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We study electron momentum vortices in single-photon double ionization of H2 by time-delayed,
counter-rotating, elliptically-polarized attosecond pulses propagating along k̂ either parallel or per-
pendicular to the molecular axis R. For k̂ ‖ R, kinematical vortices occur similar to those found

for He. For k̂ ⊥ R, we find dynamical vortex structures originating from an ellipticity-dependent
interplay of 1Σ+

u and 1Π+
u continuum amplitudes. We propose a complete experiment to determine

the magnitudes and relative phase of these amplitudes by varying pulse ellipticities and time delays.

I. INTRODUCTION

An unusual kind of Ramsey interference [1] was re-
cently predicted to result in matter-wave vortex struc-
tures in the electron momentum distributions result-
ing from single ionization of He by a pair of time-
delayed, counter-rotating, circularly-polarized attosec-
ond pulses [2]. The vortex structures and electron an-
gular distributions were shown to be exquisitely sensitive
to the pulse polarizations and their time delay. These
sensitivities indicate applications to both laser pulse di-
agnostics and control of electron motions. Electron mo-
mentum vortices for multiphoton single ionization of He
were also predicted [3]. These predictions were confirmed
experimentally for three-photon [4] and four-photon [5]
single ionization of potassium atoms using time-delayed,
circularly-polarized femtosecond pulses. The predictions
of electron vortices in single ionization of He [2, 3] also
stimulated a number of theoretical studies of the oc-
currence of electron vortices in other systems and pro-
cesses, including in ionization of single-electron molec-
ular ions [6, 7], in single-photon [8] and multiphoton [9]
double ionization of He, in pair production processes [10],
and in H-atom strong field ionization processes [11–13].

Although Refs. [2, 3] treated two-electron correlations
in single photoionization processes, perturbation theory
(PT) analyses showed that vortices produced by single-
color fields originate from kinematic factors that are in-
dependent of the photoionization dynamics. Similarly,
for double photoionization (DPI) of He (in which elec-
tron correlation is essential) by time-delayed, oppositely
elliptically-polarized attosecond pulses it was shown that
such kinematical vortices occur for a particular class of
electron detection geometries in which one can extract a
dynamically-independent kinematic factor from the six-
fold differential probability (SDP) [8]. The occurrence
of dynamical vortices (in which dynamical amplitudes
depend on the azimuthal angles of the photoelectrons)
was not observed in single color DPI of He [8]. However,
the non-spherical symmetry of the H2 molecule offers the
possibility of uncovering features that do not occur for
spherically symmetric atomic targets, such as the occur-
rence of heretofore unexpected dynamical vortices.

In this paper we study occurrence of vortices in elec-
tron momentum distributions produced in single-photon
(~ω = 75 eV) double ionization of fixed-in-space H2 in
its 1Σ+

g ground state by time-delayed, counter-rotating,
elliptically-polarized (chiral) attosecond pulses for two

cases: k̂ ‖ R and k̂ ⊥ R, where k̂ is the laser prop-
agation direction and R is the internuclear axis. Our
results are based on ab initio numerical solutions of
the six-dimensional time-dependent Schrödinger equa-
tion (TDSE) and analytic PT analyses. We report five

main findings: (i) For k̂ ‖ R, only 1Π+
u continuum states

are excited and kinematical vortices occur under the
same conditions as in DPI of He [8]; (ii) For k̂ ⊥ R, both
1Σ+

u and 1Π+
u continuum states are excited by each pulse

and unexpected dynamical vortices are found to originate
from Ramsey interference of the two resulting electron
wave packets; (iii) The occurrence of the dynamical vor-
tices can be controlled by the pulse ellipticities; (iv) For
fixed excess energy E, the time delay τ between pulses al-
lows control of the AΣ and AΠ amplitude contributions
to the two-electron angular distributions; (v) Combin-
ing these features, we propose a complete experiment in
which both the magnitudes and the relative phase of the
AΣ and AΠ amplitudes can be determined by varying the
pulse ellipticities and time delays.

This paper is organized as follows. In Sec. II we
provide a brief description of our numerical methods.
In Sec. III we present our analytical and numerical re-
sults for DPI of H2 by time-delayed, counter-rotating,
elliptically-polarized attosecond pulses propagating along
k̂ either parallel or perpendicular to the molecular axis
R. For each of these two cases, we present results for
the momentum distributions of the two ionized electrons.
We then focus on the k̂ ⊥ R case, presenting the two-
electron angular distributions and proposing a complete
experiment for determining the magnitudes and relative
phases of the two dynamical amplitudes involved in this
DPI process. In Sec. IV we summarize our key results
and present our conclusions. Finally, in Appendix A we
give results of various tests we have carried out to con-
firm the convergence of our numerical results; and in Ap-
pendix B we present analytical PT derivations of the key
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FIG. 1. Electron detection geometries for DPI of H2 by a pair
of time-delayed oppositely elliptically-polarized pulses propa-
gating parallel (k̂ ‖ R, top) or perpendicular (k̂ ⊥ R, bottom)

to the internuclear vector R, with k̂ the laser propagation
direction. Left column: p1 ‖ k̂ and p2 is in the laser polar-

ization plane (ǫ̂, ζ̂) with spherical angles (θ2 = π/2, ϕ2), with
p1 and p2 denoting the momenta of the outgoing electrons.
Right column: back-to-back emission of electrons in the po-
larization plane where θ1 = θ2 = π/2 and ϕ2 = ϕ1 − π. In all

panels, 0 ≤ ϕ2 ≤ 2π and we fix k̂ ‖ ẑ, ǫ̂ ‖ x̂, and ζ̂ ‖ ŷ. The
origin of coordinates is at the center-of-mass of the nuclei.

equations used to interpret our numerical results. Atomic
units (a.u.) are used throughout this paper unless speci-
fied otherwise.

II. BRIEF DESCRIPTION OF NUMERICAL

METHODS

In this section we begin by providing a brief overview of
ab initio computational methods that have been used to
study DPI of the H2 molecule. We then briefly describe
the methods we have used in this work.
Ab initio numerical calculations of the triply dif-

ferential cross sections (TDCS) for DPI of H2 have
been carried out using two different representations of
the two-electron wave functions. One group of cal-
culations used a single-center spherical coordinate rep-
resentation [14–17], while a second group of calcula-
tions used a two-center prolate spheroidal coordinate
representation [18–20]. The first calculations for the
TDCS were done in spherical coordinates using either
the time-independent exterior complex scaling (ECS)
method [16, 17] or the time-dependent close-coupling
(TDCC) method [14]. Taking into account the experi-
mental uncertainties in the scattering angles, the agree-
ment between the theoretical calculations and experi-
mental results was good [14, 16, 17]. Subsequently, three
calculations were carried out in prolate spheroidal co-
ordinates, using the ECS method [18] and the TDSE
method [19, 20]. Also, another TDSE calculation was
carried out in spherical coordinates using a single-center
partial-wave expansion of the wave packet in terms of

bipolar harmonics [15]. For a laser pulse linearly polar-
ized either along or perpendicular to the molecular axis,
the TDCS results obtained by these different methods
were compared in Refs. [15, 19, 20]. Except for the TDCS
obtained within the ECS method in prolate spheroidal
coordinates [18], excellent agreement was found between
the prolate spheroidal coordinate results [19, 20] and
those in spherical coordinates using the ECS method [17],
the TDCC method with a larger box size than in [14] (see
Refs. [15, 19]), and a variant of the TDSE method [15].
To obtain the SDP for DPI of H2 numerically, we

have generalized our code for solving the two-electron
TDSE for He interacting with chiral pulses [2, 3, 8, 21]
to take into account the two-center H2 problem within
the fixed-nuclei approximation (as in Refs. [14–20]). As
in Refs. [14, 15], we use a single-center, time-dependent
close-coupling expansion [14, 15] of the two-electron wave
packet in spherical coordinates (with the origin at the
center-of-mass of the nuclei). To discretize the radial part
of the two-electron wave packet, we use a finite-element
discrete-variable-representation (FE-DVR) [22] in which
60 finite elements equally spaced by 2 a.u. are used. An
eight-point Gauss-Legendre-Lobatto basis is used within
each FE, which yields a total of 421 DVR functions in
each radial coordinate up to 120 a.u. [23]. To efficiently
time propagate the wave packet Ψ(r1, r2;R, t) for chi-
ral pulses, we employ a real-space-product algorithm [23]
together with a Wigner rotation transformation [24, 25].
After the end of the pair of time-delayed laser pulses
with total duration Tf = τ + T (where T is the total du-
ration of each pulse and τ is the time delay between the
two laser pulses), we freely propagate in time the wave
packet Ψ(r1, r2;R, t) (i.e., the solution of the TDSE) for
a longer additional time Tp in order to ensure that its
doubly-ionized part, ΨC(r1, r2;R, Tf +Tp), is sufficiently
far away from the nuclei, and also so that the two photo-
electrons are well separated from each other [15, 19]. At
a time t = Tf + Tp (where Tp = 13 − 20 optical cycles),
we obtain the SDP as,

W = |〈Ψ(−)
p1,p2

(r1, r2)|ΨC(r1, r2;R, Tf + Tp)〉|
2. (1)

Here ΨC equals the two-electron wave packet (that we ob-
tain by solving the TDSE within a radial box of 120 a.u.)
from which we have removed contributions of bound and
singly ionized states (as done in Refs. [15, 26]). The field-

free double-continuum final state Ψ
(−)
p1,p2

with excess en-
ergy E is approximated by a product of two Coulomb
waves with charge Z = 2 [15, 19]. All our TDSE results
have been verified to be converged (see Appendix A).

III. ANALYTICAL AND NUMERICAL

RESULTS

For H2 in its 1Σ+
g ground state (with binding energy

Eb ≃ 51.4 eV) interacting with two pulses, each having
a carrier frequency ω = 75 eV and an intensity of 5 ×
1013 W/cm2, first-order PT is valid. For right or left

circularly-polarized pulses, with k̂ ‖ R, only transitions
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1Σ+
g → 1Π+

u , with ∆M = +1 or −1 respectively, are
allowed by electric dipole selection rules in LS coupling
for this (linear in intensity) DPI process. For elliptically-

polarized light with k̂ not parallel to R (e.g., k̂ ⊥ R),
∆M = 0,±1 transitions 1Σ+

g → (1Σ+
u ,

1 Π+
u ) are allowed.

The first-order PT amplitude for DPI of the 1Σ+
g ground

state of H2 by two chiral pulses can be written in a form
similar to that for a single pulse [27]:

A = e−iφ1{AΠ,1(χ)(e
′ · p̂1) +AΠ,2(χ)(e

′ · p̂2)

+ (R̂ · e′)[AΣ,1(χ)−AΠ,1(χ)](R̂ · p̂1)

+ (R̂ · e′)[AΣ,2(χ)−AΠ,2(χ)](R̂ · p̂2)}, (2)

where the coefficients AΠ,i and AΣ,i, i = 1, 2, are true
scalar functions of χ,

χ ≡ (p1, p2, R, u, u1, u2), (3)

where p1, p2 are the magnitudes of the electron mo-
menta, R = 1.4 a.u. is the internuclear separation,
u ≡ (p̂1 · p̂2) and u1,2 ≡ (R̂ · p̂1,2). The coefficients
AΠ,i and AΣ,i depend upon parameters of the pair of
pulses other than their effective polarization vector e′ =

e1+eiΦe2 (see Ref. [8]), where ej = (ǫ̂+iηj ζ̂)/(1+η2j )
1/2

is the polarization vector of the jth pulse, with −1 ≤

ηj ≤ +1 being its ellipticity, and ǫ̂ and ζ̂ = (k̂× ǫ̂) being
respectively the major and minor axes of the polarization
ellipse. The relative phase Φ = (E + Eb)τ + φ12 in the
effective polarization vector e′ has two terms: (E+Eb)τ ,
the phase accumulated by the first created electronic
wave packet when the second pulse delayed in time by
τ strikes the system in its initial quantum state, and
φ12 ≡ φ1 −φ2, the relative carrier-envelope phase (CEP)
between the two pulses.
The amplitude (2) holds for any orientation of the vec-

tors p1(θ1, ϕ1), p2(θ2, ϕ2) and R. Our PT analysis and
numerical TDSE results below are for counter-rotating
pulses (η ≡ η1 = −η2) and two electron detection ge-
ometries [in which u ≡ (p̂1 · p̂2) is fixed] for each of

two light propagation directions (see Fig. 1): (i) k̂ ‖ R;

(ii) k̂ ⊥ R. For both cases, the amplitude (2) can be
rewritten as a superposition of two kinematic vortex fac-

tors, cos(Φ/2 ± ξ̂ϕ2), having opposite handedness (see
Appendix B):

A = A(+)
η cos(Φ/2− ξ̂ϕ2) +A(−)

η cos(Φ/2 + ξ̂ϕ2), (4)

where p2 is in the polarization plane (θ2 = π/2), the

dynamical amplitudes A
(±)
η depend on χ, and ξ̂ ≡ ξ/|ξ|,

with ξ = 2η/(1 + η2) being the circular polarization de-
gree. Note that ξ = +1 or −1 corresponds to right-left or
left-right circularly polarized (RLCP or LRCP) pulses.

A. Kinematical Vortices in the k̂ ‖ R geometry

In the k̂ ‖ R geometry [see Figs. 1(a,b)], the dynamical
amplitudes in Eq. (4) for A ≡ A‖ take the form (see
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FIG. 2. Momentum p2 distributions in the polarization plane
for DPI of fixed-in-space H2 by right-left circularly-polarized
(RLCP) attosecond pulses with k̂ ‖ R (indicated by a sin-
gle black dot) delayed in time by τ = T ≃ 331 as. (a)
SDP(10−8 a.u.) for the detection geometry in Fig. 1(a) and
equal energy sharing (EES); (b) SDP(10−7 a.u.) for the BTB
geometry in Fig. 1(b) and unequal energy sharing (UES) of
degree ε = E1/E = 25%, where 5.6 ≤ E ≤ 41.6 eV. Each
pulse has carrier frequency ω = 75 eV, zero CEP, intensity I =
5 × 1013 W/cm2, n = 6 cycles, total duration T ≃ 331 as, a
cos2 temporal profile, and bandwidth ∆ω ≃ 1.44ω/n = 18 eV.

Appendix B),

A
(±)
η,‖ = ei(Φ/2−φ1)

√

(1 + ℓ)/2(1 ± |η|)AΠ(χ), (5)

= ei(Φ/2−φ1)
√

(1 ± |ξ|)AΠ(χ), (6)

where ℓ = (1 − η2)/(1 + η2) is the linear polarization
degree, AΠ(χ) ≡ AΠ,2(χ) for the detection geometry in
Fig. 1(a) and AΠ(χ) ≡ AΠ,2(χ) − AΠ,1(χ) for that in
Fig. 1(b). For circularly polarized pulses, |η| = 1 so that

A
(−)
±1,‖ = 0. Consequently, the SDP W‖ = |A‖|

2 becomes,

W‖(p2) = 2|AΠ(χ)|
2 cos2(Φ/2− ξϕ2), (7)

which has exactly the same form as in both single [2]
and double [8] photoionization of the He 1Se ground
state. The dynamical coefficient |AΠ(χ)|

2 in (7) (as for
those in Refs. [2, 8]) has no angular dependence, since
u, u1 and u2 are fixed for both detection geometries.
Thus, the maxima and zeros of the kinematical factor
cos2(Φ/2 − ξϕ2) define Fermat (or Archimedean) spi-
rals [2]. The spiral equations are: ϕmax

2 (E) = ξΦ/2+ nπ
for maxima and ϕzero

2 (E) = ξΦ/2 + (n + 1/2)π for ze-
ros, where n = 0,±1,±2, ... give the number of spiral
arms, which is two since only n = 0, 1 give independent
equations. Thus, the p2 distribution in the polarization
xy plane (θ2 = π/2) produced by time-delayed RLCP
or LRCP pulses exhibits atom-like two-arm oppositely-
handed spiral kinematical vortices, i.e., counterclockwise
for RLCP and clockwise for LRCP. Our TDSE results
for the p2 distributions produced by time-delayed RLCP
pulses (with parameters specified in the caption of Fig. 2)
are shown in Fig. 2(a) for equal energy sharing (EES) in
the detection geometry of Fig. 1(a), and in Fig. 2(b) for
back-to-back (BTB) electron emission in the polariza-
tion xy plane [Fig. 1(b)] with an unequal energy sharing
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(UES) partition of ε = E1/E = 25%. Our TDSE results
confirm well all vortex features predicted by PT.

B. Dynamical Vortices in the k̂ ⊥ R geometry

In the k̂ ⊥ R geometry [see Figs. 1(c,d)], the dynamical
amplitudes in Eq. (4) for A ≡ A⊥ take the form (see
Appendix B),

A
(±)
η,⊥(χ) = ei(Φ/2−φ1)

√

(1 + ℓ)/2[AΣ(χ)±|η|AΠ(χ)], (8)

where AΠ(χ) ≡ AΠ,2(χ), AΣ(χ) ≡ AΣ,2(χ), with χ =
(p1, p2, R, 0, 0, cosϕ2), for the geometry in Fig. 1(c); and
AΠ(χ) ≡ AΠ,2(χ)−AΠ,1(χ), AΣ(χ) ≡ AΣ,2(χ)−AΣ,1(χ),
with χ = (p1, p2, R,−1,− cosϕ2, cosϕ2), for that in
Fig. 1(d). Note that since both amplitudes, AΠ(χ) and
AΣ(χ), in Eq. (8) depend on the azimuthal angle ϕ2 of p2

via χ, spiral vortex structures are unexpected. Indeed,
the SDP W⊥ ≡ |A⊥|

2 takes the form (see Appendix B),

W⊥(p2) = 2(1− ℓ)|AΠ(χ)|
2 sin2 ϕ2 sin

2(Φ/2)

+ 2(1 + ℓ) |AΣ(χ)|
2 cos2 ϕ2 cos

2(Φ/2)

+ ξRe [A∗
Σ(χ)AΠ(χ)] sin(2ϕ2) sinΦ, (9)

which does not obviously have vortex structure. How-
ever, if AΠ were equal to AΣ, then the SDP in (9) reduces
for circular polarization (ℓ = 0, ξ = ±1) to the same form
as in (7) with its kinematic vortex factor. Thus, Eq. (9)
may produce vortex structures in particular cases. The
analysis is best done for the general amplitude in Eq. (4)
using the dynamical amplitudes in Eq. (8).

The DPI amplitudes for the k̂ ‖ R and k̂ ⊥ R ge-
ometries have the same form (4), i.e., a superposition of

two kinematic vortex factors cos(Φ/2± ξ̂ϕ2) with oppo-
site handedness, so that the occurrence of vortices re-
quires one of the amplitudes in (4) to be larger than the
other. Also, the ϕ2 dependence of the dynamical am-
plitudes must be “weaker” than that of the kinematic

factors cos(Φ/2 ± ξ̂ϕ2). For k̂ ‖ R, the AΠ(χ) am-
plitude in Eq. (5) has no angular dependence and the
occurrence of vortices is determined by the amplitude

ratio, A
(−)
η,‖ /A

(+)
η,‖ = (1 − |η|)/(1 + |η|), which depends

only on the ellipticity η. In contrast, for k̂ ⊥ R the oc-
currence of vortices is controlled by the amplitude ratio

A
(−)
η,⊥/A

(+)
η,⊥ = (AΣ−|η|AΠ)/(AΣ+ |η|AΠ), which depends

not only on the ellipticity η, but also on the magnitudes
and relative phase of the AΠ(χ) and AΣ(χ) amplitudes,
both of which depend on the azimuthal angle ϕ2 of p2.
(Note that for ω ≃ 75 eV the magnitude of AΠ can be as
much as a factor of five larger than that of AΣ [28–30].)
If the SDP in (9) leads to vortex structures, these are dy-
namical vortices rather than kinematical vortices since
their occurrence depends on the interplay between the
participating dynamical amplitudes, AΠ(χ) and AΣ(χ).

For the two k̂ ⊥ R geometries in Fig. 1(c,d) our TDSE
results in Figs. 3(a,b,d) do show dynamical vortex struc-
tures, while there are none in Fig. 3(c).
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FIG. 3. Momentum p2 distributions in the polarization plane
for DPI of fixed-in-space H2 by right-left chiral attosecond
pulses with k̂ ⊥ R (indicated by the dumbbell shape) delayed
in time by τ = 331 as. Top row: SDP(10−8 a.u.) by RLCP
pulses for the detection geometry in Fig. 1(c) for (a) EES and
(b) UES with ε = 25%. Bottom row: SDP(10−8 a.u.) for the
BTB geometry in Fig. 1(d) for an UES (ε = 25%) produced
by (c) RLCP pulses and (d) right-left elliptically-polarized
(RLEP) pulses with ξ ≡ ξ1 = −ξ2 = +0.38.

For the geometry in Fig. 1(c), TDSE results for the
p2 distributions by RLCP pulses delayed in time by
τ = T ≃ 331 as are shown in Fig. 3(a) for EES and in
Fig. 3(b) for an UES (ε = 25%). The p2 distributions ex-
hibit vortex structures for any energy-sharing partition.
These dynamical vortex patterns differ from the kinemat-
ical ones shown for k̂ ‖ R in Figs. 2(a,b). First, they are
distorted owing to the angular dependences and the rel-
ative magnitudes of the AΣ and AΠ amplitudes. Second,

they have an opposite handedness, since the A
(−)
η,⊥ term

in (4) dominates, i.e., AΣ ≈ −AΠ [cf. Eq. (8)]. For LRCP
pulses, the handedness changes. For RLCP pulses, the
ratio Υ of the energy- and angle-integrated AΠ ampli-
tude to that of the AΣ amplitude is ≈ 2 for both EES
and UES in this geometry. We find dynamical vortices
in this geometry occur for 0.15 ≤ |η| ≤ 1 and are best
seen for η ≈ 0.5, as confirmed by our TDSE results.
For the BTB detection geometry [Fig. 1(d)] with an

UES partition of ε = 25%, Υ ∼ 8 for RLCP pulses (|η| =

1). As AΠ ≫ AΣ, Eq. (8) shows that A
(±)
η,⊥ ≈ ±AΠ. Thus

the counter-rotating vortices in (4) overlap,

A ≃ AΠ(χ)[cos(Φ/2− ξ̂ϕ2)− cos(Φ/2 + ξ̂ϕ2)],

= AΠ(χ) sin(ξ̂ϕ2) sin(Φ/2), (10)

producing a dipolar pattern along the y-axis with Ram-
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sey fringes [see Fig. 3(c)]. The same pattern is obtained
(not shown) when using LRCP pulses. This absence of
vortex patterns in Fig. 3(c) can also be well understood
by only retaining the first term (with ℓ = 0 for RLCP or
LRCP pulses) of the SDP (9), since the second and third
terms in (9) can be dropped when Υ ∼ 8 (i.e., AΣ ≪ AΠ).
By tuning the ellipticity η over the range 0.05 ≤

|η| ≤ 0.5, however, spiral vortices similar to those in the

k̂ ‖ R geometry become visible, as shown in Fig. 3(d)
for η = +0.2 (or ξ = 0.38). To visualize the depen-
dence of this electron phenomenon on η, we provide in
the Supplemental Material [31] an animation showing
the evolution with the ellipticity η (over the broader
range 0.001 ≤ |η| ≤ 1) of the dynamical vortex pat-
terns for the BTB detection geometry [Fig. 1(d)] and
the same laser parameters as in Fig. 3(c). Although
AΠ ≫ AΣ, the vortex structures appear for η in the
range 0.05 ≤ |η| ≤ 0.5 because |η|AΠ becomes compa-
rable to AΣ. Consequently, depending on the relative
phase of the AΣ and AΠ amplitudes, one expects either

A
(+)
η,⊥ ∝ [AΣ(χ)+ |η|AΠ(χ)] or A

(−)
η,⊥ ∝ [AΣ(χ)−|η|AΠ(χ)]

to dominate. In Fig. 3(d) for the BTB detection geom-
etry [Fig. 1(d)] and RLCP pulses, the counterclockwise

handedness of the vortices implies A
(+)
η,⊥ ≫ A

(−)
η,⊥, so that

W⊥ ≡ |A⊥|
2 ≈ |A

(+)
η,⊥(χ)|

2 cos2(Φ/2− ξ̂ϕ2), (11)

where ξ̂ ≡ ξ/|ξ|. In Figs. 3(a,b) for the orthogonal detec-
tion geometry [Fig. 1(c)] and RLCP pulses, the clockwise

handedness of the vortices implies A
(−)
η,⊥ ≫ A

(+)
η,⊥, so that

W⊥ ≡ |A⊥|
2 ≈ |A

(−)
η,⊥(χ)|

2 cos2(Φ/2 + ξ̂ϕ2). (12)

It is thus clear that for both k̂ ⊥ R geometries, the spi-
ral handedness depends not only on the sign of ξ but also
on the relative phase of the AΣ and AΠ amplitudes. Al-
ternatively, the third term (∝ ξRe [A∗

Σ(χ)AΠ(χ)]) in (9)
shows this also, where χ differs for the two detection ge-
ometries, as specified below Eq. (8).

1. Time Delay Periodicity of the Angular Distributions

For fixed energy E and φ12 = 0, the dependence of
the SDP (9) on the relative phase Φ = (E + Eb)τ + φ12

predicts a time-delay periodicity of the electron angu-
lar distributions. Specifically, for a time delay τn =
nπ/(E+Eb) where n is an odd integer, only the AΠ am-
plitude contributes to the SDP, whereas if n is an even
integer only the AΣ amplitude contributes, as shown by
our TDSE angular distributions for E = 23.6 eV in Fig. 4
for the two k̂ ⊥ R detection geometries in Figs. 1(c,d).
Note that the minor discrepancies in the TDSE results
for τ0 and τ12 indicate the accuracy of the PT result (9),
which does not account for depletion effects.

2. Proposed Complete Experiment

The PT result for the SDP in Eq. (9) indicates also the
possibility of doing a complete experiment, in which one
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FIG. 4. Time-delay sensitivity of the angular distributions (in
units of 10−8 a.u.) for the faster electron with momentum p2

at a fixed excess energy E = ω−Eb = 23.6 eV and for an UES
(ε = E1/E = 25%) scheme produced by RLCP attosecond
pulses with k ⊥ R. (a) Results for the detection geometry in
Fig. 1(c); (b) results for the detection geometry in Fig. 1(d).
The relative CEP is φ12 = 0 and results are given for three
time delays: τ0, τ11, and τ12, where τn = nπ/ω. Results for
τ11 are scaled by 1/10 and 1/64 respectively in (a) and (b).

determines both the magnitudes and the relative phase
of the AΣ and AΠ amplitudes. Specifically, using the
time-delay periodicity τn = nπ/(E + Eb) of the angular
distributions discussed above for even and odd integers
n, one can extract respectively the magnitudes |AΣ| and
|AΠ| from the first two terms of (9). As for their rela-
tive phase, the achiral first two terms on the right of (9)
depend only on ℓ, so that they are invariant to whether
the time-delayed, counter-rotating pulses are right-left or
left-right elliptically-polarized, whereas the chiral third
term (∝ ξ) changes sign. Thus, subtraction of measure-
ments of the SDP for right-left and left-right elliptically
polarized pulses will give twice the third term in (9),
which is∝ Re [A∗

Σ(χ)AΠ(χ)]. These latter measurements
should be for time delays corresponding to non-integer n,
in which case the cross term (∝ sinΦ) in (9) is nonzero.

IV. SUMMARY AND CONCLUSIONS

In summary, vortices in DPI of H2 by time-delayed
counter-rotating chiral pulses are studied for two detec-
tion geometries involving fixed angular separation be-
tween electron momenta. For k̂ ‖ R, atom-like kine-
matical spiral vortices are predicted with a handedness
given by the helicity of the first pulse. For k̂ ⊥ R, dy-
namical vortices are predicted for a wide range of elliptic-
ities owing to the interplay of the AΣ and AΠ dynamical
amplitudes. The helicity of these vortices depends also
upon the relative phase of the AΣ and AΠ amplitudes.
Finally, we have outlined a complete set of measurements
allowing determination of both the magnitudes and the
relative phase of these two dynamical amplitudes.
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Appendix A: CONVERGENCE TESTS FOR DPI

OF H2 BY TIME-DELAYED CHIRAL PULSES

In this appendix we describe three tests of the con-
vergence of the angular distributions of the two ionized
electrons with respect to their sensitivity to (1) our choice
of the number of total electronic angular momenta L; (2)
our choice of the projection time Tp (i.e., how long we
wait after the end of our pulses before calculating the
SDP); and (3) our choice of the outer radial boundary
R0 of bound and singly-ionized states (which we use to
remove contributions of these states from our calculated
final state wave packet).

1. Dependence of the Angular Distributions on the

Number of Total Electronic Angular Momenta L

In contrast to the He atom, the total electronic angu-
lar momentum L is not a good quantum number for the
H2 molecule. While the spherically symmetric He atom
ground state has L = 0, the nonspherical symmetry of the
electron-nucleus interaction in the H2 molecule Hamilto-
nian requires that the ground state is described using
several even L components. In our single-center close-
coupling expansion approach, we propagate the two-
electron wave packet in imaginary time to obtain the
energy of the 1Σ+

g ground state of the H2 molecule at
the equilibrium internuclear distance R ≃ 1.4 a.u. The
dependence of the calculated H2 ground state energy on
the number of total electronic angular momenta Li is
given in Table A.1. For each Li, all combinations of in-

TABLE A.1. Dependence of the calculated 1Σ+
g ground state

energy (a.u.) of the H2 molecule for internuclear separation
R ≃ 1.4 a.u. on the number of total electronic angular mo-
menta Li.

Li Energy (a.u.)

0 −1.784972

0, 2 −1.872914

0, 2, 4 −1.883314

0, 2, 4, 6 −1.888573
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FIG. A.1. Convergence of the DPI angular distributions [cal-
culated using Eq. (1)] for the faster electron with momentum
p2 as a function of the number of total electronic angular
momenta, L, produced by RLCP attosecond pulses delayed
in time by (a) τ = τ12 and (b) τ = τ11, where τn = nπ/ω.
The results are for the detection geometry in Fig. 1(c) for
an UES scheme (ε = E1/E = 25%) at a fixed excess energy
E = ω−Eb. Plotted are results [in units of (a) 10−8 a.u. and
(b) 10−7 a.u.] for R0 = 10 a.u. and Tp = 35 a.u. for the two-
electron wave packet [calculated using either four (L = 0− 3)
or six (L = 0−5) values of L projected onto field-free Coulomb
final states with L = 0−1 [dashed (red) lines], L = 0−3 [solid
(blue) lines], and L = 0−5 [dash double-dotted (black) lines].
The pulse parameters are specified in the caption of Fig. 1.

dividual electron orbital angular momenta l1, l2 = 0 − 5
are included. One sees that the results for two, three,
and four values of Li compare well with the benchmark
values −1.888760 a.u. [32] or −1.888761 a.u. [33].

Starting from the ground state obtained using either
Li = 0, 2 or Li = 0, 2, 4 angular momenta to solve the
TDSE, we employ an expansion of the two-electron wave
packet including either four values (L = 0 − 3) or five
values (L = 0− 5) of L, respectively. Although the total
electronic angular momentum L is not a good quantum
number, converged results are found using an expansion
in only four values of L, L = 0 − 3, their azimuthal
quantum numbers |M | ≤ L, all combinations of indi-
vidual electron orbital angular momenta l1, l2 = 0 − 5,
and their azimuthal quantum numbers |m1| ≤ l1 and
|m2| ≤ l2. Indeed, for our laser parameters, including
six values of L = 0 − 5 (as in [15]) does not change our
SDP results, as shown in Fig. A.1 for two time delays
τ = τ12 [see Fig. A.1(a)] and τ = τ11 [see Fig. A.1(b)],
where τn = nπ/ω. Here, the projection time is fixed at
Tp = 35 a.u. and the outer radial boundary of bound and
singly-ionized states is fixed at R0 = 10 a.u. The results
shown are for the detection geometry in Fig. 1(c) for an
UES scheme (ε = E1/E = 25%) at a fixed excess energy
E = ω − Eb.

In Fig. A.1 one sees that the two-electron angular dis-
tribution is sensitive to both the time delay and the num-
ber of orbital angular momenta included in the calcu-
lation. As discussed above for the angular distribution
results shown in Fig. 4, for the case τ = τ12 shown in
Fig. A.1(a) only the 1Σ+

u continuum states are excited,
whereas for the case τ = τ11 shown in Fig. A.1(b) only
the 1Π+

u continuum states are excited. In both cases, in-
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FIG. A.2. Convergence of the DPI angular distributions with
projection time Tp for R0 = 10 a.u. and L = 0− 3 and other
parameters as in Fig. A.1(a). Results [in units of 10−8 a.u.]
are shown for five values of Tp: 20 a.u. [dashed (red) line],
25 a.u. [solid (green) line], 35 a.u. [dash double-dotted (blue)
line], 40 a.u. [dash-dotted (magenta) line], and 45 a.u. [solid
(black) line].

cluding only total orbital angular momenta L = 0, 1 leads
to dipolar angular distributions, either along or perpen-
dicular to the molecular axis. However, when one in-
cludes higher values of L, the angular distribution along
the molecular axis develops additional structure, whereas
that perpendicular to the molecular axis does not.

2. Dependence of the Angular Distributions on the

Projection Time Tp

For the same detection scheme as in Fig. A.1 [i.e., for
the detection geometry in Fig. 1(c) for an UES scheme
(ε = E1/E = 25%) at a fixed excess energy E = ω−Eb],
the angular distributions produced by two attosecond
pulses delayed in time by τ = τ12 are shown in Fig. A.2
for five projection times Tp: 20, 25, 35, 40, and 45 a.u.
For R0 = 10 a.u. and L = 0 − 3, it is clear that good
convergence is reached for projection times Tp ≥ 25 a.u.
(i.e., 11− 20 optical cycles after the end of pulses).

3. Dependence of the Angular Distributions on the

Outer Radial Boundary R0 of Bound and

Singly-Ionized States

To obtain the doubly-ionized part, ΨC(r1, r2;R, Tf +
Tp), of the solution Ψ(r1, r2;R, t) of the TDSE, we
must remove contributions from both bound and singly-
ionized states. This is done by setting the wave packet
Ψ(r1, r2;R, t) equal to zero for radial distances r1 < R0

and/or r2 < R0, where R0 defines the outer radial bound-
ary of bound and singly-ionized states [15, 26]. The R0-
dependence of our TDSE results is shown in Fig. A.3. For
Tp = 35 a.u., we find that using a cutoff of R0 = 5 a.u.,
10 a.u., 15 a.u., or 20 a.u. leads to the same converged
angular distributions. For larger values of R0, e.g.,
R0 = 25 a.u., 30 a.u., and 35 a.u., the TDSE results
at Tp = 35 a.u. are unstable and decrease sharply. This
behavior is expected because at that projection time Tp

a significant contribution from the doubly-ionized wave
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FIG. A.3. Convergence of the DPI angular distributions with
outer radial boundary R0 of bound and singly-ionized states
for Tp = 35 a.u. and L = 0 − 3 and other parameters as
in Figs. A.1(a) and A.1(b). Results are shown for seven val-
ues of R0: 5 a.u. [dashed (red) lines], 10 a.u. [thick solid
(black) lines], 15 a.u. [dash double-dotted (blue) lines], 20 a.u.
[dashed (orange) lines], 25 a.u. [dashed (magenta) lines],
30 a.u. [dotted (green) lines], and 35 a.u. [thin solid (black)
lines].

packet has been cut. In other words, the doubly-ionized
wave packet has not been given sufficient time to leave
the region where either r1 < R0 or r2 < R0 [15]. All re-
sults presented in the main text have been obtained for
R0 = 10 a.u., which is the same value used in [15].

Appendix B: PERTURBATION THEORY

ANALYSIS

We provide in this appendix derivations of Eq. (4) for
the transition amplitude for the two cases of chiral pulses
propagating along k̂ either parallel (k̂ ‖ R) or perpendic-

ular (k̂ ⊥ R) to the molecular axis R. Also, we provide
derivations of Eqs. (5) and (8) for the dynamical parame-
ters of their DPI amplitudes, as well as of Eqs. (7) and (9)
for their SDPs.
For convenience, we summarize first some notations

applicable to all derivations. The expression for the ef-
fective polarization vector e′ of the pulse pair is [8]:

e′ = e+ eiΦe∗. (B1)

where Φ is the Ramsey phase,

Φ = (E + Eb)τ + φ12, (B2)

in which E = (p21 + p22)/2 is the energy of the electron
pair in the continuum, Eb is the binding energy of the
H2 ground state, and φ12 = φ1 − φ2 denotes the rela-
tive carrier-envelope phase (CEP) of the two pulses. In
Eq. (B1), e is the first-pulse polarization vector:

e = (ǫ̂+ iηζ̂)/(1 + η2)1/2, (B3)

where η ≡ η1 = −η2 is its ellipticity, and ǫ̂ and ζ̂ =
(k̂× ǫ̂) are respectively the major and minor axes of the
polarization ellipse. We define the x-, y- and z-axes of

the laboratory frame respectively along ǫ̂, ζ̂, and k̂. The
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linear and circular polarization degrees are respectively:

ℓ = (1− η2)/(1 + η2), (B4)

ξ = 2η/(1 + η2). (B5)

For later use, we note the following two relations:

1 + ℓ = 2/(1 + η2), 1− ℓ = 2η2/(1 + η2). (B6)

In the laboratory coordinate frame the scalar product
of the effective polarization vector e′ with an arbitrary
vector p ≡ (p, θ, ϕ) can be written as

(e′ · p) = eiΦ/2 2p sin θ
√

1 + η2

× [cosϕ cos(Φ/2) + η sinϕ sin(Φ/2)] . (B7)

After some simple trigonometric transformations,
Eq. (B7) can be expressed in terms of the circular
polarization degree ξ [see Eq. (B5)] as,

(e′ · p) = eiΦ/2p sin θ
{

√

1 + |ξ| cos(Φ/2− ξ̂ϕ)

+
√

1− |ξ| cos(Φ/2 + ξ̂ϕ)
}

, (B8)

where ξ̂ = ξ/|ξ| = sign(η).

1. Amplitude and SDP for DPI of H2 in the k̂ ‖ R

geometry

We derive here Eqs. (4), (5) and (7) of the main text
for the detection geometry described by Figs. 1(a,b).

For k̂ ‖ R, (R̂ · e′) = 0 and the perturbation theory
(PT) amplitude A given by Eq. (2) in the main text
reduces to

A‖ = e−iφ1 [AΠ,1(χ)(e
′ · p̂1) +AΠ,2(χ)(e

′ · p̂2)]. (B9)

HereAΠ,1(χ) and AΠ,2(χ) are true scalar functions of χ ≡
(p1, p2, R, u, u1, u2), where p1 and p2 are the magnitudes
of the electron momenta p1 and p2, R = 1.4 a.u. is the
internuclear separation, u ≡ (p̂1 · p̂2), and u1,2 ≡ (R̂ ·

p̂1,2). For the detection geometries in which either p1 ‖ k̂

and p2 is in the laser polarization plane [see Fig. 1(a) in
the main text] or both electrons are emitted back-to-back
(BTB) in the laser polarization plane [see Fig. 1(b) in the
main text], the PT amplitude A‖ (B9) takes the form

A‖ = e−iφ1 AΠ(χ)(e
′ · p̂). (B10)

In Eq. (B10), for the geometry in Fig. 1(a) in the main
text, p̂ ≡ p̂2, and AΠ(χ) ≡ AΠ,2(χ), where χ =
(p1, p2, R, 0, 1, 0); whereas for the geometry in Fig. 1(b) in
the main text, p̂ ≡ p̂2 = −p̂1, and AΠ(χ) ≡ AΠ,2(χ) −
AΠ,1(χ), where χ = (p1, p2, R,−1, 0, 0). Since the two
electrons have zero total spin in the 1Σ+

g initial state, the
coefficients AΠ,1 and AΠ,2 obey the symmetry relation,

AΠ,1(p1, p2, u1, u2) = AΠ,2(p2, p1, u2, u1), (B11)

where for brevity we have omitted R and u from the list
of arguments. From the symmetry property (B11), it fol-
lows that the PT amplitude A‖ (B10) vanishes for BTB
emission of electrons with equal energy sharing (EES)
since AΠ,1(p1, p1, 0, 0) = AΠ,2(p1, p1, 0, 0).
Substituting the geometric factor (e′ · p) in Eq. (B8)

into Eq. (B10), we obtain that the PT amplitude in
spherical coordinates can be represented as a superposi-
tion of two vortex amplitudes with opposite handedness:

A‖ = A
(+)
η,‖ cos(Φ/2− ξ̂ϕ) +A

(−)
η,‖ cos(Φ/2 + ξ̂ϕ), (B12)

which is Eq. (4) in the main text, where the dynamical

parameters A
(±)
η,‖ are defined by

A
(±)
η,‖ = ei(Φ/2−φ1)

√

(1 + ℓ)/2 sin θ(1± |η|)AΠ. (B13)

For geometries in Figs. 1(a,b), θ = π/2 and Eq. (B13)
leads to Eq. (5) in the main text.
For circularly-polarized pulses, |ξ| = |η| = 1 and

the second term in Eq. (B12) vanishes. For elliptically-
polarized pulses, |ξ| < 1, Eq. (B12) has contributions
from two kinematic vortex factors having opposite hand-

edness, cos(Φ/2 ± ξ̂ϕ). Taking the square modulus of
Eq. (B12), the SDP, W‖ = |A‖|

2, for two time-delayed

counter-rotating chiral pulses with k̂ ‖ R is:

W‖ = |AΠ(χ)|
2 sin2 θ

{

(1 + |ξ|) cos2(Φ/2− ξ̂ϕ)

+ (1− |ξ|) cos2(Φ/2 + ξ̂ϕ)

+ 2ℓ cos(Φ/2− ξ̂ϕ) cos(Φ/2 + ξ̂ϕ)
}

. (B14)

One sees that for small ℓ, one has ξ ≈ 1, and the first
vortex term dominates in the SDP (B14).
Alternatively, substituting the geometric factor (e′ ·p)

in Eq. (B7) in spherical coordinates into Eq. (B10) and
using Eqs. (B4) and (B5), another expression for the SDP
in the polarization plane (θ = π/2) can be derived:

W‖ = 2(1− ℓ)|AΠ(χ)|
2 sin2 ϕ sin2(Φ/2)

+ 2(1 + ℓ) |AΠ(χ)|
2 cos2 ϕ cos2(Φ/2)

+ ξ|AΠ(χ)|
2 sin(2ϕ) sinΦ. (B15)

For time-delayed counter-rotating circularly-polarized
pulses, ℓ = 0, and ξ = ±1. Thus, the SDP in either
Eq. (B14) or in Eq. (B15) reduces to

W‖ = 2|AΠ(χ)|
2 sin2 θ cos2(Φ/2− ξϕ), (B16)

which is Eq. (7) in the main text.

2. Amplitude and SDP for DPI of H2 in the k̂ ⊥ R

geometry

Below we show that the amplitude in the perpendicular
geometry has the same form [see Eq. (4) in the main text]
as in the parallel geometry, Eq. (B12). We also derive
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Eq. (8) for the dynamical parameters, as well as Eq. (9)
for the SDP.
For k̂ ⊥ R, the PT amplitude (1) in the main text

for the two detection geometries in Figs. 1(c, d) can be
written, using Eq. (B1) as,

A⊥ = e−iφ1 [AΠ(χ)(e
′ · p̂) +B(χ)(R̂ · e′)(R̂ · p̂)], (B17)

where B(χ) ≡ AΣ(χ) − AΠ(χ). Here for the detec-
tion geometry in Fig. 1(c) in the main text, p̂ ≡ p̂2,
AΠ(χ) ≡ AΠ,2(χ), and AΣ(χ) ≡ AΣ,2(χ), where χ =
(p1, p2, R, 0, 0, cosϕ); whereas for the detection geometry
in Fig. 1(d) in the main text, p̂ ≡ p̂2 = −p̂1, AΠ(χ) ≡
AΠ,2(χ) − AΠ,1(χ), and AΣ(χ) ≡ AΣ,2(χ) − AΣ,1(χ),
where χ = (p1, p2, R,−1,− cosϕ, cosϕ). As the total
spin for the two electrons is zero in the initial 1Σ+

g ground
state, the coefficients AΠ,1 and AΠ,2 satisfy the symmetry
relation (B11), and the coefficients AΣ,1 and AΣ,2 satisfy

AΣ,1(p1, p2, u1, u2) = AΣ,2(p2, p1, u2, u1), (B18)

where for brevity we have omitted R and u from the
list of arguments. From the symmetry properties (B11)
and (B18), it follows that the PT amplitude A⊥ (B17)
vanishes for BTB emission of electrons with EES. (This
important result holds for any laser propagation direction
k̂ and molecular orientation R.)
For both detection geometries in Figs. 1(c,d) in the

main text, k̂ ‖ ẑ, R ‖ x̂, and p ≡ p2 is detected in the

polarization xy plane. The geometric factor (R̂ · e′) in
Eq. (B17) can be evaluated using Eq. (B7) by setting
p = 1, θ = π/2 and ϕ = 0; one obtains:

(R̂ · e′) = eiΦ/2[2/(1 + η2)1/2] cos(Φ/2). (B19)

Using this equation and noting that (R̂ · p̂) = sin θ cosϕ,
Eq. (B17) for the amplitude becomes

A⊥ = ei(Φ/2−φ1)[sin θ/(1 + η2)1/2]Ã⊥, (B20)

where Ã⊥ is defined by

Ã⊥ = 2[AΣ cosϕ cos(Φ/2) + ηAΠ sinϕ sin(Φ/2)]

= (AΣ + |η|AΠ) cos(Φ/2− ξ̂ϕ)

+ (AΣ − |η|AΠ) cos(Φ/2 + ξ̂ϕ). (B21)

As a result, Eq. (B20) can be written in the compact
form (which is Eq. (4) in the main text):

A⊥ = A
(+)
η,⊥ cos(Φ/2− ξ̂ϕ) +A

(−)
η,⊥ cos(Φ/2 + ξ̂ϕ),

(B22)

where the dynamical parameters A
(±)
η,⊥ are defined by

A
(±)
η,⊥ = ei(Φ/2−φ1)

√

(1 + ℓ)/2 sin θ[AΣ ± |η|AΠ], (B23)

For θ = π/2, Eq. (B23) reduces to Eq. (8) in the main
text. Taking the square modulus of A⊥ in Eq. (B20) or
in Eq. (B22) in the laser polarization xy plane (θ = π/2),
and using the relations (B6), one obtains,

W⊥ = 2(1− ℓ)|AΠ(χ)|
2 sin2 ϕ sin2(Φ/2)

+ 2(1 + ℓ) |AΣ(χ)|
2 cos2 ϕ cos2(Φ/2)

+ ξRe [A∗
Σ(χ)AΠ(χ)] sin(2ϕ) sinΦ, (B24)

which is Eq. (9) in the main text.
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