ranges, the direct TDSE method greatly
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overestimates the true value of the PICSs. This devi-
ation originates from interference of the various possi-
ble pathways from a given initial state to the same fi-
nal state. When an atom is ionized by a two-color field
with an integer frequency ratio m = 2, /Q, the energy
of an electron that absorbs a photon of frequency
and emits n photons of frequency (2 exactly equals the
energy of an electron that absorbs m — n photons of
frequency €. The probability of the second (absorp-
tion) process can be significantly larger than that of the
first (absorption/emission) process. Consequently, the
directly-calculated TDSE PICS results contain peaks at
photoelectron energies E = (m —n)§2 — I,,, where n > 1,
that do not exist in the PICSs retrieved from the XUV-
assisted HHG spectra. These artifacts are clearly seen in
Figs. 2(c), (d), where the peaks corresponding to m = 3,
n =1 and m = 4, n = 2 overestimate the PICSs by
one and three orders of magnitude, respectively. This
pronounced overestimation is because the probability of
absorption of two “soft” photons of frequency € signifi-
cantly exceeds the probability of absorption of one pho-
ton of higher frequency €;, = 3Q or Q; = 4Q) with sub-
sequent emission of one or two photons of frequency §2,
respectively.

C. Measurement of Multiphoton PICSs

Direct measurements of two-photon (or multiphoton)
PICS in the XUV region confront a number of difficul-
ties. At present, standard FEL-based two-color sources
are well-developed only for fixed frequencies close to har-
monics of the seeding pulse [70, 71], and, despite sig-
nificant progress [70, 71], frequency tuning over a wide
energy range is still difficult. Another difficulty of di-
rect multiphoton PICS measurements occurs if the fre-
quency ratio of the XUV components is close to an in-
teger. In this case, different multiphoton channels may
result in the same final state of the ionized electron thus
leading to an interference between alternative transition
amplitudes. Although this interference has stimulated
a great interest recently concerning the coherent con-
trol of two- and three-photon ionization [72], it prevents
measurements of the separate contributions of the inter-
fering multiphoton channels. The XUV-assisted HHG
spectroscopy method proposed in this paper avoids con-
tributions from alternative ionization channels and thus
opens up the unique possibility for extracting the partial
cross sections of individual photoionization channels in
two-color XUV ionization processes for a wide range of
XUV frequencies.

IV. SUMMARY AND CONCLUSIONS

In summary, we have used TDER theory to investi-
gate XUV-assisted HHG and have shown that the nth
additional HHG plateau made possible by the XUV field
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(with photon energy ) originates from absorption of n
XUV photons at the photorecombination step of HHG
(where n = 0 is the usual HHG plateau produced by the
IR field alone). We have also shown that the HHG rate
corresponding to the nth plateau can be presented in a
factorized form involving the XUV-assisted (multipho-
ton) PRCS corresponding to absorption of n XUV pho-
tons of energy ) and emission of a harmonic of energy
Q. This factorization allows one to extract the corre-
sponding PRCS from the HHG spectrum and to find the
cross section of the inverse process (using the principle
of detailed balance [24-26)), i.e., the PICS involving ab-
sorption of a single photon of energy 2; and emission of
n XUV photons of frequency §2.

We have also shown that a possible alternative method
for finding n-XUV-photon-assisted PICSs, based on di-
rect measurement of the photoelectron energy distribu-
tion in a two-color XUV field fails to provide correct
results for the case when the XUV frequency €2, is an
integer multiple of the frequency Q (2 = m€)) owing
to the interference of different ionization channels having
typically very different magnitudes. Our proposed HHG-
based method of finding multiphoton PICS allows one to
select a particular ionization channel and works for all
values of the photoelectron energy. It also appears to
offer a much simpler means for experimental realization.
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Appendix A: TDER derivation of Egs. (16) — (19)

The HHG amplitude for the N-th harmonic with fre-
quency €2, = Nw and polarization vector ey, in a periodic
field with period T' = 27 /w has the form:

A(2) = e; - d(N),

where d(N) is the N-th Fourier coefficient of the dual
dipole moment of the quantum system [73]. One obtains
d(N) from analysis of the complex quasienergy of the
system in a two-component field described by the vector
potential A’(t),

A'(t) = A(t) + An(), (A1)



0 where A(t) is the vector potential of the IR and XUV
460 ﬁelds,

A(t) = Ao(t) + Aq(t), (A2a)
Ap(t) = —ezcg sin(wt), (A2D)
Ai(t) = —ezc% sin(Qt), (A2c)

w1 and Ap(t) is the vector potential of the harmonic field
w2 with frequency €, and polarization vector ey,:

71'9;,,11 ) (A3)
w3 Here c is the speed of light and Fj, is the amplitude of the
s probe harmonic field. The dipole moment d(N) can be
a5 presented as a derivative in Fj = Fj,ej of the first-order
w6 in Fj, quasienergy € in the two-component field (A1) [73]:

o€’

IF} | g, —o
Within the TDER approach, the exact (without ex-
ws pansion in Fj) eigenvalue problem for the complex
wo quasienergy € reduces to an infinite homogeneous sys-

a0 tem of linear equations for the Fourier coefficients f}, of
m a periodic function f'(t) [56, 57]:

d(N) = —2 (A4)

467

> [Ro(€ + 2kw)dr s — My (€)] fi =0, (A5)
k/
1 1 h p (t—t")+2ikwt—2ik" wt’
, N 1 e tkwt—21k"w
Mk,k’(e ) - \/ﬁT /dt / dt (t _ tl)3/2
0 — 00
x [e*is,(t’t/) - 51@,1@/} ; (A6)
1 [t
S'(t, ') = 5/ P%(r;t,t")dr, (A7)
t/
t
P(r;t,t') = E {A’ - / A’(T’)dT’] , (A8)
C t—t t
Ro(E) = V2E[cot §p(E) — i, (A9)

where o (F) is the s-wave scattering phase in the effective
range approximation [24]. Since F}, is weak, the complex
quasienergy ¢ may be expressed as a sum of two terms:
the complex quasienergy € in the laser field described by
vector potential A(t) and the linear in Fj, correction, Ae,
induced by the harmonic field described by the vector
potential (A3):

€ =e+ Ae.
a2 Thus Eq. (A4) can be written in the equivalent form:
0Ae
d(N)= -2 . A10
() = ~255¢ (A10)

a3 Expanding the matrix elements Mj ;. (¢') in a power

aa series in F},, one obtains an explicit expression for Ae:

C2
50 ka Mk ()

k,k’

Q)] frrs

Ae

+ my (= (A11)

ws where fi, = f]|m,=0, Co is the dimensionless asymptotic
e coefficient of the atom’s valence electron wave function
ar [see Eq. (6)], and the matrix elements my, - (£82) x Fy,
as can be expressed in terms of two-dimensional time in-
w9 tegrals. Specifically, the matrix elements my i (2),) de-
a0 scribe emission of a harmonic with frequency €2, and thus
a1 determine the HHG amplitude, while the matrix elements
a2 My, 1 (—€2;) describe the absorption of a harmonic pho-
w3 ton. In order to obtain perturbative results in F for the
ss HHG amplitude, we further expand the matrix elements
485 TN, L/ (Qh) in a power series in FQ:

(0)

M () = mig () +mi ) (), (A12a)
i1 T ! iS(t,t")+2ikwt—2ik" wt’
s e v s 1kwt—2tk"w
(Q — [ dt [ dt
mkk ( h) 27T’LT/ / (t_t/)g/z
0 —00
xS0 (1, 1), (A12b)

1) —18 t,t )+2ikwt— 2ik’ wt’
my g () = \/_T/dt / dt’ (EOEE
x%Wﬂ-MWﬂ%wﬂ (A12c)

a6 where the functions Sq(¢,t") and S, (n) (t,t’) originate from
ss7 the first-order correction to the actlon S(t,t') in both the
ss XUV and harmonic fields:

t
S(t,t")y=IL,(t—t)+ %/ Pi(r;t,t")dr,(A13a)
t/

t
Sal(t,t') = /PQ(T;t,t/)Pl(T;t,t/)dT, (A13D)
t/
t
sﬁ@wz/ﬂﬁmwﬁ@mwm,mm@
t/
P, (ri1,1') = Pu(r) = - [An(r)
C
t
- t—lt’ /An(T/)dT/ , n=0,1, (A13d)
t/
1
Py (r;t,t") =Pyu(r) = - [A§1+)(T)
1 t
;[ A (A13¢)
t/
AE:F)(f) - ¢ F, eiint (A13f)

2iQy,

a0 In Eqgs. (A12) we have neglected the Stark shift and laser-
a0 induced width of the atomic level in the IR field.

w1 It should be noticed that for the two-component
w2 field (A2), the coefficients fj should also be expanded in
w03 a power series in Fq. However, as was shown in Ref. [55],
s04 this correction to the coefficients fj, gives a negligible con-
w05 tribution to the total harmonic amplitude. Thus, in all



a6 further calculations we assume that the coefficients fj
w7 originate from the IR field alone, i.e., fr =~ f,go). The

a0s coefficients f,go) satisfy the eigenvalue system of equa-
a0 tions (AD) with the substitution A'(t) — Ao(¢).

Both Sq(t,t') and S,SO) (t,t') involve a product of
so a rapidly-oscillating function, Py(7) or Pn(7), and a
s02 smooth function, Py(7). Now, for a smooth function ()
s03 and a rapidly-oscillating function ¢(t), one can make the
s04 approximation,

500

sos Using the approximation (A14), the functions S’gj) (t,t'),
506 S,SO) (t,t"), and S,(Il)(t, t') can be presented in the form:

5170.0) = S @), (A5)

S0 1) = 28 [xo(~) + xo(@)],  (Al5b)

Xo(Q) = Po(t)e™ — Py(t')e™ (Al5c)

siet) = S (-

()], (A15d)
e Qr+Q)t _ i(Qr+ Q)

x1(Q; Q) = o0

(eith _ eith/) (eiQt _ eiQt')
+ RO — 1) . (Albe)

s Substituting Egs. (A15) into Egs. (A12) and calculat-
sos ing the derivative in (A10), we obtain an explicit form

s00 for d(N)

d(N) ~dO(N )+d(’1>( Y +dFY(N),  (A16)
dD(N) = Z A (N) frr, i=0,%1
k,k
510 Where
) 2zkwt 2ik’ wt
dyj (N /dt/dt e
xe " (t’t)gi(t,t’), i=0,+l, (A17)
[1 1
tt Q Al
gO(a ) ’fco 27”9%)(0( h) ( 8)
1 Iy
t,t') = £rCi | —
ga1(t¥) = £rCo\[ 5 = 10,0
i
X Xl(:tQ,Qh):t—XO(:EQ)Xo(Qh) . (Alg)
Q0

8

su The dipole d(® (N) describes HHG in the IR field, while
s dFD(N) and d-Y(N) describe HHG in the IR field
assisted by emission and absorption, respectively, of an
XUV photon. We thus focus our further analysis on the
d©(N) and d=V(N) dipoles.

In the quasiclassical limit, d®)(N) can be presented in
the factorized form [16, 23, 58, 74]:
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@

514

515

516

517

dO(N) = e.a(Eo) [$(Eo), Eo=Qn —1Ip, (A20)
sis where a(Ep) is a universal laser-induced factor,
| ei(BotIp)t—iS(t,t')

E dat [ dt A21

( 0) /_271'7, T / / t _ t/)3/2 ? ( )

s10 and fmc( o) is the TDER photorecombination ampli-

tude for a model atomic system having a single bound
s-state [cf. Eq. (5)]:

—Zs/?TFLCO 02

In order to obtain a beyond-SFA result for the HHG
amplitude with absorption of a single XUV photon,
we use the first-order rescattering approximation, i.e.,
we present both coefficients f; and matrix elements

d,(cjkl,)(N ) as a sum of direct (with bar) and rescattering

(with tilda) terms:

520

52

=

FOU(E) = ko = \/2Ep. (A22)
522
523
524
525
526

52

X

-1)

Ao ~d )

o k!
fr = T+ [

The direct and rescattering results for the coefficients fi
are [75, 76]:

+ d,ﬁ D,

528

529

fr = k.0,
o= M0
"7 Ro(—1, + 2kw)’
where the matrix element Mj, o My 0(—1,) can be

obtained from Mj o(¢’) by making the replacements
A’(t) — Ay(t) and € — —1I:

53

S

53

s

532

T t . . /
1 1 /dt / W e2zkwtfz$(t,t ) e
My o= — N
k,o 27T’L T (t _ t/)3/2 ) ( )
0 —0oo

where S(t,t) is given by Eq. (A13a).
The direct and rescattering terms for the matrix ele-

53,

@

534
ment d,(cjkl,) (N) originate from different parts of the inte-
gral (A17). The direct term is given by the contribution
of the boundary limit ¢ = ¢ to the integral (A17), while
the rescattering term is given by the saddle-point con-
tribution to the integral (A17). Up to the first-order
rescattering approximation (defined above), the dipole
moment d(=1)(N) can be presented as follows:

d<—1>(N) ~e.d"V(N),

Z ai, (v

53!

o

536

~
~
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=

d=v fk+d< (), (A24)
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where dé}l)(N ) is the matrix element for the “direct”

dipole and dé}f) is that for the “rescattering” dipole.
Analysis of the direct dipole matrix elements for a given

harmonic number N shows that the matrix element

dé;cl)(N) with k = k = (), — Q)/(2w) exceeds all oth-

ers by a factor of order ~ (F/H3) . The leading term
for this matrix element can be calculated analytically by
evaluating the integral (A17) near the boundary limit
t ~t:

DAy o Fo
dO,E (N) IiCo 4QhQ
Kk KP4k} — ik — ik, (A2s)
Q, —Q 300,

where

R = \/2[17, kl =\ 2E1,
ko = \/2(E1 +Q), kq, = V2(E1 — Qh), (A26)

and By = Qp — I, — Q is the returning electron energy.
The explicit form (A25) for the direct term can be also

found analytically as the value of dé;cl)(N ) in the limit
F —0[23].

In order to evaluate the rescattering term dé}f)(N )
in (A24), we note that the function g_; (¢,¢’) in Eq. (A19)
involves four terms, which correspond to different scenar-
ios for interaction of the electron with either the XUV or
the harmonic field. In this paper, our focus is exclusively
on the channels in which the electron absorbs one or more
XUV photons and emits a harmonic at the recombina-
tion step of HHG, i.e., at the moment ¢. To separate out
the channel involving absorption of one XUV photon, we
replace the functions xo and y; in (A15) by:

Xo(—Q) — Po(t)e_iﬂt,
XO(Qh) — Po(t)eiﬂht,
ei(Qh—Q)t

Qp—Q

The approximations (A27) follow from Eqs. (Al5¢c) and
(Al5e) by neglecting terms involving exponents depen-
dent on the time ¢’ and also the term ~ (t —#')~! in
Eq. (Albe), since it is smaller than the term ~ (¢ —¢')?
by a factor of order w/€Q. Taking into account the ap-
proximations (A27), the rescattering part of the dipole
matrix element for the desired channel can be presented
in the form:

(A27a)
(A27b)

x1(=€, Q) — (A27c)

D) — gy | L Fa 1
doo (N) = =rCo\[ 5290, 0 T
oo Ie—iS(t,t’)-i-i(Qh—Q)t
x/dt/dt (t—t’)3/2
0 —00

P (t)
0,0

+

1
( " (A28)

).

9

The integrations in the rescattering terms for ]Tk in

Eq. (A23) and for dé}l) in Eq. (A28) are done using
saddle-point methods [77]. In this approximation, the
smooth function Py(t) can be replaced by its value at the
corresponding saddle point, Py(t) — k1, leading to the
following result for the dipole matrix element d(=")(N):

574

575
576
577
578

579

dTY(N) = Faa(E1) ) (Er).

rec

(A29)

se0 The laser factor, a(E;), has the same form as for an IR
se1 field alone [see Eq. (A21)], and fr(;g(El) is the ezact two-
se2 photon TDER recombination amplitude for absorption
ss3 of an ) photon and emission of an Qj, photon [59]:

2
(00 JR AL L . R
200, |1QQ,  Qp —Q
R el ey A s
Ro(Ey) | —Q 300,

se¢ In Eq. (A30) the definitions in Egs. (A26) and (13) have
sss been used.

sss  The laser factor, a(E,), takes its simplest analytical
se7 form in the energy region close to the cutoff of the HHG
ses plateau. It is well-known that only two closed classical
ss0 electron trajectories with the highest returning energy
s contribute to the total HHG amplitude in this energy
s region. The calculations of the two-fold integrals can
se2 be carried out by using a combination of saddle-point
se3 methods appropriate for separate and for merging sad-
s dle points. The explicit form of the laser factor can be
sos expressed in terms of an Airy function Ai(z) [16, 58]:

a(En)

A Tal(E)e™ [En—Emax

T RI2(GF2)BABR T | T (5F)1/3 } » (A31)

s06 Where l"st(ﬁ ) is the detachment rate in a static electric
so7 field [see Eq. (18)], F =~ 0.95F is the instantaneous elec-
w06 tric field at the moment of ionization, 4 = wk/F is an
so0 “effective” Keldysh parameter, At ~ 0.657 is the elec-
so0 tron travel time, Ep.x ~ 3.17Tu, + 0.3241, is the max-
s imum energy gained, 6 = 0.536, and ®( is the phase
s02 gained. Thus, in accordance with Eq. (14), one obtains
s03 the general form of the EWP given in Egs. (16)-(19).
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