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Canonical semiclassical methods can be used to develop an intuitive definition of tunneling time
through potential barriers. An application to atomic ionization is given here, considering both static
and time-dependent electric fields. The results allow one to analyze different theoretical construc-
tions proposed recently to evaluate ionization experiments based on attoclocks. They also suggest
new proposals of determining tunneling times, for instance through the behavior of fluctuations.

I. INTRODUCTION

Detailed observations of atom ionization have recently
become possible with attoclock experiments [1–3], sug-
gesting comparisons with various predictions of tunnel-
ing times. The theoretical side of the question, how-
ever, remains largely open: Different proposals of how
to define tunneling times have been made through al-
most nine decades, yielding widely diverging predictions
and physical interpretations [4, 5]. Even the extraction
of tunneling times from experiments has been performed
in different ways [6–11], and the original conclusion of
a non-zero result has been challenged [12–14]. The sit-
uation therefore remains far from being clarified, and a
continuing analysis of fundamental aspects of tunneling
is important.

A recent approach to understand the tunneling dynam-
ics in this context is the application of Bohmian quantum
mechanics [15, 16], in which the prominent role played by
trajectories provides a more direct handle on tunneling
times [17]. However, through initial conditions, the en-
semble of trajectories remains subject to statistical fluc-
tuations. An alternative trajectory approach, which we
will develop in this paper, is to consider, in an extension
of Ehrenfest’s theorem, the evolution of expectation val-
ues and fluctuations, possibly together with higher-order
moments of a state. By including moments of a proba-
bility distribution, such an approach remains statistical
in order to capture quantum properties, but it provides
a unique trajectory starting with the expectation val-
ues and fluctuations of a given initial state. The ensem-
ble of trajectories used in Bohmian quantum mechanics
is replaced by a single trajectory in an extended phase
space, enlarged by fluctuations and higher moments as
non-classical dimensions.

In the context of tunneling, a semiclassical version
of this proposal has been used occasionally in quantum
chemistry [18, 19], which we extend here to higher or-
ders and apply to models of atom ionization. Unlike
Bohmian quantum mechanics, these methods present an
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approximation to standard quantum mechanics, rather
than a new formulation. Nevertheless, since they lead to
a single trajectory rather than a statistical ensemble of
trajectories, they provide a crucial advantage which, we
hope, can help to clarify the question of tunneling times
in atom ionization.

In [17], it has been shown that a trajectory approach
based on Bohmian quantum mechanics reliably shows
non-zero tunneling times in atomic models of ionization.
There is therefore a tension with recent evaluations of
ionization experiments which give the impression of zero
tunneling delays [13]. The latter results are based on
a definition of the tunneling exit time through classical
back-propagation [12]: Since the energy of a tunneling
electron in a time-dependent electric field is not con-
served and usually unkonwn in experiments, it is difficult
to apply the intuitive definition of the tunneling exit as
the time when the electron’s energy equals the classical
potential. As an alternative, classical back-propagation
evolves the final state of a measured electron back to-
ward the atom using classical equations of motion, and
defines the tunneling exit as the time when the momen-
tum in the direction of the electric field is zero, taking
the point closest to the atom in the event that this condi-
tion may be realized multiple times. As already noted in
[17], this condition is conceptually problematic because
it uses classical physics near a turning point, where the
equations governing a classically back-propagated trajec-
tory are usually expected to break down. We will use our
single-trajectory approach to compare a quantum trajec-
tory with a classical back-propagated one.

In addition, our analysis will allow us to derive fur-
ther properties of the tunneling process. In order to ob-
tain a single trajectory describing an evolving quantum
state, we write evolution of a quantum state in terms of a
classical-type system with quantum corrections, in which
the expectation values of position and momentum are
coupled to fluctuations. The coupling terms, quite gen-
erally, lower the classical barrier such that the classical-
type system can move “around” it in an extended phase
space with a real-valued velocity. This detour has a cer-
tain duration, depending on initial conditions, and pro-
vides a natural definition of tunneling time.

It turns out that several new ingredients are necessary
compared with existing treatments in quantum chem-
istry. For instance, semiclassical states are not always
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sufficient for a full description of tunneling. This fact
is not surprising because, intuitively, a tunneling wave
splits up into two wave packets separated by the bar-
rier width. Deep tunneling then implies states with large
fluctuations, even if each wave packet remains sharp and
perhaps nearly Gaussian. Moreover, fluctuation terms do
not always lower the barrier enough to make tunneling
possible at all energies for which quantum tunneling oc-
curs. In [19], the classical-type system used for tunneling
has been extended to moments of up to fourth order, with
a clear improvement of predicted tunneling times closer
to what follows from wave-function evolution. However,
the extension was done mainly at a numerical level, which
does not provide much intuition about the tunneling pro-
cess in a given potential. To second order, by contrast, an
effective potential was used in [18, 19] which shows how
the classical barrier can be lowered by quantum fluctua-
tions. One of our main new ingredients is an extension
of such effective potentials to higher orders.
In Sec. II we describe quantum dynamics using canoni-

cal semiclassical methods and present a new effective po-
tential that includes effects from higher-order moments.
In Sec. III, we introduce various models of atom ioniza-
tion in which our methods can be applied, and discuss
specific results focusing on tests of tunneling conditions
and the definition of tunneling times.

II. QUANTUM DYNAMICS BY CANONICAL

EFFECTIVE METHODS

Using canonical effective methods [20, 21], we describe
the dynamics of a quantum state by coupled ordinary
differential equations for the expectation values x = 〈x̂〉
and p = 〈p̂〉 coupled to central, Weyl-ordered moments

∆(xapb) = 〈(x̂− x)a(p̂− p)b〉Weyl . (1)

(In this notation, the usual fluctuations are written as
∆(x2) = (∆x)2 and ∆(p2) = (∆p)2, while ∆(xp) is the
covariance.)
The Hamiltonian operator H(x̂, p̂) implies the quan-

tum Hamiltonian

HQ = 〈H(x̂+ (x̂− x), p̂+ (p̂− p))〉 (2)

= H(x, p) +

∞
∑

n=2

n
∑

a=0

(

n
a

)

∂nH(x, p)

∂xa∂pn−a
∆(xapn−a)

with the classical Hamiltonian H(x, p). Hamiltonian
equations for moments are generated using the Poisson
bracket

{〈Â〉, 〈B̂〉} =
〈[Â, B̂]〉

i~
, (3)

derived from the commutator and extended to moments
by using linearity and the Leibniz rule.
Unfortunately, the Poisson brackets between moments

are rather complicated at higher orders, and they are not

canonical. For instance,

{∆(x2),∆(xp)} = 2∆(x2) (4)

{∆(x2),∆(p2)} = 4∆(xp) (5)

{∆(xp),∆(p2)} = 2∆(p2) , (6)

corresponding to the Lie algebra sp(2,R), but those of
higher moments are in general non-linear. For these
second-order moments, canonical variables were intro-
duced in [18, 19]:

s =
√

∆(x2) , ps =
∆(xp)
√

∆(x2)
(7)

together with a third variable, U = ∆(x2)∆(p2)−∆(xp)2,
which has zero Poisson brackets with s and ps. Inverting
these relationships, we write the second-order moments

∆(x2) = s2 , ∆(xp) = sps , ∆(p2) = p2s +
U

s2
(8)

in terms of canonical variables (s, ps) and a conserved
quantity U . To second order, the quantum Hamiltonian
can then be expressed as

〈Ĥ〉 =
〈p̂2〉
2m

+ 〈V (x̂)〉

≈ 〈p̂〉2
2m

+
(∆p)2

2m
+ V (〈x̂〉) + 1

2
V ′′(〈x̂〉)(∆x)2

=
p2 + p2s
2m

+ Veff(x, s) (9)

with the effective potential

Veff(x, s) = V (x) +
U

2ms2
+

1

2
V ′′(x)s2 . (10)

An extension to higher orders turns out to be more
involved, but it can be accomplished with the new meth-
ods developed in [22]. The canonical form of higher-order
moments then gives useful higher-order effective poten-
tials, and it suggests closure conditions, in the sense of
[23], that can be used to turn the infinite set of moments
into finite approximations.
We introduce closure conditions based on the following

properties of higher moments which we have confirmed
for up to fourth order [24]: the second-order variable s
also contributes to an n-th order moment, in the form
〈(x̂ − 〈x̂〉)n〉 ≈ sn, in addition to terms that depend
on new degrees of freedom. Moments of odd and even
order, respectively, often behave rather differently from
each other. For instance, a Gaussian has zero odd-order
moments, a property which extends to generic states that
evolve adiabatically in symmetric potentials [20]. This
difference is reflected in mathematical properties of the
canonical variables. At third order, for instance, there
are three canonical coordinates, s1, s2 and s3, such that
〈(x̂−〈x̂〉)3〉 ∝ s31+s32+s33. The constant of proportional-
ity has zero Poisson brackets with the canonical variables
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but is state dependent. As an approximation, we set this
constant equal to zero, reducing the number of degrees
of freedom. If we assume this behavior also for orders
greater than four, we can complete the Taylor expansion
in (2) and derive the all-orders effective potential

Veff(x, s) =
U

2ms2
+ V (x) +

∞
∑

n=1

1

2n!

d2n(V (x))

dx2n
s2n

=
U

2ms2
+

1

2
(V (x + s) + V (x− s)) . (11)

Heuristically, therefore, the particle does not follow a po-
tential local in x, but rather is feeling around itself at a
distance s. This distance increases as the wave function
spreads out.
We have moved beyond the semi-classical approxima-

tion by replacing a strict truncation with a specific be-
havior of the moments. This extension is crucial for our
purposes because tunneling states or the ground states of
an electron in most atoms are not semi-classical. A semi-
classical approximation should then not be expected to
give accurate results in situations where the tunneling
times are very long, or the electron spends a fair amount
of time in states close to the ground state.

III. EFFECTIVE THEORY OF TUNNELING

IONIZATION

In order to test various aspects that have been found to
be relevant for tunneling times in ionization experiments,
we discuss properties and results of different models. An
application to tunneling ionization requires an extension
of (11) to three dimensions. The main question is then
how to deal with cross-correlations between different co-
ordinates, which significantly enlarge the phase space.
Motivated by the intuition that a tunneling wave packet
should split up predominantly in the direction of the force
that lowers the confining potential of a bound state, we
assume that the main moments to be considered are the
two fluctuations (position and momentum) in the direc-
tion of the force. These moments then play the role of
reaction coordinates in transition-state methods [25, 26],
which reduce a large parameter space to a few significant
variables.
The relationship to the direction of the force implies

a crucial difference between the treatment of a constant
force and time-dependent, rotating forces as used in atto-
clock experiments. We first deal with examples subject
to a constant force in order to illustrate the tunneling
process with our new methods, and then show how time-
dependent forces alter the conclusions.

A. Coulomb potential in a static electromagnetic

field

As usual, we can treat tunneling ionization as a a sin-
gle electron moving in an effective potential with two

contributions: a spherically symmetric term for interac-
tions with the nucleus and the remaining electrons, and
a linear potential in the direction of the electric field.
Assuming that correlations between the independent co-
ordinates can be ignored, an approximation that can be
expected to be valid during most of the tunneling process
which affects mainly one of the coordinates, the all-orders
effective potential (11) for the 3-dimensional Coulomb in-
teraction and the electric field strength F is then

Veff(xi, sj) =

3
∑

i=1

U

2s2i
+

1

8

∑

{ni=0,1}

V (xi + (−1)nisi) ,

(12)
where

V (~x) = − 1

|~x| − ~x · ~F − αI
~F · ~x
|~x|3 (13)

is the classical potential and αI is the static polarizability
of the ion. (We set ~x = (x, y, z) and use atomic units
~ = e = me = ke = 1 throughout the paper.)
Evolution in the effective potential requires initial val-

ues of xi, si, pi and psi . Since these describe expec-
tation values and fluctuations, they could in principle
be determined from an initial atomic state. However,
it is more useful to minimize the energy in the field-

free (~F = 0) effective potential (12), in order to fix
these initial values within our approximation. That is, to
get initial values for the canonical variables we minimize
1
2

∑

(p2i + p2si) + Veff(~x,~s) in the absence of the electric
field. We find

s0i =
3
√
3

4
and p0i = p0si = x0

i = 0 (14)

for i = 1, 2, 3. These values, taken as initial conditions
for tunneling with a non-zero field, result in a ionization
potential of Ip = −2/9 which in our model corresponds
the ground-state energy Eground in the absence of the
electric field.
We choose our coordinate system such that the x3-

axis points in the direction of the force. Figure 1 shows
the ground-state equipotential line of (12) in the x3 − s3
plane for both Argon (αI = 7) and Krypton (αI = 11),
as well as the behavior of the fluctuation parameter s3
with respect to the direction along x3. When the field
strength is small enough, the equipotential line of the
ground state literally forms a tunnel that the electron
has to follow in order to escape. The tunneling time is
related to the amount of time spent in this tunnel. At
this point, we can see the importance of our extension
beyond semiclassical effective potentials. The quadratic
s-term in (10) reduces the classical barrier monotonically
in the s-direction, giving us a steep slope instead of a
tunnel. Numerical solutions in such a potential show
that the resulting tunneling times would be too large
because trajectories get dragged into the s-direction with
little movement in the x-direction. The tunnel in our
all-orders potential, by contrast, guides the trajectories
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FIG. 1: A contour plot of the effective potential for both Ar-
gon (αI = 7) and Krypton (αI = 11). The solid curve is
the equipotential line, Veff = Eground = −2/9 for the approx-
imate ground-state energy corresponding to (14). It shows
the location of the classical barrier in the presence of a field
F = 0.015 (a laser intensity of I ∼ 0.8 · 1014W/cm2). The
path of the electron is shown here by the (almost overlapping)
dashed lines for Argon and Krypton. The electron escaping
from either atom has to travel along an actual tunnel, formed
by the equi-potential line in phase space.

such that they still move substantially in the x3-direction.
Corresponding tunneling times are significantly shorter.

FIG. 2: Trajectories of the tunneling coordinate x3, its fluc-
tuation s3 and the fluctuation s1 for Argon. The behavior for
Krypton is qualitatively similar.

Our dynamical system contains not only expectation
values but also the fluctuation variables si and psi , re-
lated to ∆xi and ∆pi as in (8). As shown in Fig. 2,
our effective evolution is self-consistent in the sense that

it is indeed only the fluctuation s3 in the direction of
the force (our reaction coordinate) that increases signifi-
cantly, while s1 and s2 remain nearly constant. Neverthe-
less, the behavior of the transversal position fluctations,
shown in Fig. 3 for the example of s1 at the tunneling
exit, is also of interest: There is a local minimum with
a value less than the ground-state fluctuation (14). At
higher intensities, the fluctuations level off because in a
strong field they do not have much time to change. More-
over, these fluctuations depend more strongly on the el-
ement used compared to the trajectories in Fig. 1 for
variables in the direction of the force, or the tunneling
time to which we turn now.

FIG. 3: The transverse exit fluctuation s1 over the observable
range of laser intensities for Argon and Krypton.

Using the all-orders potential in a static field, we es-
timate the tunneling time in Argon and Krypton as a
function of the laser intensity. The tunneling time is de-
termined by how long the particle travels from one turn-
ing point to another in a state parameterized by xi and
si. The tunneling times for both Argon and Krypton
in the range of laser intensities used in [2], are shown
in Fig. 4. We see tunneling at all relevant scales, and
qualitative agreement with the calculations from Wigner
formalism used in [2].
Traditionally, proposed tunneling times have often

been expressed as integral formulas, motivated by the
WKB approximation. Our effective potential can be used
to derive a new version if we eliminate some of the ba-
sic variables in further approximations. As suggested by
Figs. 1 and 2, we may assume that s3 ≈ x3 inside the
barrier. The tunneling time can then be written as

τ ≈
∫ x∗

3

0

dx3

p3
≈

∫ x∗

3

0

dx3
√

−Eground − Veff(xi, s̃i)
, (15)

where s̃3 = x3 and x∗
3 is the tunneling exit position. The

values of x1 and x2 are assumed zero, while s̃1 and s̃2 re-
tain their ground-state values. The qualitative behavior
of the tunneling time in Fig. 4 under this approximation
is not too far from the results of our full computation.
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FIG. 4: Tunneling times for Argon and Krypton. The dashed (Argon) and solid (Krypton) lines correspond to the approximation
(15) with s3 ≈ x3. The range of the laser intensity is obtained by scaling the electric field I = 1

2
cǫ0F

2. Time variables are
scaled to atto-seconds from atomic units.

FIG. 5: Exit momenta for the electron as a function of the laser intensity. They have the same qualitative behavior as in [2]
with an agreement of order of magnitude.

Our method also yields the momentum p3 at the tun-
nel exit, shown in Fig. 5. The longitudinal momentum is
non-zero because the electron exits the tunnel with mo-
mentum in the direction of the force: As shown in Fig. 1,

in the effective potential, the classical turning point is
replaced by an actual tunnel exit. Our effective potential
therefore presents a self-contained model in which sev-
eral observational features are qualitatively reproduced,
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without any free parameters beyond the coefficients used
to define the classical potential. However, it requires an
extension to time-dependent forces modelling laser fields.

B. Time-dependent, circularly polarized electric

fields

If the direction of the force is not constant, tunnel-
ing should affect the moments of more than one degree
of freedom. If the force is rotating at constant angu-
lar velocity ω, we can nevertheless find suitable reaction

coordinates by transforming to a frame co-rotating with
the force. It is sufficient to start with a two-dimensional
system in the plane in which the force is rotating. For
instance, the example used in [13] is a two-dimensional,
time-dependent vector potential

~A(t) =
A0√
1 + ǫ2

cos4(ωt/2N)

(

cos(ωt)
ǫ sin(ωt)

)

(16)

for N cycles of frequency ω, with ellipticity ǫ. The cor-
responding electric field is

~E = −d ~A

dt
=

A0ω√
1 + ǫ2

cos4(ωt/2N)

(

sin(ωt) + 2
N
tan(ωt/2N) cos(ωt)

ǫ
(

− cos(ωt) + 2
N
tan(ωt/2N) sin(ωt)

)

)

. (17)

Specialized to two cycles, N = 2, and circular polar-
ization, ǫ = 1, also as in [13], we have

~E =
A0ω√

2
cos3(ωt/4)

(

sin(5ωt/4)
cos(5ωt/4)

)

=
A0ω√

2
cos3(ωt/4)S

(

1
0

)

(18)

with the orthogonal matrix

S =

(

sin(5ωt/4) − cos(5ωt/4)
cos(5ωt/4) sin(5ωt/4)

)

. (19)

In terms of the electric field, we can write the Hamil-
tonian for a negatively charged particle as

H =
1

2
~p2 + ~r · ~E + V (r) . (20)

In co-rotating coordinates

~R = S−1~r , ~P = S−1~p (21)

we have

H =
1

2
~P 2 + ~R · ~E0 + V (R) +

5ω

4
(P1R2 − P2R1) (22)

with an electric field

~E0 = S−1 ~F =
A0ω√

2
cos3(ωt/4)

(

1
0

)

, (23)

which is not constant but points in a fixed direction. The
fluctuations in this direction are our reaction coordinates.
The transformation to a co-rotating frame shows that

the two-dimensional nature of tunneling in circularly po-
larized electric fields is not essential, but it turns out that
the non-static behavior of the field amplitude is impor-
tant. This behavior can be studied by Bohmian quantum

mechanics in one-dimensional models [17], or by our ef-
fective potentials as we will do in the rest of this paper.
For our methods, in the one dimensional case, it is

of advantage to have a smooth potential which is finite
everywhere. Instead of the Coulomb potential or the
truncated version of [17], we therefore consider a one-
dimensional model for a Gaussian potential well in a
time-dependent electric field:

V (x, t) = − e−x2

2
+ xF (t) . (24)

The potential depth is chosen so that the ground state
energy agrees with Eground. As the time-dependent elec-
tric field, we choose, as in [17],

F (t) =

{

−F0 sin(ωt)
2 sin(ωt) if 0 < t < π

ω

0 otherwise,
(25)

which has an amplitude of F0, frequency ω = 0.06, and
starts at time t = 0. Compared with [13], this field be-
longs to a half-cycle pulse, N = 1/2. The corresponding
intensities are considered in the observed regime. We will
use the form (25) in our examples, and later on comment
on some of the differences compared with (23).
We use this model in order to probe different defini-

tions of the time when the electron exits the tunnel. The
standard definition of tunneling exit points equates the
energy of the particle with the potential, at which time
a classical turning point would be reached in the absence
of quantum corrections. As shown in [12–14], this condi-
tion cannot always be imposed in non-static situations,
in which the energy of the electron is not constant and
may not be known in an experiment. As an alterna-
tive, these papers proposed classical back-propagation as
a new method, combined with a definition of the tunnel-
ing exit as the time when the momentum of the particle
in the direction of the force, evaluated on a classically
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back-propagated trajectory, is zero. However, while this
condition is of advantage in evaluations of experimental
results [13, 14], it is questionable, as also pointed out in
[17], because it makes use of a classical property (zero
longitudinal momentum at a classical turning point) in a
region where classical physics is known to be inadequate.
Our methods describe tunneling by a single quantum tra-
jectory, which we will compare directly with the back-
propagated classical trajectory in order to see possible
deviations.

C. Definition of tunneling time for dynamic fields

The main quantity of conceptual interest is called “tun-
neling traversal time” in [17], which is the time the elec-
tron spends in a classically forbidden region between two
turning points. In a constant field, the positions of turn-
ing points depend only on the initial energy of the elec-
tron and can be easily determined, but the definition is
more difficult to implement when the dynamical behavior
of the force is crucial [13].

FIG. 6: Equipotential plot of the all orders at potental at
t = 16, about half-way to the wave peak.

As a solution, [13] proposed the method of classical
back-propagation in order to determine the “tunneling
exit time” defined as the point in time when the electron
reenters a classically allowed region. By definition, the
tunneling exit time is therefore a point in time, while the
tunneling traversal time is a duration. The examples con-
sidered in [13] suggested near-zero tunneling exit times,
which has to be interpreted in the context of the pulse
(23) with maximum intensity at time zero. In the termi-
nology of [17], the tunneling exit time of [13] is therefore
equal to the “tunneling ionization time” defined as the

FIG. 7: Zoom-in of Fig. 6 on the area of interest. The dashed
contour is from t = 15 at which time the tunneling channel
has not completely opened. A little while later, at t = 16, the
tunneling channel is open and the particle can leave.

duration between the maximum of the external force and
the time when the electron reenters a classically allowed
region.
The tunneling ionization time can be accessed in obser-

vations more directly than the tunneling traversal time.
But it does not give us a full picture of the tunneling pro-
cess because the electron may well start tunneling before
the external force has reached its maximum. The near-
zero tunneling exit times or tunneling ionization times
of [13] therefore do not imply that the electron tunnels
without any delay. The example of tunneling times given
in [17] illustrates this difference, which we can show ex-
plicitly using our effective potential: As shown in Figs. 6
and 7, the tunnel has already opened as early as halfway
through the build-up of the external force. We will first
analyze tunneling exit criteria, and then return to the
question of tunneling traversal.
For the time-dependent potential (24) we should use

a definition of tunneling exit time which can account for
non-adiabatic effects. For instance, the energy condition

HQ(p(t), ps(t), x(t), s(t); t) − x(t)F (t) = 0 (26)

gives us a finite time because we always have Veff < 0
when the term U/2ms2 can be ignored. This defini-
tion focuses on the energy gain in an external force: By
the time the electron reaches zero energy, it is in an al-
lowed region for any negative potential. In this condition,
quantum effects can be significant, for instance when the
kinetic energy p2s/2m of fluctuations raises the energy
to positive values; see Fig. 9 below. The condition is
adapted to non-adiabatic situations, in the sense that
the dynamically changing energy is kept track of. While
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this criterion includes non-adiabatic effects, the quantum
dynamics is approximated by an all orders Hamiltonian.
The canonical tunneling exit time is taken to be the in-
stant when (26) is satisfied.
We present results from numerical simulations with the

quantum Hamiltonian (9) for an effective potential (12)
and the initial conditions (14). We mainly show the tun-
neling exit time τex by extracting the instant when the
interaction-free part of the quantum Hamiltonian (26)
crosses the time axis. From this value, we are able to de-
termine the tunneling ionization time τion = τex − τmax,

which is defined with respect to the instant of maximum
field, t = π/2ω in (25); see Fig. 8. In particular, the tun-
neling ionization time τion is several atomic units for a
field amplitude F0 = 0.14 and becomes smaller for higher
intensity pulses. Figure 9 shows that the “quantum” ki-
netic energy TQ = p2s/2m is important for an evaluation
of this condition. The tunneling exit time of the electron
in Fig. 8 explicitly indicates non-zero tunneling ioniza-
tion time for a dynamic barrier, similarly to what has
been obtained in [2, 6, 7] but on a smaller scale.

FIG. 8: The tunneling exit time as an energy condition: HQ − xF = 0. The intermittent lines represent this condition
with respect to time parameter t for three different electric field amplitudes (corresponding to an intensity range of F 2

0 ∼

[6× 1014, 12× 1014]W/cm2). The vertical solid line indicates the instant of maximum field strength at τmax ∼ 27 atomic units.

In addition, laser pulses of sufficiently high frequency
do not lead to tunneling if we keep the same maximal field
amplitude for varying frequencies; see Fig. 10. This im-
plication is easy to understand because less energy then
falls on the atom. However, if we use pulses with vari-
ous frequencies and intensities such that there is always
the same energy hitting the atom, we find that, as the
frequency rises, the tunneling exit criterion gives ioniza-
tion times that tend to zero. In this limit, most of the
energy reaches the atom close to the wave peak. The
result is conceptually similar to the traditional distinc-
tion between tunneling ionization and multiphoton ion-
ization based on the Keldysh parameter γK = ωτK with
τK =

√

2|Ip|/F [27, 28]. If γK ≫ 1, the pulse frequency
ω is too large to allow a process of duration τK to be com-

pleted during a laser cycle, which suggests that tunneling
does not take place at high frequency.

Although the Keldysh time τK refers to the ionization
potential Ip and is therefore adapted to a static electric
field during tunneling, the values of τK and γK give a good
qualitative description of our results: For our values of Ip
and ω, together with the range of electric fields indicated
in Fig. 8, we obtain τK between 3.7 and 4.2 atomic units
close to our ionization times. For the smallest field in
this range, we have γK ≈ 0.25 already quite close the
one. Raising the frequency to the values indicated in
Fig. 10 takes γK up to 0.75, at which point our condition,
plotted in Fig. 10, does not show tunneling ionization in
agreement with what is expected for a Keldysh parameter
close to one.
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FIG. 9: The energy as a function of time, with the kinetic term of the quantum degrees of freedom removed.

FIG. 10: Above a certain critical frequency we no longer obtain tunneling according to the condition (26).

Our method of approximating quantum dynamics al-
lows us to compare different possible tunneling criteria,
in particular criteria based on momentum and energy
conditions for the tunnel exit. The recent study [13], an-
alyzing a model for a single active electron in a helium
atom, obtains a near-zero ionization time using classical
backpropagation and zero longitudinal momentum to de-
fine the tunneling exit time. The basic idea of classical

backpropagation is to evolve the initial state quantum-
mechanically forward to some time after the laser pulse
has ended. Then, the classically transmitted ionized part
of the wave packet is backpropagated and tunneling exit
properties are extracted corresponding to the specific
tunneling criterion applied.

We can compare the momentum condition with the
energy condition that we introduced in (26). First, we
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FIG. 11: Quantum trajectory (solid line) going forwards and
the classical trajectory (dashed line) being back propagated
in time. The quantum Hamiltonian is responsible for the
evolution of the quantum trajectory. The back propagated
trajectory is obtained by first evolving the classical trajectory
backward in time with the initial condition of the quantum
trajectory at some later time.

evolve the system by the quantum Hamiltonian in (9)
forward to some late time, t ∼ 150. Then, using the final
values of {〈x̂〉, 〈p̂〉} at the late time as initial conditions of
position and momentum {xbp, pbp}, we use the classical
Hamiltonian Hcl ≡ p2/2 + V (x) to backpropagate clas-
sically to an early time. Figure 11 shows that the back-
propagation trajectory of the particle stays rather close
to the quantum evolved trajectory. However, the back-
propagated trajectory deviates from the effective trajec-
tory around the instant (t ≈ 27) when the electric field
amplitude is maximum, close to the tunneling exit, where
it bounces off the potential well. In Fig. 12 we show how
the tunneling exit time is realized with respect to the mo-
mentum condition based on classical backpropagation.
There is a non-zero tunneling ionization time τion ∼ 3
(atomic units) in qualitative agreement with but smaller
than what we obtained from the energy condition.

FIG. 12: Momentum, as a function of time, being back propagated in time. The intermittent lines represent the momentum
condition with respect to time parameter t for the same three different electric field amplitudes used for the energy condition.
The vertical line indicates the instant of maximum field strength τmax ∼ 27 atomic units.

So far, our results have been shown for a half-cycle
pulse (25), while [13] used a two-cycle pulse. We repeated
our calculations for one- and two-cycle pulses while keep-
ing the same frequency used in the half-cycle pulse, see
Fig. 13. Figures 14 and 15 confirm our general findings,

and they show that tunneling is possible for significantly
larger field amplitudes than for a half-cycle pulse (for
which less energy falls on the atom). The frequency de-
pendence of tunneling times can also be confirmed. More
cycles in a pulse of the same frequency produce a longer
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FIG. 13: The tunneling energy condition as a function of time for various pulses with different field amplitudes: HCP (half-cylce
pulse, F0 = 0.15), OCP (one-cycle pulse, F0 = 0.45), TCP (two-cycle pulse, F0 = 0.75).

FIG. 14: Quantum trajectory (solid line) going forwards and
the classical trajectory (dashed line) being back propagated
in time for a two-cycle pulse. The quantum Hamiltonian is
responsible for the evolution of the quantum trajectory.

tunneling ionization time according to both criteria eval-
uated here because the field intensity rises more slowly
for bigger N .

FIG. 15: Momentum, as a function of time, being back prop-
agated in time for both one- and two-cycle pulses. The inter-
mittent lines represent the momentum condition with respect
to time parameter t for the same three electric field ampli-
tudes used for the energy condition.

D. Tunneling dynamics of Hydrogen in three

dimensions

As the most realistic one of our models, we now con-
sider the three dimensional case of a Hydrogen atom in
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a time dependent electric field

H =
1

2
|~p|2 − 1

|~r| + ~r · ~E(t) , (27)

where we use a half cycle pulse

~E(t) = −E0 sin
2 (ωt)θ(t)θ(π/ω − t)





sin (ωt)
cos (ωt)

0



 . (28)

The classical Hamiltonian at (27) has the all-orders quan-
tization given in (12).

FIG. 16: Ionization time as a function of the laser intensity
in the 3-dimensional model (27).

We use the definition of the tunnel exit time as the
moment when the quantum Hamiltonian with the elec-

tric field term removed is zero: HQ − ~r · ~E(t) = 0. The
ionization time is then defined as the difference between
the time of the maximum electric field strength and the
exit time, τion = τex − τmax, and shown in Fig. 16. De-
pending on the peak laser intensity, we find an ionization
time that is either positive or negative. We can easily
understand this result as showing that the electron can
tunnel well before the peak reaches the atom, provided
the intensity of the pulse is large enough. However, a
negative ionization time does not imply that there is no
tunneling delay.
Other observables are also accessible as well as cor-

relations between them. Figures 17 and 18 show that
the spot size of the electron jet, defined as the geometric
mean of the transversal fluctuations, depends monoton-
ically on the exit time. This result indicates that there
is indeed a tunneling delay, or at least non-trivial tun-
neling dynamics, even if the ionization time is negative:
The larger the exit time, the more time there is for the
wave packet to spread out. Additionally, the tunneling
time depends monotonically on the offset angle, see Fig-
ures 19 and 20.

E. Tunneling time based on fluctuations

The transverse fluctuations used to define the spot size
have an interesting dynamics which can be used to define

FIG. 17: The exit time as a function of the spot size at a
distance of 1000 atomic units.

FIG. 18: Spot size of the wave packet a distance of 1000
atomic units from the atom.

the tunneling exit time in an inherently quantum way,
rather than using classical dynamics as in backpropaga-
tion. As indicated by Fig. 2, and confirmed below for the
3-dimensional non-static model, the transversal fluctua-
tions have three phases. Initially, the particle is confined
for some time and the fluctuations stay constant near
their ground-state values. During tuneling in the second
phase, the state and its fluctuations undergo a more com-
plicated dynamics. After tunneling and when the pulse
has ended, during the third phase transversal fluctua-
tions grow linearly as is well-known for a free particle.
These phases are clearly demarcated in a plot of the fluc-
tuations, which are readily accessible from simulations in
our effective potential.
Nevertheless, extracting the transverse fluctuations is

not entirely trivial. To do so, we transform to the co-
rotating frame in which some fluctuation parameters si
are transverse to the external force at all times. Under
global rotations, the second-order position moments of a
state, defined in general as

∆ij = 〈(r̂i − 〈r̂i)(r̂j − 〈r̂j)〉 , (29)
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FIG. 19: Off-set angle of the ionized part of the wave packet.

FIG. 20: Tunneling exit time in terms of the offset angle.

transform in the following way

∆̄ij = Oki∆klOlj , (30)

where Oij is the rotation matrix that acts on position co-
ordinates. This transformation results in the transverse
fluctuation

sT =
√

cos2 (θ(t))s2x + sin2 (θ(t))s2y (31)

where θ is the offset angle as a function of time.
The transversal fluctuation during the tunneling pro-

cess is shown in Fig. 21, together with two linear fits of
the first and final stages. The resulting tunneling exit
times in Fig. 22 are less than the time of the peak at
t ≈ 27, so that we obtain negative tunneling ionization
times based on this criterion, similar to Fig. 16. How-
ever, the extrapolated time in Fig. 21 lies somewhere in
the middle of the second stage, and therefore does not
mark the end of the tunneling process.
We have to look at the tunneling dynamics in more de-

tail in order to identify the end of tunneling. In Fig. 23

we show the second time derivative of the transversal

FIG. 21: The transverse fluctuations as a function of time.
The tangent lines of the linear regions are plotted in the dot-
ted lines, and their intersection is marked with a dot.

FIG. 22: Alternative tunnel exit time, based on the fitting
process shown in Fig. 21, as a function of the intensity.

fluctuation as a function of time, which can be inter-
preted as an effective force that causes the spreading.
The three phases are clearly visible, with significant time
dependence and a rich dynamics only in the important
second phase during which tunneling happens. The time
where there is a negative force is interesting, because it
could be interpreted as a squeezing the particle state as it
passes through the tunnel. The last local maximum and
the last inflection point, indicated in the plot, are very
close to the wave peak and gives the time of the maxi-
mum force on the transverse fluctuations. In particular,
the last inflection point can be used as an indicator for
the tunneling exit. For a range of laser intensities, the
resulting tunneling exit times are shown in Fig. 24. In
the entire range shown in this diagram, the exit time is
greater than the time of maximum intensity at t ≈ 27,
and a positive tunneling ionization time of a few atomic
units is obtained.
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FIG. 23: The effective force acting on the transverse fluctuations. We see a rich structure in the force as the particle goes
through the tunneling region. The filled circle and square represent the last local maximum and the inflection point, respectively.

FIG. 24: Tunneling time based on the last inflection point of the tunneling phase force.

IV. SUMMARY

In summary, our main result — an all-orders effective
potential — makes possible a detailed analysis of the tun-
neling dynamics in various situations. It agrees well with

observed features and is able to make new predictions.
Numerical solutions give us an efficient way of generating
data about the state of the electron which can be com-
pared with observations. Our method, perhaps in combi-
nation with numerical simulations of multi-electron wave
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functions, can therefore be used to turn ionization exper-
iments into indirect microscopes focused on the atomic
state.
We have found qualitative agreement between our ap-

proximation and the exact Bohmian treatment. In par-
ticular, there is always a tunneling delay. One advantage
of our new methods is that we have a single effective tra-
jectory describing the quantum state through its expec-
tation values and moments. This trajectory can directly
be compared with the classical back-propagated trajec-
tory, showing crucial deviations near the tunneling exit.
In specific examples, classical back-propagation tends to
underestimate the tunneling exit time. Our results there-
fore indicate non-zero tuneling times, but by about an
order of magnitude less than what had initially been ex-
tracted from experiments. In particular, the tunneling
time in a half-cycle pulse is significantly less than the
tunneling time in a static field at a level of the maximum
field of the pulse, which is not surprising once the impor-
tance of non-adiabatic effects has been realized [12, 17].
We also found that the definition of tunneling ioniza-

tion time in non-constant fields, given by the difference
of the tunneling exit time and the time of maximal field
strength, does not give a full picture of the tunneling dy-
namics. In particular, it is possible for the electron to
start tunneling well before the maximum field is reached.
The entire tunneling process then takes longer than indi-

cated by the tunneling ionization time, considered mainly
in [13]. The tunneling traversal time, used in [17], gives
a more complete picture of time-dependent tunneling. In
our examples, we see that a tunnel opens up already at
weak fields: The intensity assumed in the static example
of Fig. 1 is about one tenth of the intensity used in our
non-static examples, such as Fig. 8; see also Fig. 7.

Unfortunately, it is difficult to extract the full traver-
sal time from experiments, but we have given examples of
indirect signatures, such as the spot size based on fluctu-
ations, which could be useful in this context. Moreover, if
the spot size and a corresponding longitudinal fluctuation
can be measured, one could use it, along with the final
expectation values of position and momentum, as ini-
tial conditions for semiclassical backpropagation defined
as in [12] but using our effective dynamics instead of the
classical dynamics. This process would eliminate poten-
tial problems of classical backpropagation near turning
points.
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