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In multipole-bound anions, the excess electron is attached by a short-range multipole potential
of a neutral molecule. Such anions are prototypical marginally-bound open quantum systems. In
particular, around the critical multipole moment required to attach the valence electron, multipole-
bound anions exhibit critical behavior associated with a transition from bound states dominated by
low-` partial waves to the electron continuum. In this work, multipole-bound anions are described
using a nonadiabatic electron-plus-rotor model. The electron-molecule pseudo-potential is repre-
sented by a short-range multipole field with a Gaussian form-factor. The resulting coupled-channel
Schrödinger equation is solved by means of the Berggren expansion method, in which the electron’s
wave function is decomposed into bound states, narrow resonances, and the non-resonant scattering
continuum. We show that the Gaussian model predicts the critical transition at the detachment
threshold. Resonant states, including bound states, decaying resonances, subthreshold resonances,
and antibound states are studied, and exceptional points where two resonant states coalesce are
predicted. We discuss the transition of rotational band structures around the threshold and study
the effects of channel coupling on the decay width of resonant poles.

I. INTRODUCTION

The question of whether or not a neutral molecule can
attach an excess electron to form a bound anion is not
simple to answer [1–4]. Fermi and Teller, in their pio-
neering work [5], demonstrated the existence of the min-
imal dipole moment required to bind an electron in an
external point dipolar field. This result stimulated many
theoretical and experimental investigations on multipole-
bound anions using effective potential methods [1, 6–17]
and ab-initio approaches [18–30].

Because of the similarity of single-electron and rota-
tional energy scales, there appears a strong, nonadiabatic
coupling between the valence-electron and molecular ro-
tational motions that impact the critical multipole mo-
ment required to form an anion [12, 31–35]. Moreover,
while the evidence for dipole-bound anions is solid, this is
not the case for higher multipolarities [4, 17, 36]. In our
previous study on the resonant spectrum of quadrupole-
bound anions [17] we predicted narrow resonances above
the detachment threshold. The energies and widths of
those resonances appear to be rather insensitive to de-
tails of the potential and are almost identical for prolate
and oblate charge distributions.

While the binding of multipole-bound anions is frag-
ile, low-energy resonances in such systems are expected
to be less sensitive to details of the short-range molecu-
lar potential as the spatial extension of the valence elec-
tron is huge. This situation resembles universal behavior,
independent of the details of the interaction, exhibited
by other weakly-bound/unbound quantum systems, such
as nuclear and hadronic halos, cold atomic gases near a
Feshbach resonance, and helium dimers and trimers, see,
e.g., Refs. [37–46]. In all of those cases, simple arguments
based on scale separation and effective field theory cap-
ture the essential physics [42, 47–52]. Consequently, to

investigate generic properties of multipole-bound anions,
we consider a schematic model, which contains the fol-
lowing crucial physics ingredients: (i) a short-range mul-
tipole potential and (ii) nonadiabatic coupling between
electronic and molecular motion.

In the present study, we investigate the generic
near-threshold behavior of multipole-bound anions at
the transition between the subcritical and supercritical
regimes. The main interest of this study is to show the
role of low-` partial waves in shaping the properties of
low-lying states. We assume that the potential repre-
senting the molecular core is given by a Gaussian radial
form-factor with a multipolar angular distribution. The
particular choice of the radial form-factor is not impor-
tant as it represents an a priori unknown short-range at-
traction. One can view this particular realization as a
regularized zero-range interaction. The continuum cou-
plings are included using the Berggren expansion method
as in Refs. [15–17]. To study the threshold behavior of
the system we investigate the pattern of resonant poles
as a function of four parameters: the strength and range
of the Gaussian form factor, the multipolarity of the po-
tential, and the molecular moment of inertia.

The paper is organized as follows. Section II presents
the model and method used. The results obtained in this
study are discussed in Sec. III. Finally, Sec. IV contains
a summary and conclusions.

II. MODEL AND METHOD

A. Hamiltonian

In this work, we use the electron-plus-molecule Hamil-
tonian similar to that of Refs. [15, 16]. As shown in
Fig. 1 the valence electron is weakly coupled to the core.
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FIG. 1. A schematic illustration of the electron-plus-molecule
model used in this work.

Without considering the spin-orbit interaction or the vi-
brational motion of the core, the Hamiltonian can be
written as:

Ĥ =
ĵ2

2I
+

p̂2e
2me

+ V (r). (1)

The first term is the rotational energy of the molecule
with angular momentum ĵ and moment of inertia I. The
second term represents the kinetic energy of the electron
of mass me and linear momentum p̂e. The interaction
between the rotor and the valence electron is modeled by
the axially-deformed Gaussian potential of multipolarity
λ:

V (r) = −V0 exp

(
− r2

2r20

)
Pλ(cos θ), (2)

where r is the electron’s position vector in the molecular
reference frame, V0 is the potential strength, and r0 is
the potential range. The angular part of the potential is
given by a Legendre polynomial of order λ, with θ being
the angle between the direction of the valence electron r̂
and the symmetry axis of the rotor.

B. Coupled-channel equations

The total angular momentum of the system Ĵ is given
by the sum of the angular momentum of the rotor ĵ and

the valence electron ˆ̀. Because the system is rotation-
ally invariant in the laboratory reference frame, Ĵ com-
mutes with the Hamiltonian Ĥ and the eigenvectors can
be written as:

ΨJ =
∑
c

uJc (r)ΘJ
c (3)

where c labels all possible channels (j, `) for a given J ,
uJc (r) is the radial channel wave function, and ΘJ

c is the
angular channel wave function. The eigenstates of Eq.
(3) are also labeled by means for the parity quantum

number π; hence, in the following we use the spectro-
scopic notation Jπn , where n = 1 marks the lowest Jπ-
state, n = 2 - the next one, and so on. Due to the
symmetries of V (r), the ground-state rotational band of
the molecule has states with j = 0, 2, 4, . . . and π = +
for λ-even and jπ = 0+, 1−, 2+, 3−, . . . for λ-odd [53].

The coupled-channel equations are obtained by insert-
ing the wave function (3) into the Schrödinger equation:

[
d2

dr2
− jc(jc + 1)

I
− `c(`c + 1)

r2
+ EJ

]
uJc (r)

=
∑
c′

V Jcc′(r)u
J
c′(r),

(4)

where V Jcc′(r) is the channel-channel coupling potential.
Throughout the paper, we will be using Rydberg units
(energy expressed in Ry and distance in a0).

In the coupled-channel approach, the motion of the
electron is weakly coupled to the rotation of the molecule.
The adiabatic, or strongly-coupled, limit corresponds to
an infinite moment of inertia where the rotational band
of the molecule collapses to the band-head energy.

C. Berggren expansion method

The coupled-channel equations (4) can be solved by
means of the direct integration method (DIM), but a
good initial guess is required to ensure convergence [17];
this can be difficult for weakly bound states and broad
resonances. Also, higher-multipolarity potentials require
a larger number of channels, which makes this method
computationally demanding.

An alternative to the DIM is the Berggren expan-
sion method (BEM), previously applied in the context
of multipole-bound anions [16, 17] and nuclear halos [54–
56]. The Berggren basis [57, 58] used in this work is
defined in the complex momentum plane; it contains ex-
plicitly resonant states (poles of the one-body S-matrix)
and scattering states defined along a contour L+ in the
fourth quadrant of the momentum plane. The complete-
ness relation for the Berggren ensemble can be written
as: ∑

b,a,d

|ũn〉 〈un|+
∫
L+

|ũ(k)〉 〈u(k)| dk = 1, (5)

where the sum over discrete resonant states includes
bound states b, antibound (or virtual) states a, and de-
caying poles d lying between the positive real axis and the
contour L+. The tilde symbol indicates time reversal. In
the unlikely situation that bound states of energies higher
than antibound states are present, they must be excluded
from the sum in Eq. (5). The decaying poles in the fourth
quadrant, which lie close to the real k-axis and have a
real energy Re(E) > 0 and a width Γ=−2Im(E) > 0
can be interpreted as narrow resonances. The poles with
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FIG. 2. Berggren ensemble in the complex-k plane. Bound,
antibound, decaying, and capturing resonant states are
marked. The distribution of poles is symmetric with re-
spect to the imaginary k-axis because of time reversal sym-
metry. Three different scattering contours L+

1 , L+
2 , and L+

3

reveal S-matrix poles in different sectors in complex momen-
tum/energy plane. The −45◦ line separating decaying reso-
nances from subthreshold resonances is marked.

Re(E) < 0 and Γ > 0, located below the −45◦ line in
Fig. 2 and close to the origin, can be associated with
subthreshold resonances [59–62].

In practical applications, one often considers a contour
L+
1 of Fig. 2 that starts at the origin, extends into the

fourth quadrant up to kpeak, comes back to the real axis
at kmid, and continues along the real axis up to the cutoff
momentum kmax. To be able to explore S-matrix poles in
other regions of the complex momentum plane, two other
contours are used in this work. With the contour L+

2 we
explore the region of subthreshold resonances. The con-
tour L+

3 can be employed to reveal antibound states lying
on the negative imaginary momentum axis and the cap-
turing resonances lying in the third complex-k quadrant.

For each channel, the basis is generated using the di-
agonal part of the potential in the channel basis Vcc
[16]. Bound states and decaying resonances entering the
Berggren basis for a given partial wave are obtained by
a direct integration of the Schrödinger equation for the
diagonal term of the potential, while the selected scat-
tering states along the contour L+ are discretized in the
momentum space using a Gauss-Legendre quadrature as
in Refs. [16, 17]. The non-resonant continuum is limited
by the momentum cutoff kmax that has to be sufficiently
large to ensure the completeness of the Berggren basis.
While the bound states are normalized in the standard
way, decaying resonances are normalized using the ex-
terior complex scaling method [63, 64]. The scattering
states are normalized to Dirac-delta function. This rep-
resentation provides a natural way to include continuum

couplings for each desired partial wave.
The spectrum of the system is obtained by diagonaliz-

ing the complex-symmetric Hamiltonian matrix. It con-
sists of resonant eigenstates representing bound states
and narrow resonances, and non-resonant scattering so-
lutions. Differentiating resonant states from the non-
resonant scattering background requires special treat-
ment. Since resonant states do not depend on a detailed
choice of the contour L+, by moving the contour slightly
a new spectrum can be obtained, where non-resonant
states move according to the contour change and res-
onant states stay invariant [17]. In this way, resonant
states can be located. As a further test, these resonant
states are used in the DIM as an initial guess, and it is
checked that the BEM results are reproduced.

III. RESULTS

A. Threshold trajectories for multipolar Gaussian
potentials in the adiabatic limit
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FIG. 3. Threshold trajectories (V0, r0)±c for multipolar Gaus-
sian potentials with λ = 1− 4 in the adiabatic limit.

Multipole-bound anions can be characterized by their
critical multipole moments Q±λ,c, which mark the limit
between the subcritical and supercritical regimes. We
note that for odd-multipole potentials Q−λ,c = −Q+

λ,c,
but there is no such relation for even-multipole poten-
tials. For instance, there are two critical values of the
quadrupole moment for a quadrupole-bound anion (λ =
2): Q+

2,c (prolate) and Q−2,c (oblate), and Q−2,c 6= −Q+
2,c.

As the usual −1/rλ+1 radial dependence of multipo-
lar potentials is replaced in our work by the Gaussian
form factor, the detachment threshold is obtained at the
critical trajectories of (V0, r0)±c . Figure 3 shows such tra-
jectories obtained in the adiabatic limit for the Jπ = 0+1
ground states of anions with multipolarities λ = 1− 4.
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The complex-momentum contours used in the
Berggren basis are defined by the points k =
(0, 0), kpeak = (0.5,−0.1), kmid = 1.0, and kmax = 14.0

(in units of a−10 ), with each segment being discretized by
40 Gauss-Legendre points. To ensure convergence, we
took `max = 4 for λ = 1, 2, 3 and `max = 8 for λ = 4, 5.

As one would expect, the absolute value of the crit-
ical potential strength |V0,c| required to bind an excess
electron is decreasing with the range r0 and for a fixed
range |V0,c| increases with multipolarity. Also, as noted
in previous studies [17, 65–67], for even multipolarities,
the value of |V0,c| for negative-V0 potentials (“prolate”)
is larger than that for positive-V0 potentials (“oblate”).

It is interesting to note that at the threshold, the wave
functions are dominated by the ` = 0 component. Di-
viding the intrinsic wave function into the inner region
(r < R) and outer region (r > R) contributions, where
R is the distance at which the core potential becomes
practically unimportant, one can show [68–70] that the
probability of finding the electron in the outer region ap-
proaches one at the detachment threshold, if the ` = 0
component is present in the intrinsic wave function. This
has been practically demonstrated in our previous work
on quadrupole-bound anions [17] in the context of the
scaling properties of root-mean-square radii.

B. Resonances of the near-critical quadrupolar
Gaussian potential

In order to study the role of low-` partial waves in
multipole-bound anions at the interface between the sub-
critical and supercritical regimes, one has to recognize
the impact of ` = 0 partial waves on resonant states
near threshold [70]. In our coupled-channel formalism,
resonant states appear through the mixing of different
channels. To study general features of near-threshold
resonances, we consider three states of the quadrupolar
potential in the adiabatic approximation. Namely, we in-
vestigate: (i) the Jπ = 0+1 ground state dominated by the
` = 0 partial wave; (ii) an excited Jπ = 0+d state domi-

nated by the ` = 2 channel; and (iii) the lowest Jπ = 1−1
state, which is primarily ` = 1. The quadrupolar case
discussed here is characteristic of other multipolar po-
tentials.

1. Resonant states dominated by the ` = 0 channel

The ground state (g.s.) of the quadrupolar potential is
computed with the BEM, using the extended contour L3

of Fig. 2 defined by the points: k = (0, 0), (−0.1,−0.4),
(0.1,−0.4), (2, 0), and (14, 0) (all in a−10 ), each segment
being discretized with 40 Gauss-Legendre points. By
considering the contour that extends into the third quad-
rant of the complex momentum plane, antibound states
can be revealed, see Fig. 2 and Refs. [71–73].
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FIG. 4. The lowest 0+ resonant state of the quadrupolar
Gaussian potential with r0 = a0 as a function of V0. Top:
real energy and imaginary momentum. Bottom: the chan-
nel decomposition of the real part of the norm. The critical
strength V0,c is marked by arrow.

Figure 4(a) shows the energy and momentum of the
0+1 state for different values of the potential strength V0.
For large values of V0, the g.s. is bound (Re(E)<0) and
has a positive imaginary momentum. As the potential
strength decreases, the energy of the ground state moves
up and approaches the E = 0 threshold at V0,c = 8.7 Ry.
For V0 < V0,c the lowest 0+ state becomes antibound
(Re(E) < 0, Im(k) < 0). As illustrated in Fig. 4(b), the
contributions N` to the complex norm of the wave func-
tion from different `-channels (` = 0, 2, 4) vary smoothly
when crossing the threshold. The norm is largely domi-
nated by the ` = 0 component. At the critical strength,
the ` > 0 contributions to the norm vanish, cf. discussion
in Sec. III A. The presence of near-threshold antibound
states impacts the structure of the low-energy contin-
uum and can manifest their existence through peaks in
the scattering cross section at low-energy [60, 74–77].

2. Resonant states dominated by a ` 6= 0 channel

We now consider the evolution of an excited state of the
quadrupolar potential with r0 = 4 a0. At V0 =1.1 Ry the
lowest 0+ state is bound and the second Jπ = 0+2 state is
a decaying resonance, see Fig. 5. Figure 6(a) shows the
channel decomposition for this state. It is seen that its
configuration has the predominant ` = 2 component.

As the potential gets deeper, the pole crosses the −45◦

line at V0 ≈ 1.8 Ry and becomes a subthreshold reso-
nance labeled as 0+d . At V0 = 2.7 Ry a rapid transition
to a configuration dominated by the ` = 4 partial wave
takes place, which is indicative of a level crossing in the
complex-k plane. At V0 = 2.857 Ry the decaying pole
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FIG. 5. Trajectory of the 0+ resonant state in the complex-
k plane of the quadrupolar potential with r0 = 4 a0 as the
potential strength V0 increases in the direction indicated by
an arrow. At the lowest value V0 =1.1 Ry, the 0+ ground
state is bound and the state of interest is an excited 0+

2 state
associated with a decaying resonance. At V0 = 1.8 Ry the
pole crosses the −45◦ line and becomes a subthreshold res-
onance 0+

d . At V0 = 2.857 Ry the decaying pole reaches
the imaginary-k axis and coalesces with the capturing pole
with Im(k) < 0 forming an exceptional point. The antibound
states at V0 = 1.8 Ry and V0 = 2.7 Ry are marked.

arrives at the imaginary-k axis and coalesces with the
symmetric capturing pole forming an exceptional point
[78–80]. At still larger values of V0, the exceptional point
splits up into two antibound states moving up and down
along the imaginary k-axis as shown in Fig. 5. A similar
situation was discussed in Refs. [81, 82] in the context
of electron-molecule scattering and optical lattice arrays,
respectively.

In the range of V0 corresponding to the trajectory
0+2 → 0+d shown in Fig. 5, there appear antibound states
in the threshold region. Their trajectories along the
imaginary k-axis are shown in Fig. 7 and their channel
decompositions are given in Fig. 6(b) and (c). As V0
increases, the antibound states 0+a , 0+b , and 0+c emerge

as bound physical states of the system labeled as 0+1 ,
0+2 , and 0+3 , respectively. The lowest antibound state 0+a
has a dominant ` = 0 configuration, similar to that of
Fig. 4. At low values of V0, the wave function of the
antibound state 0+b is predominantly ` = 2. As seen in

Fig. 5, this state appears close to the decaying pole 0+d at
V0 ≈ 1.8 Ry and the crossing between these two poles in
the complex-k plane is seen in their wave function decom-
positions. Following the crossing, the state 0+b acquires a
large ` = 0 component. The antibound state 0+c begins
as an ` = 4 configuration. At V0 ≈ 2.7 Ry, this state
interacts with 0+d and its configuration changes to ` = 2.
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One can thus see that the presence of antibound states
results in the particular shape of the 0+d -pole trajectory
in the complex-k plane.
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c become bound states
of the system 0+
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two antibound states. The particular values of V0 discussed
around Fig. 5 are marked.

The dependence of the 0+d -pole trajectory on the po-
tential range is illustrated in Fig. 8. For potentials with
longer ranges, pole trajectories appear closer to the ori-
gin. In all the cases shown, a transition from decaying
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to subthreshold resonances takes place. These poles have
large widths, and are expected to impact the structure
of the low-energy scattering continuum.

3. Resonant states without a ` = 0 component

Here we discuss the lowest Jπ = 1−1 state, which is pri-
marily ` = 1 with a small admixture of the ` = 3 channel.
This case closely follows the discussion of Ref. [81] for p-
wave scattering from short-range potentials. The corre-
sponding trajectory of this state in the complex momen-
tum plane is shown in Fig. 9(a). At larger values of V0,
the 1−1 state is bound. As V0 decreases, this state crosses
the detachment threshold and becomes a narrow decay-
ing resonance. The trajectory of the capturing resonance,
symmetric with respect to the Im(k) axis, is not shown.
As discussed in Ref. [81], the exceptional point appears
at the origin at V0,c. Close to the threshold, the bound
state and the antibound state are located symmetrically
to the origin. For the p-wave dominated state, the tran-
sition from the subcritical to the supercritical regime is
smooth, i.e., the wave function amplitudes hardly change
with V0, see Fig. 9(b). This is because the contributions
from antibound and bound state poles cancel each other
out. In this case, the structure of the low-energy con-
tinuum is not expected to be affected by the presence of
threshold poles.

The situation presented in Fig. 9 is rather generic for p-
wave dominated resonant poles. Increasing the potential
range moves the pole trajectory closer to the real-k axis.
Consequently, states containing no s-wave component are
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FIG. 9. Top: trajectory of the lowest 1−
1 resonant state of

the quadrupolar potential with r0 = a0 as a function of V0 in
the range of (9-12.7) Ry. The potential strength V0 increases
along the direction indicated by an arrow. The positions of
the bound and antibound states at V0 = 12.34 Ry and 12.4 Ry
are marked. Bottom: real norms of channel functions for this
state.

likely to appear as isolated narrow resonances. For odd-
multipolarity potentials, a (j = J, ` = 0) component of
a Jπ state becomes large as the detachment threshold
is approached, see Sec. III B 1. On the other hand, for
even-multipolarity potentials, odd-J states cannot have
an s-wave component, as the core’s angular momentum j
must be even, and narrow near-threshold resonances can
appear.

C. Rotational motion

To describe multipole-bound anions, one has to take
into account the nonadiabatic coupling between the rota-
tional motion of the molecule and the single-particle mo-
tion of the electron. Whether a multipole-bound anion
can exhibit rotational bands depends on the molecule’s
multipolarity. For instance, it was shown in Ref. [16]
that rotational bands of dipolar anions do not extend
above the detachment threshold while a similar study for
quadrupole-bound anions [17] demonstrated that the ro-
tational motion of the anion is hardly affected by the
continuum effects. The reason for this difference might
be due to the existence of two coupling regimes in the
dipolar case: a strong coupling regime below the thresh-
old (valence electron follows the rotational motion of the
core) and a weak coupling regime in the continuum re-
gion (valence electron is almost entirely decoupled from
the molecular rotation).

Figure 10 illustrates the case of a rotational band built
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FIG. 10. The rotational band built upon the Jπ = 0+
1 state

of a dipole-bound anion. The parameters V0 = 5.33 Ry, r0 =
a0, and I = 103mea

2
0 have been chosen to place the band-

head energy slightly below the zero-energy threshold, where
rotational motion of the rotor can excite the system into the
continuum. The energy is plotted as a function of J(J + 1).

upon the subthreshold Jπ = 0+1 state of the Gaussian
dipolar potential. It is seen that the rotational band is
not affected when the zero-energy threshold is crossed
below J = 4. This result indicates that the presence
of the two coupling regimes predicted to exist in realis-
tic calculations for dipole-bound anions [16] must be due
to difficulties in imposing proper boundary conditions at
infinity for the dipolar potential (∼ r−2) when the ro-
tational motion of the molecule is considered nonadia-
batically [15]. Since in the present work the radial part
of the dipolar pseudopotential is replaced by a Gaussian,
the outgoing boundary condition can be readily imposed.

-0.2

0.0

0.2

0.4

I = 50mea
2
0

I = 100mea
2
0

angular momentum J

en
er

gy
 (R

y)

3- 4+2+0+1- 5-

detachment
threshold

λ = 2

FIG. 11. Similar to Fig. 10 but for rotational bands built upon
the Jπ = 01

+ and 11
− bandheads of a quadrupolar Gaussian

potential with V0 = 12.38 Ry, r0 = a0, and for I = 50mea
2
0

and I = 100mea
2
0.

A similar result is obtained for the quadrupolar case
shown in Fig. 11 for two rotational bands built upon the
Jπ = 0+1 and 1−1 bandheads. The existence of rotational

bands extending above the detachment threshold is con-
sistent with the findings of Ref. [17] employing the realis-
tic quadrupolar pseudopotential. The results for higher-
multipolarity potentials follow the pattern obtained for
the dipolar and quadrupolar cases; hence, they are not
shown here.

We now investigate the impact of the molecular ro-
tation on the anion’s energy spectrum. By definition,
changing the moment of inertia of the rotor is expected
to have a larger effect on states dominated by channels
with large j, but in practice such channels are unlikely to
dominate at low energies. As an illustrative example, we
study the 3−1 state of the quadrupolar (λ = 2) Gaussian
potential. Figure 12(a,b) shows, respectively, the energy
and decay width of the 3−1 resonance as a function of the
potential strength and the inverse moment of inertia.

0.02

0.04 (a)

0.02

0.04
1/

I(
un

its
 o

f  
 m

  −1 e
a−

2 0 
)

(4,1)

(2,1)(b)

0.0
0.4
0.8

R
e(
N

)

(c) (4,1) (2,1)

1/I=0.04

8 10 12 14
V0 (Ry)

0.0
0.4
0.8 (d)

1/I=0.02

0.0

0.4

0.8

E

Γ

E = 0

E = 0

FIG. 12. Energy (a) and decay width (b), both in Ry, of
the 3−

1 resonance of the quadrupolar Gaussian potential with
r0 = a0 as a function of the inverse of the moment of in-
ertia and the potential strength. The detachment threshold
(E = 0) is indicated. The dominant (j, `) channel is marked
in panel (b). When the rotational energy of the molecule
Ej=4

rot lies below/above the energy of the 3−
1 resonance, the

(4,1) decay channel is open/closed. The line Ej=4
rot = E(3−

1 )
(thick solid) separating these two regimes is marked, so is
the line Ej=2

rot = E(3−
1 ) (thick dotted) which corresponds to

the threshold energy for the opening of the (2,1) channel.
The norms of the two dominant channels (2,1) (solid line)
and (4,1) (dotted line) are shown as a function of V0 for
1/I = 0.04m−1

e a−2
0 (c) and 0.02m−1

e a−2
0 (d).

At large values of V0 when the 3−1 resonance lies close
to the threshold, its wave function is primarily described
in terms of two channels with (j, `) = (2, 1) and (4, 1)
with the dominant (2,1) amplitude, see Fig. 12(c,d). At
a finite value of I, as the energy of the resonance in-
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FIG. 13. Unbound threshold 0+ states of the quadrupolar
Gaussian potential obtained by using scattering L-contours
with different kpeak (in units of a−1

0 ) in the complex momen-
tum plane, see Fig. 2. The potential has V0 = 8 Ry and
r0 = a0.

creases, a transition takes place to a state dominated by
the (4,1) component that is associated with a reduction
of the decay width. This transition can be explained in
terms of channel coupling. At very low values of 1/I
the resonance’s energy E(3−1 ) lies above the rotational
4+ state of the molecule. As the moment of inertia de-
creases, the 4+ member of the ground-state rotational
band of the molecule moves up in energy, and at some
value of I it becomes degenerate with the energy of the
E(3−1 ) resonance, i.e., Ej=4

rot = E(3−1 ). At still higher
values of 1/I, the (4,1) channel is closed to the anion’s
decay. As seen in Fig. 12(b), the irregular behavior seen
in the width of the resonance can be attributed to the
(4,1) channel closing effect [56]. A second irregularity
in Fig. 12(c,d), seen at large potential strengths, corre-

sponds to Ej=2
rot = E(3−1 ). As the resonance approaches

the threshold, its tiny decay width can be associated with
the (0,3) channel. Due to its higher centrifugal barrier,
(0,3) channel contributes around 1% to the total norm in
the threshold region.

D. Unbound threshold solutions in the
supercritical region

In our previous study on quadrupole-bound anions
[17], based on a realistic pseudopotential, it was shown
that there appear series of narrow resonances at energies
close to the rotor energies, exhibiting fairly regular pat-
terns. Similar sequences of threshold states, predicted
by the present model, are shown in Fig. 13, which dis-
plays unbound 0+ states of the quadrupolar Gaussian
potential computed with different scattering contours in
the complex momentum plane obtained by varying kpeak,

see Fig. 2. It is seen that the calculated states exhibit
appreciable contour dependence.

Similar results have been obtained for other Jπ states
and Gaussian potentials with higher-multipolarity poten-
tials. Since the general pattern of near-threshold solu-
tions obtained in different calculations seems to be fairly
generic, and primarily depends on the shape of the con-
tour used, they should be interpreted in terms of non-
resonant scattering continuum states rather than reso-
nance poles.

IV. CONCLUSIONS

In this work, we studied properties of near-threshold
states of multipole-bound anions using the Berggren ex-
pansion method within the coupled-channel formalism.
We considered a Hamiltonian of a nonadiabatic electron-
plus-molecule model with the particle-core interaction
being represented by a multipolar Gaussian potential.
Such a four-parameter model, rooted in scale-separation
arguments of halo effective field theory, is expected to
describe general trends of near-threshold resonant poles
for multipolarities λ ≥ 2.

By calculating the threshold lines for anions of differ-
ent multipolarity, we predicted that within this model,
higher-λ anions can exist as marginally-bound open sys-
tems. The role of the low-` channels in shaping the tran-
sition between subcritical and supercritical regimes has
been explored. We demonstrate the presence of a com-
plex interplay between bound states, antibound states,
subthreshold resonances, and decaying resonances as the
strength of the Gaussian potential is varied. In some
cases, we predict the presence of exceptional points. The
fact that antibound states and subthreshold resonances
can be present in multipolar anions is of interest as they
can affect scattering cross sections at low energy.

For Gaussian potentials, the outgoing boundary condi-
tion can be readily imposed. Consequently, the rotational
band of the anion is not affected when the zero-energy
threshold is reached. This indicates that the presence
of two coupling regimes of rotation predicted to exist in
realistic calculations for dipole-bound anions [16] must
be due to specific asymptotic behavior of the dipolar
pseudo-potential in the presence of molecular rotation.
The non-adiabatic coupling due to the collective rota-
tion of the molecular core can give rise to a transition
into the supercritical region. We also predict interest-
ing channel-coupling effects resulting in variation of an
anion’s decay width due to rotation.

In summary, by looking systematically at the pattern
of resonant poles of multipole-bound anions near the elec-
tron detachment threshold we uncover a rich structure of
the low-energy continuum. These simple systems are in-
deed splendid laboratories of generic phenomena found
in marginally-bound molecules and atomic nuclei.
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