
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Central frequency of few-cycle laser pulses in strong-field
processes

J. Venzke, T. Joyce, Z. Xue, A. Becker, and A. Jaron-Becker
Phys. Rev. A 98, 063409 — Published 10 December 2018

DOI: 10.1103/PhysRevA.98.063409

http://dx.doi.org/10.1103/PhysRevA.98.063409


Central frequency of few-cycle laser pulses in strong-field processes

J. Venzke,∗ T. Joyce,∗ Z. Xue, A. Becker, and A. Jaron-Becker
JILA and Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA

We analyze the role of the difference between the central frequencies of the spectral distributions
of the vector potential and the electric field of a short laser pulse. The frequency shift arises when
the electric field is determined as the derivative of the vector potential to ensure that both quantities
vanish at the beginning and end of the pulse. We derive an analytical estimate of the frequency
shift and show how it affects various light induced processes, such as excitation, ionization and high
harmonic generation. Since observables depend on the frequency spectrum of the electric field, the
shift should be taken into account when setting the central frequency of the vector potential to avoid
potential misinterpretation of numerical results for processes induced by few-cycle pulses.

PACS numbers: 32.80.Fb, 32.80.Wr, 42.50.Hz

I. INTRODUCTION

Few-cycle laser pulses are used in many interesting
strong-field applications (for reviews, see e.g., [1–6]): For
example, high-order harmonics and (isolated) attosecond
pulses are generated, ultrafast atomic and molecular dy-
namics as well as charge transfer and exciton dynam-
ics can be induced and time resolved, molecular struc-
ture can be imaged on ultrashort time scales, or chemi-
cal reactions may be controlled. Therefore, light sources
generating ultrashort intense laser pulses in different re-
gions of the spectrum, at extreme ultraviolet [7], ultra-
violet [8], optical [9], near-infrared [10–12] and infrared
wavelengths [13–15], have been developed over the past
decades. The simulation of the time-dependent response
of matter to a few-cycle pulse, e.g. via the numerical so-
lution of the corresponding time-dependent Schrödinger
equation (TDSE), can however crucially depend on the
definition of the electric field E(t) used. To achieve quan-
titative agreement between theory and experiment, the
potential issues present in both numerical calculations
and experiment must be well understood and minimized.

As pointed out by Chelkowski and Bandrauk [16], the
representation of E(t) via an envelope function times a
trigonometric function may lead to a non-vanishing po-
tential A(t) at the end of the pulse. This inconsistency
can be resolved by first defining the magnitude of the
vector potential A(t) as (we use Hartree atomic units:
e = me = ~ = 1) [16]:

A(t) =
cE0

ωA
f(t) cos(ωAt+ φA), (1)

where f , ωA, c, E0 and φA are the envelope function,
central frequency, speed of light, peak electric field am-
plitude, and carrier envelope phase of the vector poten-
tial, respectively. The prefactors ensure that the peak
intensity of the laser field is I = c

8πE
2
0 . The magnitude
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of the electric field is then obtained via the derivative:

E(t) =− 1

c

∂

∂t
A(t)

=E0f(t) sin(ωAt+ φA)

− E0

ωA

∂f(t)

∂t
cos(ωAt+ φA).

(2)

The expression for the electric field, Eq. (2), includes a
term that depends on the time derivative of f and, hence,
may have significant effects in the case of few-cycle pulses.
As we will show below, a direct implication is that the
central frequency of the electric field spectrum, ωE, is not
equal to ωA. The frequency shift |ωE − ωA| is a purely
electromagnetic effect that is directly related to the def-
inition of the electric field via the vector potential given
in Eq. (2). For long pulses, the frequency shift is small,
but it increases as pulse duration decreases. Note, that
in experiment typically the central laser frequency of the
electric field ωE is measured and reported, while in nu-
merical calculations it is useful to define the laser pulse
via the vector potential and the related central frequency
ωA. It is therefore important to study what impact, if
any, the difference between the central frequencies has on
numerical calculations, or on the interpretation of theo-
retical results.
By solving the time-dependent Schrödinger equation

both numerically as well as within perturbation theory,
we show below that theoretical results obtained for linear
processes—such as excitation and ionization—involving
few-cycle pulses with the same value for the central fre-
quencies ωA and ωE do not coincide. Furthermore, we
find that the frequency shift is also noticeable for non-
linear processes, such as two-photon excitation and high-
order harmonic generation, and it scales with the number
of photons involved. Our results also demonstrate that
it is the central frequency of the electric field ωE that
is the physical relevant quantity for the interpretation of
laser driven quantum mechanical processes. Therefore,
the frequency shift should be taken into account when
setting the central frequency ωA of the vector potential
in a numerical calculation or, more generally, a theoreti-
cal analysis.
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FIG. 1: (Color online) Temporal (left) and spectral (right)
distributions of vector potential (solid lines) and electric field
(dashed line) for pulses with FWHM of 1 cycle (top), and
3 cycles (bottom) at central frequency ωA = 1.0 a.u. of the
vector potential. Also shown is the Gaussian envelope of the
vector potential.

The paper is organized as follows: In Section II, we
present an analytical estimate for the magnitude of the
frequency shift, and discuss how to correct for it. In
Section III, we present results of numerical solutions of
the time-dependent Schrödinger equation, which illus-
trate how the frequency shift affects a number of quan-
tum mechanical processes: photoionization, resonant ex-
citation, and high-harmonic generation. We end with a
brief summary.

II. ESTIMATION OF FREQUENCY SHIFT

The frequency shift due to the difference in central
frequencies is illustrated in Fig. 1, where the vector po-
tential A and the electric field E, obtained from Eqs. (1)
and (2) for a Gaussian envelope f(t), are compared in
both the time and frequency domain. While the tem-
poral behavior is satisfactory, the spectral distributions
reveal different central frequencies. We define the cen-
tral frequency ωA (ωE) as the location of the maximum

in the spectral density |Ã(ω)| (|Ẽ(ω)|). The discrepancy
is much greater for the 1-cycle full-width at half-max
(FWHM) pulse (top), than for the 3-cycle FWHM pulse
(bottom).

For the further analysis, we note that in order for the
central frequencies to be well-defined and consistent with
the definition of ωA in Eq. (1), we make several assump-
tions about the envelope f(t):

• f(t) is nonnegative and continuously differentiable,

• f(t) falls off at least exponentially for large |t|,

Name Envelope Function f(t) N/NFWHM γ2

Gaussian e−(t/T )2 0.849 0

Cos2

{

cos2
(

t
T

)

−
π
2
≤

t
T

≤
π
2

0 otherwise
0.723 -0.594

Cos4

{

cos4
(

t
T

)

−
π
2
≤

t
T

≤
π
2

0 otherwise
0.777 -0.381

Sech sech( t
T
) 1.19 2.00

TABLE I: Several common analytic pulse envelopes. The con-
version factor between N , as defined in Eq. (5) (number of
cycles within one standard deviation to either side of the max-
imum), and the more typical NFWHM (number of cycles in the
full-width half-maximum of the electric field) is given. The
last column shows the excess kurtosis γ2, defined in Eq. (7),
which is independent of the pulse duration T .

• f(t) contains no appreciable Fourier components
larger than ωA.

These assumptions could be relaxed significantly, but
they are sufficient for the present discussion and all prac-
tical purposes. The ratio of the central frequencies is
given by the leading terms of an expansion in 1/N as
(see Appendix A):

ωE

ωA
=

1 +
√

1 + 4(πN)−2

2
+

γ2
6π4

N−4 +O(N−6)(3)

≈ 1 +
√

1 + 4(πN)−2

2
. (4)

Here

N ≡ ωA

π

√

√

√

√

∫

∞

−∞
(t− t0)2f(t)dt
∫

∞

−∞
f(t)dt

. (5)

is the number of cycles within one standard deviation to
either side of the pulse center, with

t0 ≡
∫

∞

−∞
tf(t)dt

∫

∞

−∞
f(t)dt

, (6)

and lastly γ2 is the excess kurtosis of the envelope

γ2 ≡

[

∫

∞

−∞
(t− t0)

4f(t)dt
] [

∫

∞

−∞
f(t)dt

]

[

∫

∞

−∞
(t− t0)2f(t)dt

]2 − 3. (7)

Note that N is proportional to the more typical NFWHM

(number of cycles in the FWHM of f(t)), but the ratio
N/NFWHM depends on the shape of the envelope (c.f.,
Table I).
Eq. (3) indicates that the ratio ωE/ωA depends on the

number of cycles and the pulse shape, but it is indepen-
dent of peak intensity, carrier envelope phase, ellipticity,
and ωA itself. In fact, the first term of the expansion,
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FIG. 2: (Color online) Ratio ωE/ωA as a function of the nor-
malized number of cycles N defined in Eq. (5). The numeri-

cal results were calculated by maximizing Ẽ(ω) for Gaussian
(dotted line), sech (dashed-dotted line), and sin4 (dashed line)
envelopes and are compared with the simple analytic estimate
(solid line) given in Eq. (4). The inset reveals a slight de-
pendence on envelope shape, which can be attributed to the
correction term in Eq. (3).

Eq. (4), is a very accurate estimate even for single cy-
cle pulses, showing that the shift is nearly independent
of pulse shape. This can be seen from the comparison
between the predictions based on Eq. (4) with the exact
frequency shift for a variety of pulse shapes in Fig. 2. The
exact shift was calculated by numerically maximizing the
analytic expressions for |Ẽ(ω)|. The slight dependence
on pulse shape is visible in the inset; the differences are
described well by the correction term in Eq. (3), which
involves the excess kurtosis γ2.

In the next section, we demonstrate that ωE is the
physically observable and relevant central frequency.
Therefore, when modeling the interaction with a pulse
using Eqs. (1) and (2), one should determine ωA such
that it corresponds to the correct ωE . There are two
different methods to do this. The first one is to specify
N , and use Eq. (4) to obtain ωA. However since N de-
pends implicitly on ωA through Eq. (5), the envelope f(t)
must be stretched in time by the same factor such that
N remains unchanged. The second method is to specify
f(t) instead of N . In that case, substituting Eq. (5) into
Eq. (4) and solving for ωA yields

ωA ≈ ωE −
∫

∞

−∞
f(t)dt

ωE

∫

∞

−∞
(t− t0)2f(t)dt

. (8)

Greater accuracy could be obtained in either case by in-
cluding the correction term in Eq. (3); however, the re-
sults in Fig. 2 show that this is in general not necessary.

III. APPLICATIONS

In this section we present results of numerical calcula-
tions and first-order perturbation theory which exemplify
effects of the frequency shift on observables related to
excitation, ionization and high harmonic generation in-
duced by short laser pulses. The frequency shifts obtain
using first-order perturbation theory and numerical cal-
culations agree well with our analytical predictions shown
in Section II and derived in Appendix A. To this end, we
solved the 3D one-electron time-dependent Schrödinger
equation (TDSE) in velocity gauge:

i
∂

∂t
ψ(r, t) =

[

p2

2
− A(t) · p

c
+ V (r)

]

ψ(r, t) (9)

and length gauge

i
∂

∂t
ψ(r, t) =

[

p2

2
+E(t) · r+ V (r)

]

ψ(r, t) (10)

for atomic hydrogen with a soft-core Coulomb potential

V (r) = − 1√
r2 + α2

. (11)

We consider a linearly polarized laser pulse within the
dipole approximation, soA(t) = A(t)ẑ andE(t) = E(t)ẑ.
Taking advantage of azimuthal symmetry, the wavefunc-
tion can be represented in 2D cylindrical coordinates ρ
and z. We used the second order finite difference method
for spatial derivatives and the fully implicit second order
Crank-Nicholson method for time propagation (for more
details on the numerical implementation, see [17]). The
laser field magnitudes A(t) and E(t) were defined as in
Eq. (1) and Eq. (2), with a Gaussian envelope function
f(t). Specifically,

A(t) =
E0c

ωA
sin(ωAt)e

−(2t/τ)2 ln 2 , (12)

where τ is the FWHM pulse duration. The results pre-
sented below were obtained in velocity gauge, but addi-
tional test calculations in length gauge have confirmed
that the results are gauge invariant.
In all calculations for single photon ionization

(Sec. III A), excitation (Sec. III B) and high harmonic
generation (Sec. III C) we used α = 0.029 a.u., a grid
spacing of 0.1 a.u., and a time step of 0.1 a.u. The soft
core parameter is used to match the ground state energy
to that of atomic hydrogen, given by E1s = −0.5001
a.u. on the grid, and an excited state energy of E2p =
−0.12504 a.u. To ensure the wavefunction remains on the
grid for our calculation of the photoelectron spectrum,
the grid extended 500 a.u. in the ρ-direction and 1000
a.u in the z-direction, with an exterior complex scaling
absorbing boundary in the outer 50 a.u for single photon
ionization (Sec. III A). The excitation (Sec. III B) and
high harmonic generation (Sec. III C) calculations were
preformed on a grid that extended over 100 a.u. in the
ρ-direction and 200 a.u. in the z-direction, with an ab-
sorbing boundary over the outer 5 a.u.
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FIG. 3: (Color online) Photoelectron spectra P (k) as func-
tion of photoelectron momentum obtained for interaction of
hydrogen atom with laser pulses at central frequencies ωA = 2
(dashed line) and ωE = 2 (solid line) and duration of (a) 10
cycles and (b) 2 cycles FWHM.

A. Single Photon Ionization

First, we consider single photon ionization of the hy-
drogen atom by a few-cycle laser pulse with peak inten-
sity 1013 W/cm2 and central frequency ωcentral = 2.0
a.u. The central frequency is implemented either by set-
ting ωA = ωcentral or setting ωE = ωcentral, using the
method described in the previous section. Photoelectron
momentum spectra P (k) were obtained by the follow-
ing procedure: the TDSE was propagated for five times
the FWHM pulse duration plus an additional 100 a.u. in
time, then all bound states with principle quantum num-
ber n ≤ 8 were projected out, and lastly the remaining
unbound wavepacket ψionized was projected onto coulomb
wave functions up to lmax = 5. That is,

P (k) =

lmax
∑

l=0

∣

∣

∣

∣

∫

Fl(− 1
k , kr)Y

∗

l0(r̂)ψionized(~r)d
3~r

∣

∣

∣

∣

2

. (13)

The results in Fig. 3 show that in fact the photoelec-
tron spectra for central frequency ωA = 2 a.u. (solid lines)
and ωE = 2 a.u. (dashed lines) do not agree due to the
frequency shift. As expected, the discrepancy is larger
for 2 cycle FWHM (panel (b)) than for 10 cycle FWHM
(panel (a)) pulses. These results however raise the ques-
tion whether the central frequency of the vector potential
ωA or the central frequency of the electric field ωE is the
relevant quantity for further physical interpretation or
a comparison with experimental data. To address this
question, we consider the resonant population transfer
between bound states by analyzing results of numerical

calculation as well as those obtained using first-order per-
turbation theory in the next subsection.

B. Excitation

Next, we examine transitions to the n = 2 orbitals
in the hydrogen atom as a function of both pulse length
and central frequency of the vector potential (ωA) and the
electric field (ωE). Typically, the excitation probability is
greatest when the central frequency of the laser matches
the resonant frequency for np photon absorption, given
by

ωres = |Efinal − Einitial|/np, (14)

where Efinal and Einitial are the energy of the final and
initial state, respectively. In view of the predicted fre-
quency shift between the central frequencies ωA and ωE ,
we therefore expect that the results for resonant excita-
tion will provide insights into the physical relevance of
ωA vs. ωE.
Within first order perturbation theory, the excitation

probability is given by (for further analysis, see Appendix
B):

Pi→f = |Ã(ωres)|2
(µωres

c

)2

=
π

ln 2

(

µE0ωresτ

4ωA

)2
[

e−(ωA−ωres)
2τ2/(16 ln 2)

− e−(ωA+ωres)
2τ2/(16 ln 2)

]2

,

(15)

Here we have used the pulse defined in Eq. (12) and µ =
27.53−5 is the transition dipole for the hydrogen 1s→ 2p
transition. Eq. (15) shows that the excitation probability
Pi→f is not maximized at ωA = ωres, due to the prefactor

of ω−2
A . This prefactor originates from Eq. (1), where

it ensures that the peak intensity is held fixed as ωA

changes.
We have also obtained the population in the 2p state

due to single photon excitation by direct numerical solu-
tion of the TDSE. These numerical results are presented
together with those obtained within first order pertur-
bation theory, Eq. (15), in Fig. 4 as function of ωA (left
column) and ωE (right column) for various pulse lengths.
The pulse length τ is measured in multiples of the period
associated with the resonant frequency

τnp
=

2π

ωres
=

2πnp

|Efinal − Einitial|
, (16)

such that τ1 ≈ 405 attoseconds, τ2 ≈ 811 attoseconds
and so on for the 1s → 2p transition. For long pulses
the peak in the population (marked by a green dot) oc-
curs at the expected frequency ωres (marked by vertical
line) for a resonant transition in all distributions. When
the pulse length is decreased, the peak in the distribu-
tions as a function of ωE (right column) remains at ωres.



5

10−2

10−1

2p
 p
op

ul
at
io
n

(a)

TDSE

pulse duration (in units of τ1)
03 04 05 07 10

(b)

0.35 0.40
ωA (a.u.)

10−2

10−1

2p
 p
op

ul
at
io
n

(c)

PT

0.35 0.40
ωE (a.u.)

(d)

FIG. 4: (Color online) Population in 2p state following one-
photon excitation of hydrogen atom with a laser pulse as a
function of ωA (left) and ωE (right) for different pulse lengths
at peak intensity 1012 W/cm2. Each line represents results
obtained for a fixed pulse duration in terms of τ1 = 405
as. The results from time-dependent Schrödinger equation
(TDSE) calculations (a,b) and predictions within first-order
perturbation theory (PT) (c,d) are in excellent agreement.
The vertical line marks the energy difference between 2p and
initial 1s state. The green dots indicate the maximum excited
state population for each pulse duration.

In contrast, the peak shifts significantly towards lower
frequencies in the distributions as a function of ωA (left
column) due to the frequency shift. We note that the
results of our numerical calculations (upper row) are in
excellent agreement with those obtained using first-order
perturbation theory (lower row) and indeed both reveal
the same dependence on the central frequencies ωA and
ωE . Thus, the differences in the distributions as func-
tions of ωA and ωE are not a numerical artifact but are
due to the frequency shift. Furthermore, the observed
shift agrees with our estimate obtained in the previous
section. Thus, we can conclude that the central frequency
of the electric field is the physically relevant quantity for
interpreting laser induced excitation processes.

These conclusions are further supported by our numer-
ical results for two-photon excitation from the 1s to the
2s state in Fig. 5. Whereas the peak of the population
as a function of ωE (panel b) occurs at ωres, independent
of the pulse duration, the peak of the population as a
function of ωA once again shifts to lower frequencies in
Fig. 5(a). We note that, if the population as function of
ωA in Figs. 4 and 5 were used to determine the energy
difference |Efinal − Einitial|, the error caused by the fre-
quency shift would be twice as much in the two-photon
case as in the one-photon case, accounting for the differ-
ence in τnp

. This indicates that multiphoton processes
may be affected by the frequency shift even more than
few-photon processes. To further illustrate this point, we
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ωA (a.u.)
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FIG. 5: (Color online) Numerical results for population in 2s
state following 2-photon excitation with τ2 = 811 as. The
vertical line marks half of the energy gap between 1s and
2s representing the resonance condition for the two photon
process. Other parameters are the same as in Fig. 4.

examine high harmonic generation in subsection III C.

C. High Harmonic Generation

Finally, we consider a highly nonlinear laser induced
process. High harmonic generation (HHG) in atoms can
be described as absorption of an odd number of photons
leading to the excitation of a electron, followed by the
emission of a single photon as the electron recombines
into the ground state. Based on the results above, we ex-
pect that in this nonlinear process the frequency shift ∆ω
between ωA and ωE will lead to a shift of the energy of the
npth harmonic by np∆ω. In our calculations the HHG
spectrum has been obtained by a Fourier transformation
of the time dependent dipole acceleration along the laser
polarization direction. A Hanning filter was used to re-
turn the dipole acceleration to zero at the beginning and
end of the simulation.
Fig. 6 shows the various harmonics in a HHG spec-

trum as a function of the number of cycles in the driv-
ing laser pulse at a peak intensity of 1 × 1014 W/cm2

and central frequencies ωA = 0.0625 a.u. (upper panel)
and ωE = 0.0625 a.u. (lower panel), corresponding to
a wavelength of 730 nm. The spectrum consists of odd
harmonics and additional emission lines due to the pop-
ulation of excited states during the interaction with the
laser pulse. While we will focus on the generation of har-
monics, we note that the emission lines occur at photon
energies between the 5th and 9th harmonics. The corre-
sponding field-free energy differences between the excited
states and the ground state in our numerical model of the
hydrogen atom are marked, as reference, by white verti-
cal dashed lines.
In the spectrum as function of multiples of ωA (panel

a) one can see that the centers of the harmonics do shift
to energies larger than npωA, as the pulse duration de-
creases. In fact, the energies of the harmonics follow the
analytical predictions for npωE (green solid lines). As
expected, the shift is as larger as larger the harmonic
number. In contrast, in the HHG spectrum obtained as



6

3 5 7 9 11 13
energy (in units of ωcentral)

2.5

5.0

7.5

10.0
N
FW

H
M

(a)

0.010
0.015
0.020
0.025
0.030
0.035
0.040

3 5 7 9 11 13
energy (in units of ωcentral)

2.5

5.0

7.5

10.0

N
FW

H
M

(b)

0.010
0.015
0.020
0.025
0.030
0.035
0.040

FIG. 6: (Color online) HHG spectrum at driver wavelength 730 nm (ωcentral = 0.0625 a.u.) vs. number of cycles NFWHM. In
the upper plot the central frequency ωA = ωcentral while in the lower panel ωE = ωcentral. The vertical white dashed lines
mark field-free transition energies between excited states and the ground state, while the green solid lines mark the harmonic
energies npωE with respect to the central frequency of the electric field.

multiples of ωE (panel b) the centers of the harmonics
remain at the same energy, i.e. npωE (green solid lines),
as the pulse duration decreases. This confirms the im-
portance of the shift between the central frequencies of
the vector potential and the electric field in nonlinear
processes driven by ultrashort pulses. Furthermore, the
HHG results confirm that the central frequency of the
electric field ωE is the physical relevant quantity for the
interpretation of light induced processes. Consequently,
if in a numerical simulation or theoretical analysis the
vector potential is set via Eq. (1) it is necessary to con-
sider the frequency shift between ωA and ωE to avoid a
misinterpretation of the results. Our analytical estimates
of the frequency shift in Eq. (4) and Eq. (8) provide for-
mulas to obtain ωA from the physically relevant ωE .

IV. SUMMARY

We have shown that the definition of the electric field
of a laser pulse via the derivative of the vector poten-
tial, which guarantees that both quantities vanish at the
beginning and end of the pulse, implies that the central
frequencies of the spectral distributions of the vector po-
tential and electric field do not coincide.

In our analysis we have derived an analytical estimate
of the frequency shift, which shows that the shift mainly
depends on the number of cycles in the pulse and be-
comes most relevant for few-cycle pulses. Utilizing re-
sults of numerical simulations and first-order perturba-
tion theory we have analyzed how the frequency shift af-
fects excitation, ionization and high harmonic generation
induced by short laser pulses. The effect is found to be
most noticeable in nonlinear strong-field processes since
the frequency shift scales with the number of photons
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involved. Both, numerical results and predictions based
on first-order perturbation theory agree well with each
other and confirm that the central frequency of the elec-
tric field is the physically relevant quantity for the inter-
pretation of the light induced processes. Thus, the shift
should be taken into account when setting the central fre-
quency of the vector potential in numerical simulations
to avoid potential misinterpretation of the theoretical re-
sults, specifically when compared to experimental data.
Eq. (4) and Eq. (8) provide formulas to obtain ωA from
the physically relevant ωE .
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Appendix A: Derivation of frequency shift

In this Appendix we derive the expansion of the fre-
quency shift in Eq. (3). To do this, we first introduce
a fixed point iteration that will be used to calculate the
leading terms of an expansion in 1/N . Here the limit
N → ∞ refers to keeping ωA fixed, but scaling the enve-
lope f(t) → f(λt) so that N → λ−1N according to Eq.
(5), and taking the limit λ→ 0.
We start with some definitions. Fourier transforms will

be denoted by a tilde, so that for any function g(t),

g̃(ω) ≡ 1

2π

∫

∞

−∞

g(t)e−iωtdt. (A1)

The vector potential of Eq. (1) can be written in the
frequency domain as

Ã(ω) =
1

2
eiφf̃(ω − ωA) +

1

2
e−iφf̃(ω + ωA). (A2)

The assumptions on f(t) made in Sec. II imply that the
second term can be neglected for ω > 0. And since f(t)

is nonnegative, the spectral distribution |Ã(ω)| peaks at
ωA.
In the frequency domain, Ã and Ẽ are related by

Ẽ(ω) = − iω
c
Ã(ω). (A3)

The factor of ω shifts the peak so that ωE ≥ ωA.

Theorem 1. For sufficiently large N , the ratio of the
central frequencies is ωE/ωA = 1+X, where X is a fixed
point of the following iteration:

xi+1 − xi =
1

π2N2
[1 + ωA(1 + xi)g(xi)]

with g(x) ≡ d

dω

[

log |f̃(ω)|
] ∣

∣

∣

ω=ωAx

(A4)

and N is defined in Eq. (5).

Proof. Using Eqs. (A2) and (A3),

Ẽ(ω) = − iω
2c
eiφf̃(ω − ωA)−

iω

2c
e−iφf̃(ω + ωA). (A5)

For ω > 0 the second term can be dropped. Therefore,
ωE , which is defined as the position of the maximum of
|Ẽ(ω)|, also maximizes

log
[

ω|f̃(ω − ωA)|
]

. (A6)

To locate the maximum, we set the derivative equal to
zero, substitute X = ωE/ωA − 1 and have

0 = ω−1
E +

d

dω

[

log |f̃(ω − ωA)|
]
∣

∣

∣

ω=ωE

0 = 1 + ωE
d

dω′

[

log |f̃(ω′)|
] ∣

∣

∣

ω′=ωAX

0 = 1 + ωA(1 +X)g(X).

(A7)

Therefore, X is a fixed point of the iteration.

Standard techniques can be applied to analyze this
fixed point iteration (see e.g., [18]). We therefore state
the following theorem 2 without proof:

Theorem 2. Starting from x1 = 0, and assuming N
is not too small, the fixed point iteration defined in Eq.
(A4) converges to the smallest positive fixed point, which
is X = ωE/ωA − 1. The rate of convergence is O(N−2),
and X itself is also O(N−2).

Before proceeding, we note that the fix point iteration
provides an algorithm to compute the frequency shift
numerically. In the remainder of the appendix we will
however use the two theorems above to derive a series
expansion in the limit of large N , which gives us the ex-
pression in Eq. (3). To this end, we apply the iteration to
a formal truncated power series in 1/N . Because of the
O(N−2) convergence, each iteration gives an additional
term in the expansion. We compute only the first two
terms here, leaving the error at O(N−6).
To do so, we would like to expand g(x) in a Taylor

series about x = 0. The logarithm of a Fourier transform
resembles the cumulant generating function in statistics
[19],

log
[

f̃(ω)
]

= log
(κ0
2π

)

+

∞
∑

n=1

κn
(iω)n

n!
. (A8)
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Accounting for the fact that f(t) is not normalized, the
first few cumulants are defined as

κ0 =

∫

∞

−∞

f(t)dt

κ1 = κ−1
0

∫

∞

−∞

tf(t)dt

κ2 = κ−1
0

∫

∞

−∞

(t− κ1)
2f(t)dt

κ3 = κ−1
0

∫

∞

−∞

(t− κ1)
3f(t)dt

κ4 = κ−1
0

∫

∞

−∞

(t− κ1)
4f(t)dt− 3κ22

κ5 = κ−1
0

∫

∞

−∞

(t− κ1)
5f(t)dt− 10κ3κ2 .

(A9)

Substituting Eq. (A8) into the definition of g yields

g(x) =
d

dω

[

log |f̃(ω)|
] ∣

∣

∣

ω=ωAx

=
d

dω
Re

[

log f̃(ω)
] ∣

∣

∣

ω=ωAx

=
d

dω

[

∞
∑

n=1

(−1)nκ2n
ω2n

(2n)!

]

∣

∣

∣

ω=ωAx

=

∞
∑

n=1

(−1)nκ2n
(ωAx)

2n−1

(2n− 1)!

=− κ2ωAx+ κ4
(ωAx)

3

6
+O(x5)

(A10)

Comparing Eq. (A9) to Eqs. (5) and (7) indicates

κ2 =

(

πN

ωA

)2

, κ4 = γ2

(

πN

ωA

)4

. (A11)

Using the Taylor expansion for g(x), we apply the fixed
point iteration in Eq. (A4) to a formal power series trun-
cated at order O(N−6):

x1 = 0

x2 = (πN)−2

x3 = 2(πN)−2 + ωA[(πN)−2 + (πN)−4]g((πN)−2)

= (πN)−2 + (γ2

6 − 1)(πN)−4 +O(N−6)

x4 = (πN)−2 + (γ2

6 − 1)(πN)−4 +O(N−6)
(A12)

Since x3 = x4 up to O(N−6), the iteration has converged
after two iterations to the leading terms. Conveniently,
all terms in the full expansion contain only κ2 but no
higher cumulants and can be re-summed into a square
root:

X =
−1 +

√

1 + 4(πN)−2

2
+

γ2
6π4

N−4+O(N−6) (A13)

and hence,

ωE

ωA
=

1 +
√

1 + 4(πN)−2

2
+

γ2
6π4

N−4+O(N−6). (A14)

The fixed point iteration can be used in this way to cal-
culate as many terms in the expansion as desired. Only
even powers of N appear, and the coefficient of the N−2n

term contains even cumulants of f(t) up to κ2n.

Appendix B: Central frequency in perturbation

theory

In this Appendix, we clarify the significance of ωE in
first order perturbation theory. Using the dipole approx-
imation and the interaction representation, the probabil-
ity amplitude to go from initial state |i〉 to final state |f〉
by absorbing one photon is

Mi→f = −ic−1Ã(ωif ) 〈f | p̂ |i〉 = −iẼ(ωif ) 〈f | x̂ |i〉 .
(B1)

The last equality implies that the transition amplitude is
gauge invariant, which is a consequence of the following
relations,

Ẽ(ωif ) = −iωifc
−1Ã(ωif )

〈f | p̂ |i〉 = −iωif 〈f | x̂ |i〉 .
(B2)

As in Sec. III B, we seek to maximize the excitation
probability as a function of the central frequency of the
laser pulse: either |Mi→f (ωA)|2 or |Mi→f (ωE)|2, where
ωA and ωE are related by Eq. (3).
If we were setting E(t) = f(t) cos(ωEt+ φ) directly,

then |Mi→f (ωE)|2 would be maximized when ωE = ωif .
Instead, we are using the pulse definition in Eq. (1), but
|Mi→f (ωA)|2 does not peak exactly at ωA = ωif because

of the prefactor ω−1
A .

The Fourier transform of Eq. (1) is

Ã(ωif ;ωA) = cE0ω
−1
A f̃(ωif − ωA)

= cE0ω
−1
if [1 + ω−1

if x+O(x2)]f̃(x),
(B3)

where x = 1 − ωA/ωif . Using the methods developed in
Appendix A, it can be shown that |Mi→f (x)|2 is maxi-
mized when

x = (πN)−2 +O(N−4), (B4)

which corresponds to

ωA = ωif [1− (πN)−2 +O(N−4)]

= ωif +O(N−2)

ωE = ωA[1 + (πN)−2 +O(N−4)]

= ωif +O(N−4).

(B5)

In the few-cycle regime, O(N−4) is small but O(N−2) is
not, so the resonance appears at ωE = ωif , not ωA =
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ωif . In this sense, ωE is the physically relevant central
frequency for single-photon processes, even when we set
A(t) and calculate in the velocity gauge.
This discussion applies to both bound-bound transi-

tions (Sec. III B) and bound-continuum transitions (Sec.
III A). However, in the second case the transition dipole
〈f | x̂ |i〉 depends on the final energy, and can shift the
peak photoelectron energy away from either ωE or ωA.
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