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Abstract

Quantum embedding theories model a collection of interacting molecules as a set of subsystems,

where each can be treated with a particular electronic structure method (wave function or density

functional theory, for example); these theories can lead to computationally efficient and accurate

algorithms. Motivated by challenges in the field, we previously described a formalism (that models

two subsystems), which we call “locally coupled open subsystems” (LCOS), for the computation

of ground-state energies, fractional electron-occupation numbers of the subsystems, and the size-

consistent limit of subsystem dissociation. In this work we present the full (non-relativistic) LCOS

theory, and the following extensions of our previous work: i), the framework to study systems

composed of multiple subsystems and a procedure to spin-adapt the auxiliary wave function that

describes the partitioned system, so its spin-state matches that of the real system of interest;

ii), potential functionals and ideas to employ machine learning for the computation of ground-

state densities and energies; iii), formulation of two LCOS ground-state approaches where the

fragments are assigned Kohn-Sham wave functions; and, iv), a time-dependent (TD) extension

of these two ground-state formalisms in which the state of the subsystems evolves according to a

unitary propagation; from this evolution we can extract TD electron populations of the fragments,

for instance. We also discuss potential applications of the TD LCOS theory to linear photo-

absorption and Raman spectroscopy. The developments presented in this work can lead to ground-

state and TD electronic structure calculations where the computational scaling can be controlled,

depending on the level of theory and the accuracy desired to model each one of the subsystems

and their coupling.

∗ g-schatz@northwestern.edu
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I. INTRODUCTION

With the aim of computing the electronic ground-state and the dynamical properties of a

molecule/solid, dividing it into different subsystems can be advantageous to reduce computa-

tional costs and control the level of theory that is convenient to model each subsystem. This

strategy allows the user to study systems with a larger size than is traditionally accessible

with standard Kohn-Sham DFT methods. From a computational point of view, algorithms

that are able to achieve the following are desirable: i), to perform separate inexpensive

density-functional, or wave-function, theory calculations to generate individual information

about a fragment; and, ii), to gather and process together the information so-generated

to produce accurate electronic properties. Theoretically, the mentioned steps offer ways to

avoid problems often encountered in the application of semi-local/hybrid functionals; for

example, the well-known static correlation errors which often predict incorrect fractional

electron occupations in the adiabatic dissociation of molecular fragments [1, 2].

Previous work in the field has made it possible to perform subsystem-based quantum

chemical calculations with a flexible computational scaling. For example, a molecule can

be embedded into different environments such as solvents, surfaces, etc. [3–6] Modelling of

mid- and long-range interactions between dimer molecules, each treated as a separate sub-

system, has been reported [7, 8]. Recently, interest by the community [9–20] has emerged

on developing computational methods – especially from a quantum embedding perspective

– to describe the evolution of electronic properties as a function of time, which could fa-

cilitate studying phenomena like electron and energy transfer, and predicting time-resolved

spectroscopic signals of these types of processes.

Current challenges in the field include developing formalisms and computational method-

ologies to compute correct electronic populations of molecular subsystems in the static cor-

relation [21] and the TD regimes [22]. These two issues motivate our formalism, which

we call “locally coupled open subsystems” (LCOS). We previously described a simpler ver-

sion of our methodology [23] to model the electronic ground state, and it features: i), an

auxiliary wave function, expressed as a linear combination of tensor products of subsys-

tem states; these states are labeled according to the energy level, number of electrons, spin

state, and other symmetry labels. ii), An auxiliary Hamiltonian which is expressed as a

sum of free-subsystem Hamiltonians, plus a coupling operator that induces electron transfer
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between subsystems, this term depends on a local potential that can be estimated using

density functional approximations, or machine learning approaches. We refer to this object

as “coupling potential”, and part of this paper concerns with its determination.

The electron population numbers in the LCOS theory are determined by tensor-product

wave function amplitudes, which come from Hamiltonian matrix diagonalization (in ground-

state calculations), or, as we show in this work, from unitary propagation in the TD case.

These amplitudes depend on the energetics of each fragment and the strength of the cou-

pling between them. The proposed formalism satisfies fragment-wise size-consistency: If

all the fragments are at infinite separation, then the total ground-state energy is the sum

of each isolated-fragment energies. For inter-molecular energy transfer problems, the time-

dependency of the tensor-product superpositions can offer information about the evolution

of coherences, and their engineering.

The present work generalizes the approach described in Ref. [23], and it is organized as

follows: i), We define the full expansion of the auxiliary wave function that describes the state

of the subsystems, and introduce the required quantum mechanical operators. We study an

auxiliary, additive spin operator (defined as the sum of subsystem spin operators), and its

corresponding eigenstates; these states may be convenient to mimic the true spin state of the

real system of electrons. ii), We introduce three full ground-state frameworks. The first one

is based on correlated wave functions, whereas the other two are developed within density

functional theory; treatment of degenerate ground states is included in this work. The first

DFT approach is presented on the basis of reference single-particle Hamiltonians, and the

second one relies on density matrices and energy functionals. Finally, iii), we introduce the

TD extensions of the theoretical methods mentioned in ii), i.e., evolution equations for the

auxiliary wave function of the system, and its electronic density. We discuss simplification

of these equations, one-to-one maps between auxiliary local potentials and TD electronic

densities, an example, and potential applications.
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II. TENSOR PRODUCTS AND FRAGMENT-SPECIFIC OPERATORS

Our goal is to estimate ground- and excited-state properties of a system of non-relativistic

electrons. The Hamiltonian of the system reads:

Ĥ = T̂ + Ŵ +

∫

d3r ρ̂(r)v(r) , (1)

here T̂ and Ŵ , are the kinetic and electron repulsion energy operators, respectively; ρ̂(r) is

the density operator. These operators are assumed to be given in second quantization, so

they are applicable to states with any number of electrons. By means of the Levy constrained

search, the ground-state energy functional is expressed as:

Ev[ρ] =
(

min
Ψ→ρ

〈Ψ|T̂ + Ŵ |Ψ〉
)

+

∫

d3r ρ(r)v(r) , (2)

where the true ground-state energy of the system, in theory, would be computed by mini-

mizing the above functional over densities that integrate to a given number of electrons.

In the LCOS theory we model the molecular system as a set of fragments, where each

fragment is assigned a Hamiltonian with similar form to the one shown above. Instead of

minimizing the functional Ev, using the procedure shown above or through the related Kohn-

Sham scheme, in this work we optimize an alternative, auxiliary energy operator that we

discuss in detail later on. This operator is based on a direct sum of subsystem Hamiltonians,

and an interaction operator that induces electron and energy transfer between different

subsystems. This interaction operator features a local potential that can be found in a

self-consistent fashion, so (in principle) the auxiliary wave function yields the exact density

of the real system and its energy, through evaluation of a residual energy that derives from

the LCOS formalism. In this work, we consider several, different auxiliary energy operators,

which lead to a family of different ground-state/time-dependent formalisms. In practice,

selecting the most suitable formalism depends on the type of application, level of theory

required to model the subsystems (correlated wave-function theory, DFT, etc.), and the

desired computational scaling, among others.

We define a set of M auxiliary open electronic subsystems. A particular configuration of

these subsystems is described by a tensor product of the form:

|Ψ̄〉 = |Ψ1〉|Ψ2〉 · · · |ΨM〉 , (3)
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|ΨY 〉 is a wave function describing the state of fragment Y , and indicates its number of

electrons. Throughout this work we refer to a wave function with the form above as a

TP (tensor product) wave function. Given another TP wave function |Φ̄〉 = |Φ1〉 · · · |ΦM 〉,
the inner product is defined as 〈Φ̄|Ψ̄〉 = 〈Φ1|Ψ1〉 · · · 〈ΦM |ΨM〉. As customary in Fock space

methods, if two kets of the same fragment describe states with different numbers of electrons,

then their inner product is zero, for example 〈ΦY (N − 1)|ΨY (N)〉 = 0. Furthermore, we

introduce the symbol (ΦY |Ψ̄〉, where ΦY is an arbitrary wave function of the Y -th subsystem,

which represents the reduced TP wave function:

(ΦY |Ψ̄〉 = [〈ΦY |ΨY 〉]|Ψ1〉 · · · [no |ΨY 〉] · · · |ΨM〉 , (4)

(ΦY |Ψ̄〉 is a TP wave function representing M − 1 fragments.

Each fragment can have any allowed number of electrons, only the total number of elec-

trons remains constant and equals the number of electrons of the real molecule. The ket |ΨY 〉
could be, in principle, the fully correlated wave function of the fragment, or a Slater deter-

minant formed by orbitals that obey the fragment Hartree-Fock equations. Prior to solving

these equations, one firstly specifies the number of electrons in the fragment, the electron-

nuclei potential of the Y -th fragment, vY (r), and the spin-symmetry (singlet, doublet, etc.).

The Slater determinant can either be pure or spin contaminated.

Multiple ways of dividing a system into different fragments are possible. For example, one

can model the molecule as a set of mutually exclusive fragments (that do not share common

atoms). Another possibility is the use of overlapping fragments, in which some atoms are

shared between different subsystems (this case is advantageous because it can simplify the

calculation of embedding potentials significantly). This work, however, focuses on mutually

exclusive subsystems, which are assumed given, or pre-selected (for example, a molecule

attached to a nanoparticle might be conveniently partitioned into a nanoparticle subsystem

plus the molecule as the other subsystem). A fragment in our theory is represented by its

Hamiltonian (Eq. (9) below), which requires a user-defined electron-nuclei potential, for

example:

vY (r) =
∑

α∈FY

− Zα

|r−Rα|
, (5)

where FY is the set of nuclei that are part of fragment Y . In Fig. 1 we show an example

of how to divide a thiophene+Ag20 composite system. The thiophene domain can be taken
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as a subsystem, and the pyramidal silver cluster as the other subsystem. In future work we

will consider systems like the one shown in Figure 1.

FIG. 1: A thiophene molecule interacting with a Ag20 pyramidal cluster. Oval and square

shapes surround two possible subsystems, “A” and “B”, that the entire system can be

partitioned into.

In this work we employ second-quantized operators. We define a family of annihilation

operators {ψ̂Y (r)}, where each satisfies

ψ̂Y (r)|Ψ̄〉 = |Ψ1〉 · · · [ψ̂Y (r)|ΨY 〉] · · · |ΨM〉 , (6)

ψ̂Y (r) and its conjugate only act over the Y -th fragment ket. The anticommutation rule of

these fragment-specific operators is the same as that of the operator ψ̂(r): {ψ̂†
Y (r

′), ψ̂Y (r)} =

δ(r− r′). The density and current density of the Y -th fragment can be defined as:

ρ̂Y (r) = ψ̂†
Y (r)ψ̂Y (r) ,

ĵY (r) =
1

2i

{

ψ̂†
Y (r)∇ψ̂Y (r)− [∇ψ̂†

Y (r)]ψ̂Y (r)
}

.
(7)

Using these quantities, the total density and current density are introduced as the additive

operators:

ρ̂+(r) =
∑

Y

ρ̂Y (r), ĵ+(r) =
∑

Y

ĵY (r) . (8)
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The Hamiltonian of fragment Y is defined as follows

ĤY = T̂Y + ŴY +

∫

d3r ρ̂Y (r)vY (r) , (9)

here T̂Y and ŴY are fragment-specific kinetic and electron repulsion energy operators, re-

spectively. These operators can also be expressed in terms of creation/annihilation operators

T̂Y =
1

2

∫

d3r ∇ψ̂†
Y (r) · ∇ψ̂Y (r) ,

ŴY =

∫

d3rd3r′ ψ̂†
Y (r

′)ψ̂†
Y (r)

1

|r− r′|ψ̂Y (r)ψ̂Y (r
′) .

(10)

For example, for the state described by Eq. (3), the average energy of fragment Y is

〈Ψ̄|ĤY |Ψ̄〉 = 〈ΨY |ĤY |ΨY 〉.
We denote ΨY

IY ,NY
as an eigenfunction of the Y -th fragment Hamiltonian ĤY

(EY
IY ,NY

|ΨY
IY ,NY

〉 = ĤY |ΨY
IY ,NY

〉), where NY is an integer number of electrons, the label

IY includes the energy level, spin-state of the system, and other symmetries. The operator

ψ̂Y (r) can be expressed using a discrete basis: ψ̂Y (r) =
∑

pσ ψpσ,Y (r)âpσ,Y , where {ψqσ,Y } are

eigenfunctions of some suitable single particle Hamiltonian (we use the index p for orbital

energy level and σ for z-spin), and âpσ,Y destroys an electron occupying ψpσ,Y . For example,

one can use the eigenfunctions of the Fock operator, fσ,Y , of the Y -th isolated fragment,

fσ,Y ψpσ,Y = ǫpσ,Y ψpσ,Y .

A. Spin Operators

The fragment wave functions can be either closed or open shell states. In our model based

on subsystems, we introduce a spin operator and linear combination of tensor products that

“mimic” the spin state of the true molecular system. The additive spin operator is the

following:

Ŝ = Ŝ1 + Ŝ2 + · · ·+ ŜM , (11)

where ŜY is the spin (vector) operator of fragment Y [24]. Similarly as ψ̂Y , ŜY only acts over

the Y -th fragment ket: ŜY |Ψ̄〉 = |Φ1〉 · · · (ŜY |ΦY 〉) · · · |ΦM〉. Because ŜY and ŜX commute

if Y 6= X , Ŝ follows the standard cyclic commutation rule

[Ŝi, Ŝj ] = iǫijkŜk , (12)
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where i, j, and k run over any of the possible Cartesian components (x, y, z). Algebraic

procedures, e.g., spin adaption, can be simplified by using raising, and lowering operators:

Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy. These operators are related to the additive spin square

as follows:

Ŝ
2 = Ŝ+Ŝ− + Ŝz(Ŝz − 1) . (13)

It can be shown that the raise/lower operators read: Ŝ+ =
∑

p,Y â
†
p↑,Y âp↓,Y , and Ŝ− =

∑

p,Y â
†
p↓,Y âp↑,Y .

For a set of open-shell fragments, we could start from a single tensor product configu-

ration, and exchange ↑ and ↓ spin-states of each singly-occupied orbital, while adjusting

the sign of the new configuration, to achieve the requested spin-symmetry (two doublet

fragments can be combined to form a singlet tensor product Ŝ2|Ψ̄〉 = 0 by exchanging the

z-spin of the outermost orbitals). For example, taking the lithium molecule (Li2), we can

say it is composed of two fragments: a left Li and a right Li atom. The antisymmetrized

ket 1/
√
2(|2s, ↑〉|2s, ↓〉 − |2s, ↓〉|2s, ↑〉) (doubly occupied 1s levels are omitted) is a singlet

eigenstate of Ŝ2.

In analogy with standard eigenfunctions of the z-spin and spin-square operators, we can

construct superpositions of TP wave functions such that

Ŝ
2|Ψ̄〉 = S (S + 1)|Ψ̄〉 ,

Ŝz|Ψ̄〉 = mS |Ψ̄〉 .
(14)

Here S is a positive integer (1/2, 1, 3/2, etc.) and mS is a number in the set (−S ,−S +

1, . . . ,S − 1,S ).

It is convenient to ensure that given a tensor product of fragment kets, it displays a

desired additive-spin symmetry [Eq. (14)], such as a singlet symmetry, for example. To this

end we introduce a spin symmetrization operator, OS ,mS ,lS , which, given a set of fragment

kets, it combines them to produce a linear combination of TP kets that is an eigenfunction

of the operators Ŝ2 and Ŝz . This operator includes an extra subindex lS that labels different

degenerate states with the same spin numbers S and mS . We thus write the index IY as

IY = JYmS,Y (where mS,Y represents the secondary spin quantum number of fragment Y ),
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and a spin-adapted configuration as

|J1N1, . . . ,JMNM ;S , mS , lS 〉 = OS ,mS ,lS |Ψ1
J1mS,1,N1

〉 · · · |ΨM
JMmS,M ,NM

〉 ,

=
∑

P{mS,1,...,mS,M}

QP{mS,1,...,mS,M},S ,mS ,lS |Ψ1
J1PmS,1,N1

〉 · · · |ΨM
JMPmS,M ,NM

〉 ,

(15)

where P is an operator that raises the z-spin of a fragment and lowers it in another accord-

ingly, and QP{mS,1,...,mS,M},S ,mS
is a linear combination coefficient. The above summation is

done over all possible spin-flips; this step would be dictated by the selected spin-adaption

procedure.

To generate configurations that are eigenfunctions of the additive spin operators, one

can apply theories based on Löwdin operators, Sanibel coefficients, or related methods. In

Appendix B, starting from two triplet states, we apply Löwdin projections to construct a

singlet spin-adapted configuration.

B. Electron-Transfer Coupling and Model Hamiltonian

A main aspect of the LCOS theory is the auxiliary Hamiltonian operator. As discussed

in Ref. [23], this operator is defined by following three principles: i), The Hamiltonian

must lead to fragment-wise size consistency. For example, if the system is composed of two

fragments, then, as the distance between these fragments tends to infinity, the total energy

must tend to the sum of energies of the isolated fragments. ii), The Hamiltonian must

enable control of the computational costs, by allowing the user to select the appropriate

level of theory for each fragment, the size of the expansion for the auxiliary wave function,

among other settings related to the specific LCOS implementation. Finally, iii), the model

Hamiltonian should include a mechanism that allows for energy and electron transfer among

fragments.

Following the above guidelines, we express an auxiliary Hamiltonian as the sum of an ad-

ditive energy operator and a coupling term. Throughout this work we consider two different

additive energy operators. The operator:

Ĥ+ =
∑

Y

ĤY , (16)
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and a similar one expressed in terms of single-particle Hamiltonians, as described in Section

IVB. A Hamiltonian with the form shown above can satisfy criteria i) and ii). To satisfy

ii) one can select different levels of theory, ranging from Hartree-Fock theory, up to full CI;

DFT-based treatment of the fragments is discussed in Section IV.

We now consider the term that describes electron transfer. For two subsystems, in Ref.

[23] we show that the (local) product of field operators, which eliminates an electron in one

fragment and creates a new one in a different fragment, can serve as an electron transfer

operator. The generalization of this operator for an arbitrary number of subsystems is

straightforward, we define:

ζ̂(r) =
∑

Y 6=X

λY X τ̂Y X(r) , (17)

where λ∗XY = λY X . The Hermitian matrix λ represents the strength of electron-transfer

coupling between fragments. In this work we assume this matrix is given. For example, one

may choose λ as the identity matrix, and find a local auxiliary potential (as required by

the formalisms discussed in Section III) that describes the electron transfer effects. Alterna-

tively, one can choose a λ matrix (different from the identity matrix) such that it simplifies

the development of approximations to the auxiliary potential. In future work we explore

methodologies to compute this matrix. The symbol τ̂Y X(r) represents an operator that an-

nihilates an electron in subsystem X and creates another one in fragment Y , and is defined

as:

τ̂Y X(r) = ψ̂†
Y (r)ψ̂X(r) . (18)

This operator satisfies τ̂ †Y X = τ̂XY , which implies that [τ̂Y X(r) + τ̂XY (r)] and ζ̂(r) are Her-

mitian.

To couple the fragments so energy transfer can take place, we employ the additive density

operator ρ̂+. This term, however, is particle conserving, meaning it does not induce charge

transfer between subsystems. The net coupling in our theory is thus collected into a single

local operator. We refer to it as a “pseudo-density”, and it reads:

η̂(r) = ρ̂+(r) + ζ̂(r) . (19)

The strength of this net coupling is controlled by a local auxiliary potential, θ(r), which

can be estimated by employing a density functional, or other techniques such as machine

learning. In this work we study auxiliary Hamiltonians (in Ref. [23] we employ the symbol
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Ĥ to represent this Hamiltonian) with the following form:

Ĥ = Ĥ+ +

∫

d3r η̂(r)θ(r) . (20)

Variations of this operator and local potential, introduced as required by each theory, are

discussed in the following sections [25].

The type of energy operator shown above fulfills a similar role in our theories as the Kohn-

Sham Hamiltonian does within standard DFT: to provide a convenient set of Schrödinger-

like equations that has a lower computational cost than traditional correlated wave-function

methods, and features a local potential (like the XC potential) that can be estimated through

derivation of a density functional (such as the XC energy). The Kohn-Sham equations lead

to estimation of the ground-state density of the system. Furthermore, the ground-state

energy in KS DFT is approximated as usual in terms of the (non-interacting) kinetic, XC,

Hartree, and electron-nuclei attraction energies. In a similar fashion, in the LCOS theory we

express the electronic ground-state energy of the system as the sum of a known energy and

an unknown term that needs to be approximated as a density functional (or as a quantity

that could be determined by a machine learning algorithm).

III. GROUND-STATE FORMALISMS

As mentioned in the previous section, we assume that the molecular system is divided into

a set of M subsystems. These are taken as auxiliary fragments, where each is associated a

specific set of operators, namely: energy, density, current-density, and spin. In addition, we

introduce in the following in this section auxiliary local potentials and pair-wise operators

that account for the coupling between all the fragments, so they exchange charge and energy.

The frameworks we discuss, strictly speaking, are designed to calculate the properties of the

lowest-energy state with given values of spin numbers S,mS of the real molecular system.

The present section is organized as follows: First, we present potential-functionals that

can be used within the context of machine learning to find the correlation between local po-

tentials and densities, and ground-state energies and nuclear coordinates; these correlations

could then be used to predict ground-state properties. Second, density functionals are intro-

duced, these allow for computation of the local potential in terms of functional derivatives;

the ground-state energy of the system is computed as the additive energy of the subsystems,
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plus an energy functional that corrects the additive energy. And, third, a simple example is

considered, which was reported in detail in Ref. [23].

A. Potential-Functionals and Eigenvalue Problem

In previous work, starting from a density functional that we define as a constrained

minimization of the additive energy operator, Ĥ+, over the space of TP superpositions,

we derived eigenvalue equations that, if solved self-consistently, can yield the ground-state

density of the system [23]. Once the density is obtained, one then computes the energy as the

average of the operator Ĥ+, plus a residual energy functional (also referred to as “coupling”

energy), which is evaluated at the ground-state density [23]; this topic is discussed in detail

in Section IIIC. In this section we show that the eigenvalue equation can be re-derived on

the basis of a potential-functional. We introduce the general ansatz to solve the eigenvalue

problem, and reduced density matrices that can be applied for the computation of subsystem

energies and densities. In Section IIIB we one-to-one maps between coupling potentials and

pseudo densities, and discuss how potential functionals may be studied with machine learning

methods.

The energy potential-functional is defined as follows:

EMB[θMB] = min
Ψ̄

〈Ψ̄|Ĥ+ +

∫

d3r η̂(r)θMB(r)|Ψ̄〉 , (21)

here θMB is an auxiliary local potential. We employ the acronym “MB” to imply that the

fragments are described by fully-correlated wave functions and many-body (MB) Hamilto-

nians. We refer to θMB as the “coupling” potential. Its role is to control the shape of each

fragment electronic density, and the amount of charge transferred among fragments. We

restrict the search above to superpositions of TP wave functions that have the same spin

number as that of the true ground-state wave function of the entire system. For example,

if the total system is a doublet state then we demand S = S = 1/2, and mS = +1/2 or

−1/2.

Even though in this section we express the additive operator H+ as the sum of non-

relativistic, all-electron subsystem Hamiltonians, other choices are possible. In Section IVB

we discuss an alternative additive energy operator that can serve as the starting point for

DFT-based treatment of subsystem electronic states.

12



The above minimization problem can be solved using an ansatz of the form:

|Ψ̄〉 =
∑

J1N1,...,JMNM ,lS

CJ1N1,...,JMNM ,lS |J1N1, . . . ,JMNM ;S , mS , lS 〉 , (22)

where the summation is performed over electron numbers {NY } that conserve the total num-

ber of electrons (
∑

Y NY = NT, where NT is the total number of electrons). For convenience

we collect all the indices with a single vector J̄. Therefore we write the above ansatz more

compactly as |Ψ̄〉 =
∑

J̄CJ̄|J̄〉. Using the above orthonormal basis [26], Eq. (21) can be

expressed, and solved accordingly, as a standard eigenvalue problem:

[H+ +ΘMB]C
I = EIC

I . (23)

where (H+)J̄′

J̄ = 〈J̄′|Ĥ+|J̄〉, and (ΘMB)J̄′

J̄ = 〈J̄′|
∫

d3r η̂(r)θMB(r)|J̄〉. We denote the

ground-state wave function that solves the right hand side (rhs) of Eq. (21) as |Ψ̄0〉 =
∑

J̄
C0

J̄
|J̄〉. For the calculation of averages such as 〈Ψ̄0|ĤY |Ψ̄0〉, we define the reduced density

matrix:

wY
IY I′

Y
NY

= trX 6=Y {(ΨY
IY NY

|Ψ̄0〉〈Ψ̄0|ΨY
I′
Y
NY

)} . (24)

In this operation we treat all the fragments but the Y -th fragment as bath states, and trace

them out (Appendix A). Using this matrix we can further introduce the reduced density

operator

D̂Y =
∑

IY I′
Y
NY

wY
IY I′

Y
NY

|ΨY
IY NY

〉〈ΨY
I′
Y
NY

| . (25)

Hence the additive energy takes the form

〈Ψ̄0|Ĥ+|Ψ̄0〉 =
∑

Y

tr{ĤY D̂Y } , (26)

similarly, the additive density of the system reads ρ+(r) =
∑

Y tr{D̂Y ρ̂Y (r)}.
The above expressions imply that one can compute fragment-specific quantities using a

density-matrix perspective. However, note that the density matrix D̂Y does not derive from

a physical ensemble model, as in other versions of fragment-based density functional theories

such as partition DFT [27] and potential functional embedding DFT [5] (Appendix F), or

standard all-electron theories that rely on statistical thermodynamical ensembles [28, 29].

We remark that the state of all the fragments is described by the linear combination of TP

states |Ψ̄〉.
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B. One-to-one maps and estimation of potentials

We denote the TP wave function that, for a given potential θMB, minimizes the rhs side of

Eq. (21) as Ψ̄0. Suppose that for a different coupling potential, θ′MB there is a corresponding

non-degenerate ground-state TP wave function Ψ̄′
0. If these two states are non-degenerate,

then they cannot give rise to the same pseudo-density (this result follows the usual reductio

ad absurdum procedure).

The above theorem thus implies the existence of a functional that associates to a given

pseudo-density, η, a unique coupling potential. In contrast with this result, establishing

a one-to-one mapping between coupling potentials and total electronic densities is more

challenging. For practical applications, however, we assume that each density is assigned

a unique coupling potential. If the map is many-to-one, we believe it is possible to add

constraints and employ approximations that lead to one-to-one maps between electronic

densities and local coupling potentials.

For a given electronic density, machine learning methods might assist in finding a coupling

potential that represents such density, and its related coupling energy. By finding a potential

that “represents a given density” we refer to determining a potential θMB,0 with the following

property: that the auxiliary wave function that solves the rhs of Eq. (21) with θMB,0 yields an

electronic density that exactly matches the given density. In practice, to find θMB,0 one can

employ a procedure in which a cost function is minimized. Such function would measure the

deviation of a density represented by some intermediate coupling potential from the density

of interest. Tools such as kernel regression may be employed to represent trial coupling

potentials, and to minimize the cost function. Within the context of standard of KS theory,

the work of Snyder et al. [30] presents ideas to employ kernel methods to compute kinetic

energy functionals, and perhaps they are applicable to finding coupling energy functionals

as well.

C. Deriving Coupling Potentials and Energies from Density Functionals

We now discuss the application of DFT principles to compute the local coupling potential,

and the ground-state energy by means of the additive and the coupling energies, which are

defined as density-functionals in this subsection. The definitions we present in this section
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lead to a methodology that can be convenient for numerical simulations, and in which we

obtain (among other density-derivable quantities such as dipole moments, etc.) electron

populations from a wave function that solves an eigenvalue problem.

Regarding the auxiliary Hamiltonian shown in Eq. (20), we note that it has a single local

coupling potential which is multiplied by the pseudo-density operator η̂. This potential is

introduced to account for the transfer of energy and charge between subsystems. With the

purpose of relating the coupling potential with the functional derivative of an energy term

that depends on the electronic density, in this subsection we show that this is achieved by

working with the ground-state energy expressed in terms of a double-constrained search

functional for the additive energy and a residual energy term, where both depend on the

electronic density being estimated. Approximating the residual and additive energies as

functionals of the density is convenient because quantities such as the electrostatic and XC

energies depend explicitly on the density. The double-constrained search is used in this

work because the pseudo-density and the coupling potential are conjugate variables, and an

additional search is needed to switch from the regime of pseudo-densities into the domain

of electronic densities.

On the basis of the existence of one-to-one maps between the space of pseudo-densities

and coupling potentials, we define the following constrained-search functional:

EMB
+ [η] = min

Ψ̄
{〈Ψ̄|Ĥ+|Ψ̄〉 | 〈Ψ̄|η̂(r)|Ψ̄〉 = η(r)} . (27)

Although this functional is different from EMB because they depend on different variables,

they are related to one another through a Legendre transformation. Now suppose that the

TP ket |Ψ̄[η]〉 solves the above problem, Eq. (27). This object allows us to define the

following density functional

EMB
+ [ρ] = min

η
{EMB

+ [η] | η(r)− ζ [η](r) = ρ(r)} , (28)

where ζ [η](r) = 〈Ψ̄[η]|ζ̂(r)|Ψ̄[η]〉; the constraint on the rhs of the above equation can be

written alternatively as 〈Ψ̄[η]|ρ̂+(r)|Ψ̄[η]〉 = ρ(r). Similarly as in the previous section, we

formally define the coupling energy functional as follows:

BMB[ρ] = Ev[ρ]− EMB
+ [ρ] . (29)

This relation enables us to relate BMB[ρ] with a coupling potential, as we describe next.
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We showed in Ref. [23], supporting information section, that Eq. (28) can be solved

using the Lagrange-multiplier method, giving us the coupling potential. For convenience we

express it with the symbol θMB[η], and as a functional of the pseudo-density η: if η varies,

so does θMB[η]. Note that in Sections IIIA and IIIB the symbol θMB refers to a potential

that is independent of ρ.

For a potential θMB[η], one solves a Schrödinger-like eigenvalue problem (Eq. (32) below)

to find an auxiliary wave function, with the lowest eigenvalue, that yields the pseudo-density

η. Second, we introduce a functional η̃ such that, when evaluated at ρ, it solves Eq. (28).

This functional then allows us to write EMB
+ [ρ] = EMB

+ [η̃[ρ]]. By means of this nested form

and the chain rule, we express the derivative δEMB
+ [ρ]/δρ(r) in terms of θMB[η] as follows:

δEMB
+

δρ(r)
= −θMB[η̃[ρ]](r)−

∫

d3r
δζ̃(r′)

δρ(r)
θMB[η̃[ρ]](r

′) , (30)

where ζ̃(r′) = 〈Ψ̄[η̃[ρ]]|ζ̂(r)|Ψ̄[η̃[ρ]]〉.
Now we take the functional derivative of BMB by applying the operator δ/δρ(r) to both

sides of Eq. (29), and evaluate the result at the true ground-state density of the system,

ρ0. At this density, ρ0, the Hohenberg-Kohn principle implies that δEv[ρ]/δρ(r) = constant.

Through this principle and Eq. (30), we derive the following relation between the coupling

functional and potential (Ref. [23]):

θMB,0(r) +

∫

d3r′ θMB,0(r
′)
δζ̃(r′)

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ0

=
δBMB

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ0

, (31)

where an arbitrary constant is omitted in the above equation, and θMB,0 = θMB[ρ0]. This

equation expresses a condition that must be met in order to minimize the ground-state

energy functional Ev[ρ], and, simultaneously, obtain the required coupling potential (θMB,0)

that is needed to find the auxiliary function that reproduces the ground-state density ρ0.

This auxiliary wave function is the solution, with lowest eigenvalue, to the equation:

{

Ĥ+ +

∫

d3r η̂(r)θMB,0(r)
}

|Ψ̄I〉 = EI |Ψ̄I〉 . (32)

As in Section IIIA, the above equation can be solved in matrix form: (H++Θ)CI = EICI .

We remark that Eq. (31) is a condition that is met once the ground-state problem has

been solved. However, the coupling potential depends on the density, a quantity one does not

know beforehand. Motivated by this and by the standard Kohn-Sham DFT method, we can
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take Eq. (31) as a relation to generate coupling potentials: one guesses a suitable ground-

state density, ρ′0, and then solves Eq. (31) (with ρ0 replaced by ρ′0) to obtain an estimate

to θMB,0 that is fed back into the eigenvalue problem, Eq. (32), to generate a new auxiliary

wave function. This wave function can then produce a new estimate of the ground-state

density, and the mentioned procedure is repeated again (obtain a new coupling potential,

solve the eigenvalue equation, and so on) until differences in density among iterations become

negligible. These steps we just described constitute a fixed-point iterative scheme.

The reader may note Eq. (29) is a formal definition, and it leads to a “chicken-or-

the-egg” dilemma. In this vicious cycle we express an undetermined quantity (θMB) in

terms of another undetermined object, BMB, which is a functional that depends on the

energy functional – which is unknown in analytical form. This dilemma is removed when an

approximation to BMB (we assume the matrix λ is already given) is introduced and employed

to find solution of the (approximate) self-consistent problem. For practical applications,

an approximation to BMB would be employed for two purposes: first, to approximate the

coupling potential θMB,0 for a given density, and second, to finally estimate the ground-state

energy as

Ev[ρ
′
0] ≈ EMB

+ [ρ′0] +BMB
approx[ρ

′
0] , (33)

here ρ′0 is the final approximation to the true ground-state density, BMB
approx is the approxima-

tion to BMB, and EMB
+ is evaluated using the auxiliary wave function with lowest eigenvalue,

obtained by solving Eq. (32): EMB
+ [ρ′0] = 〈Ψ̄0|Ĥ+|Ψ̄0〉. As we discussed in Ref. [23],

the coupling energy has several contributions from different energies: kinetic, XC, Hartree,

and electron-nuclei interaction. This decomposition provides pathways to apply standard

approximations to estimate BMB, as further discussed in Ref. [23].

In principle, an approximation to the coupling energy functional and a reference matrix

λ are needed prior to finding the ground-state density and energy of the system, through

self-consistent solution of Eq. (32) and evaluation of the rhs of Eq. (33). However, for

practical calculations, the term δζ̃(r′)/δρ(r) may be challenging to implement in computer

codes. To avoid this, one can ignore this term as an additional approximation, and estimate

the coupling potential simply as:

θMB,0(r) ≈
δBMB

approx

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ′
0

. (34)
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Currently, the effect of neglecting δζ̃(r′)/δρ(r) is unknown to us. But, we expect that

approximations to BMB may absorb this effect and allow for computation of θMB as stated

in the above equation; our previous study [23] suggests this may be possible. In Section

IVB, we briefly revisit the topic of relating coupling potentials with energies, within the

context of the DFT-treatment of subsystem electronic structure.

D. Example

In previous work (Ref. [23]) we considered an A+B system, with A representing a lithium

atom, and B hydrogen. We employed a simple ansatz for the auxiliary wave function, con-

sisting of a linear combination of a neutral and a charge-transfer configuration (|A+〉|B−〉).
The neutral configuration is the tensor product |A, ↑〉|B, ↓〉, where each ket represents the

restricted open-shell Hartree-Fock determinants of systems A and B, respectively (the arrow

indicates the z-spin of the electron of the highest, half-occupied atomic orbital). This neu-

tral configuration, however, is not an eigenfunction of Ŝ2. If we use instead the symmetrized

configuration 1/
√
2(|A, ↑〉|B, ↓〉 − |A, ↓〉|B, ↑〉), denoted as |A,B〉S, then the ansatz

|Ψ̄〉 = CN|A,B〉S + CCT|A+〉|B−〉 (35)

is a singlet state of Ŝ2.

Suppose the restricted Hartree-Fock wave functions of A and B are determined using as

reference the neutral atomic states and that the determinants for A+ and B− are constructed

using the orbitals of the corresponding neutral atomic states. Regarding the CN and CCT as

the variational coefficients, following similar steps as in Ref. [23], we arrive at the secular

equation [which is a truncated form of Eq. (23)]:





0 ΘCT,N

ΘCT,N IA − AB +∆Θ









CN

CCT



 = Ẽ





CN

CCT



 , (36)

here Ẽ is an eigenvalue; IA and AB represent the ionization and the electron affinity poten-

tials of A and B, respectively; ∆Θ is the energy shift
∫

d3r θMB(r)[ρCT(r) − ρN(r)] (where

ρCT and ρN are the total densities of the charge-transfer and neutral configurations, and

they read ρCT(r) = 〈A+|〈B−|ρ̂+(r)|A+〉|B−〉, and ρN(r) = S〈A,B|ρ̂+(r)|A,B〉S), for conve-
nience we subtract the additive energy of the neutral configuration from the diagonal of the
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matrix), and θMB(r) is a coupling potential. The off-diagonal coupling (ΘCT,N) reads[31]

λAB/
√
2
∫

d3r θMB(r)ϕHOMO,A(r)ϕHOMO,B(r).

In this previous work, for a given Li-H internuclear distance, we applied a density func-

tional to approximate BMB, and decomposed this energy in terms of a modified Thomas-

Fermi kinetic energy, an XC local-density approximation, and electrostatic contributions.

The local coupling potential was estimated using δBMB/δρ(r), and the secular equation was

solved self-consistently. Using the coefficients with lowest energy that solve the eigenvalue

problem, we can write, for instance, the average number of electrons in subsystem A, 〈NA〉,
as:

〈NA〉 = 〈Ψ̄|
∫

d3r ρ̂A(r)|Ψ̄〉 = JA|CN|2 + (JA − 1)|CCT|2 , (37)

where JA = 3, the number of electrons of Li in its neutral state; in Ref. [23] we further

discuss the meaning of averages like 〈NA〉, and alternative ways to compute it. We showed

that the above approximations lead to fragment occupation numbers that satisfy physical

constraints, such as size-consistency and their expected behavior around the equilibrium

internuclear distance, in which it is known that the configuration |A+〉|B−〉 is dominant.

Another restriction that is met by the secular equation is that the local potential θMB(r)

and coupling energy BMB tend to zero as the internuclear distance tends to infinity; this

feature leads to size-consistency.

IV. SUBSYSTEM DESCRIPTION USING DENSITY FUNCTIONAL THEORY

In this section we discuss two potential extensions of our formalism to treat the subsys-

tems by using principles of DFT. The first extension is an application of the previous MB

formalism in which we replace the fully correlated Hamiltonians by reference KS Hamilto-

nians. In the second extension, we employ density matrices to define a different kind of

additive energy functionals that are used to derive a self-consistent eigenvalue problem that

solves a minimization problem that involves variations of linear-combination coefficients and

subsystem orbitals.

An important point to take into account is that an isolated subsystem may have a set of

degenerate ground states, which may not only involve spin, but other degrees of freedom.

For this reason, we begin discussing a formulation for such case.
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A. Density-Matrix Formalism of Isolated Multiplets

To describe a subsystem with a set of degenerate ground states, we employ as an initial

point of reference the work of Nagy [32], who showed that averages of density matrices

describing states with a given symmetry can be used to define energy density-functionals.

We begin introducing the following Levy functional for a single system:

F [ρ](w) = min
D̂→ρ

tr{(T̂ + Ŵ )D̂} , (38)

and the minimization is performed over density matrices of the form

D̂ =
∑

Nγγ ′

wγγ ′N |ΨγN〉〈Ψγ ′N | , (39)

where the wave functions are fully correlated and antisymmetrized, and the index γ repre-

sents a set of degenerate levels (including spin) that are labeled according to the spatial and

spin symmetries of the ground state. To minimize the rhs of Eq. (38), only variations of the

wave functions are allowed, whereas matrix w is held fixed.

In Ref. [32], the matrix w is diagonal, i.e., wγ ′γ,N = δγ ′γw̃γ,N . For the formalism we

introduce in Section IVC, we consider w matrices that have off-diagonal non-zero elements.

Following Eq. (25), we note such matrices are required to compute fragment electronic

densities, {ρY }.
We now introduce the Hartree-exchange-correlation potential:

EHXC[ρ](w) = F [ρ](w)− Ts[ρ](w) , (40)

where

Ts[ρ](w) = min
D̂s→ρ

tr{T̂ D̂s} , (41)

and D̂s =
∑

Nγγ ′ wγγ ′N |Ψs,γN〉〈Ψs,γ ′N |. The wave functions {Ψs,γN} are linear combinations

of Slater determinants, which are constructed by means of a single orthonormal orbital

basis. For example, when orbital degeneracies are present one can use the Löwdin method

to transform a reference determinant into a combination of more Slater determinants, so the

required J and MJ eigenvalues are obtained. This method reduces to the usual KS-DFT

scheme when degeneracies are absent or only involve spin multiplets.
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To calculate the HXC potential, we only need the density and the matrix w. This

potential is expressed similarly as in standard KS theory:

vHXC(r) =
δEHXC

δρ(r)
. (42)

Note, however, the HXC energy functional defined by Eq. (40) is, by definition, different

from the standard HXC functional used in standard KS DFT, namely, LDA, GGA, etc. This

implies that the formalism we describe in this section requires development of approximations

to the functional EHXC. Standard density functional approximations, however, can still be

employed as starting points to develop new functionals.

Alternatively, instead of searching for more robust functionals, one can apply conventional

functionals and find auxiliary functionals, e.g., scissor operators, that correct quantities that

are crucial in the computational methodology and are underestimated by conventional XC

functionals, such as subsystem ionization/affinity potentials, HOMO-LUMO gaps, etc.

B. Simplified Formalism Based on Single-Particle Reference Hamiltonians

A simpler alternative to the formalism discussed above consists of employing single par-

ticle subsystem KS Hamiltonians to redefine the additive energy operator. Suppose we are

given the solution to the multiplet problem of the isolated subsystems. Therefore, the or-

bitals used to construct the different degenerate Slater determinants are eigenfunctions of

their corresponding subsystem KS Hamiltonian. This implies a SCF procedure was solved.

We denote the KS Hamiltonians of the subsystems as {ĥs,Y }. The form of the single-particle

Hamiltonian depends on the symmetries of the isolated fragments. For example, for sub-

systems that upon isolation only feature a singlet or doublet symmetry, the following KS

Hamiltonian can be assigned to them:

ĥs,Y = T̂Y +

∫

d3r [uHXC,Y (r) + vY (r)]ρ̂Y (r) . (43)

For more general cases, e.g., those involving orbital degeneracies, the single-particle Hamil-

tonian may take the form ĥs,Y =
∑

ijστ ǫijστ,Y â
†
iσ,Y âjτ,Y , where the indices i, j label occupied

orbitals, and σ, τ the z-spin states. The matrix element ǫijστ,Y is determined by the expan-

sion in terms of Slater determinants, the orbital orthonormal basis, and the XC potential.
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Now we define the single-particle additive energy operator as

Ĥs,+ =
∑

Y

ĥs,Y . (44)

Similarly as in previous sections, to this operator we can associate: i), an additive energy

functional

Es,+[ρ] = min
η→ρ

(

min
Ψ̄→η

〈Ψ̄|Ĥs,+|Ψ̄〉
)

, (45)

(here the minimization is performed similarly as in Eqs. (27) and (28), difference being the

type of additive energy operator); ii) a coupling energy functional

Bs[ρ] = Ev[ρ]− Es,+[ρ] ; (46)

and, iii), a coupling potential θs(r) that follows a similar relation as that shown in Eq.

(31). Note that for a given KS Hamiltonian ĥs,Y there is a corresponding spectrum of non-

interacting-particle wave functions {ΨY
s,IY NY

}, such that ĥs,Y |ΨY
s,IY NY

〉 = EY
s,IY NY

|ΨY
s,IY NY

〉.
These wave functions can be used to express the auxiliary wave function Ψ̄. Thus, construct-

ing and performing computations with these KS wave functions is more tractable than with

their fully correlated counterparts.

To select the reference energy operators one could use the Nagy formalism [32], and use

equivalent weights wγγ ′N ′ = δN,N ′δγ,γ ′/G where G is the total degeneracy of the reference

system. For example, to describe a subsystem composed of a single atom, let N be number

of electrons of the neutral state. We could take the neutral state as reference and solve the

ensemble problem only using the KS potential for the neutral state and set wγγN = 1/G

(the weights for states with number of electrons different than N would be zero), where G

in this case would be the total degeneracy of the system (the number of spin configurations

multiplied by the total angular momentum degeneracy).

C. Formalism Based on Energy Functionals

The previous formulation demands minimization of the additive energy over the space

spanned by all possible configurations of wave functions. In practice, however, one would

solve the equations over a truncated space of auxiliary wave functions, as we pursued in Ref.

[23]. It can be convenient, however, to relax coefficients and subsystem orbitals together,

thereby limiting the number of needed configurations.
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On the basis of the Section IVA, we introduce an additive functional based on density

matrices:

E+[η] = min
Ψ̄s

{

∑

Y

EY [D̂s,Y ](wY )
∣

∣

∣
〈Ψ̄s|η̂(r)|Ψ̄s〉 = η(r)

}

, (47)

where we now consider auxiliary TP wave functions of the form

|Ψ̄s〉 =
∑

N1g1,...,NMgM ,lS

Cs,g1N1,...,gMNM ,lS |g1N1, . . . , gMNM ;S , mS , lS 〉 , (48)

here we expanded the composite index γY as γY = gYmS,Y ; the vector gY specifies degen-

erate state, its symmetry, and the spin symmetry (singlet, doublet, etc.). The spin-adapted

ket reads

|g1N1, . . . , gMNM ;S , mS , lS 〉 =
∑

P{mS,1,...,mS,M}

QP{mS,1,...,mS,M},lS |Ψ1
s,g1PmS,1N1

〉 · · · |ΨM
s,gMPmS,MNM

〉 . (49)

The auxiliary density matrix of the m-th fragment is defined as

D̂s,Y =
∑

NY γY γ
′

Y

wY
γY γ

′

Y
NY

|ΨY
s,γY NY

〉〈ΨY
s,γ ′

Y
NY

| , (50)

where

wY
γY γ

′

Y
NY

= trX 6=Y {(ΨY
s,γY NY

|Ψ̄s〉〈Ψ̄s|ΨY
s,γ ′

Y
NY

)} . (51)

The above DM is a function of the matrices wY . To minimize the sum of energies shown on

the rhs of Eq. (47), the coefficients and the orbitals used to construct the wave functions

{ΨY
s,JY NY

} are the variational parameters. The density-matrix functional EY reads:

EY [D̂s,Y ](wY ) = tr
{[

T̂Y +

∫

d3r vY (r)ρ̂Y (r)
]

D̂s,Y

}

+ EHXC[ρY ](wY ) . (52)

In this equation the density ρY is expressed in terms of D̂s,Y as:

ρY (r) = tr{D̂s,Y ρ̂Y (r)} . (53)

This density is also a function of the matrix wY and the KS wave functions.

The minimization of the rhs of Eq. (47) can be accomplished by finding the minimum of

the potential functional:

E [Ψ̄s; θ] =
∑

Y

EY [D̂s,Y ](wY ) +

∫

d3r θ(r)〈Ψ̄s|η̂(r)|Ψ̄s〉 . (54)
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In terms of non-interacting-particle wave functions, the above energy can be expressed as:

E [Ψ̄s; θ] =
∑

Y

{[

∑

NY γY γ
′

Y

wY
γY γ

′

Y
NY

〈ΨY
s,γ ′

Y
NY

|T̂Y +

∫

d3r [vY (r) + θ(r)]ρ̂Y (r)|ΨY
s,γY NY

〉
]

+ EHXC[ρY ]
}

+
∑

Y NY γY γ
′

Y

XNXγXγ
′

X
Y 6=X

L
Y γY γ

′

Y
NY

XγXγ
′

X
NX

∫

d3r fY
γY γ

′

Y
NY

(r)θ(r)gX
γXγ

′

X
NX

(r) ,

(55)

where f and g are Dyson orbitals:

fY
γY γ

′

Y
NY

(r) = 〈ΨY
s,γ ′

Y
NY +1|ψ̂†

Y (r)|ΨY
s,γY NY

〉

gX
γXγ ′

X
NX

(r) = 〈ΨX
s,γ ′

X
NX−1|ψ̂X(r)|ΨX

s,γXNX
〉 .

(56)

For a given pair of fragments X and Y , the components of the tensor L are obtained by

tracing out the degrees of freedom of all the fragments different from X and Y :

L
Y γY γ

′

Y NY

XγXγ
′

X
NX

= λY XtrB{(ΨX
s,γXNX

|(ΨY
s,γY NY

|Ψ̄s〉〈Ψ̄s|ΨX
s,γ ′

X
NX−1)|ΨY

s,γ ′

Y
NY +1)} . (57)

Now we introduce the operator θ̂ =
∫

d3r δ(r − r̂)θ(r) (r̂ is the position operator), and

the single particle Hamiltonian:

ĥY [θ] = T̂Y +

∫

d3r
[

vY (r) + θ(r) +
δEHXC

δρY (r)

]

ρ̂Y (r) . (58)

The specific eigenvalue problem that results from minimizing Eq. (55) depends on the

expansion of the wave functions {ΨY
s,γY NY

} in terms of Slater determinants. But, in general,

the minimization of Eq. (55) with respect to the orbitals leads to an eigenvalue problem of

the form:
∑

j

pij,Y ĥY [θ]|ϕj,Y 〉+
∑

kX,X 6=Y

lik,Y X θ̂|ϕk,X〉 =
∑

j

pi,Y λij,Y |ϕj,Y 〉 , (59)

where {λij,Y } are the eigenvalues, which arise from imposing orthonormality of orbitals of

the same fragment, and pi,Y =
∑

k(pik,Y + pki,Y )/2 (this contraction is only introduced

for convenience, to potentially avoid large oscillations in the values of λij,Y ; however, one

can set pi,Y = 1). In this single-particle representation, the fragment-dependent opera-

tors are no longer needed, so 〈ϕi,Y |θ̂(r)|ϕk,X〉 is equivalent to the weighted inner product
∫

d3r ϕ∗
i,Y (r)θ(r)ϕk,X(r). The matrices p, l, and λ, are Hermitian. The particular values of

the matrices p and l depend on the nature of the subsystems being modeled.
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To derive the secular equation of the coefficients, one needs to expand the equation

∂E/∂C∗
s,J̄s

= ECs,J̄s
, where the wave functions are held fixed, J̄s is the collection of subindices

g1N1, . . . , gMNM , lS , and E is the eigenvalue. This differentiation leads to an additional

eigenvalue problem of the form: (H + Θ)Cs = ECs, where H includes the energies of

the subsystems. Employing the definition of the HXC energy functional, we can write the

following estimate that could be applied to perform self-consistent cycles (Appendix C)

∂EY /∂w
Y
γY γY NY

≈ EY
γY NY

[ΨY
s,γY NY

], where EY
γY NY

is an energy, and functional of the wave

function ΨY
s,γY NY

. We can also take ∂EY /∂w
Y
γ
′

Y
γY NY

= 0 for γ ′ 6= γ (Appendix C). These

approximations can then be used to construct the matrix H by means of the chain rule; the

specific form of this matrix depends on the number of degenerate states to be considered.

The above minimization procedure assumes the coupling potential is given. To obtain

this potential we need to introduce the additive and coupling functionals. As in previous

Section IIIC, the additive energy can be defined as

E+[ρ] = min
η

{E+[η] | η(r)− ζs[η](r) = ρ(r)} , (60)

where

ζs[η](r) = 〈Ψ̄s[η]|ζ̂(r)|Ψ̄s[η]〉 , (61)

here |Ψs[η]〉 is the ket that solves the minimization problem shown in Eq. (47). If we define

the coupling functional as

B[ρ] = Ev[ρ]−E+[ρ] , (62)

then θ (the Lagrange multiplier) can be expressed as in Eq. (31), with BMB replaced by B

and z by zs.

There are several possibilities to estimate the functional derivative of ζs with respect to

the density. For example, we can approximate the coupling potential as: θ(r) ≈ δB/δρ(r);

the additive energy functional as E+ ≈ E+; and, η ≈ ρ. In the case where overlap is non-

negligible, the term δζs(r
′)/δρ(r) can be approximated as δ(r − r′)ζs(r

′)/ρ(r). This leads

to

θ(r) ≈ 1

1 + ζs(r)/ρ(r)

δB

δρ(r)
. (63)

For simplicity, this approximation can also be combined with E+ ≈ E+. Another additional
approximation is to neglect ζs in the above equation and simply use θ(r) ≈ δB/δρ(r).

An alternative DFT approach to the one discussed here could involve using the different

KS potentials for different fragment states, for example assigning a potential to the neutral
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state and a different one to a cation state, etc. This pathway could avoid XC potential

discontinuities, but at the expense of orthogonality (orbitals from different particle-number

states may not be orthogonal), so the couplings could be much more expensive because

different sets of orbitals would be used to construct different states. For this reason, it

can be more convenient to employ the same set of orbitals to describe all the states (as

considered in this work), but the derivative discontinuities need to be taken into account.

Although conventional density functionals lack these discontinuities, they can be calculated

using portions of exact exchange, self energies and Green’s functions, and/or some new

methodology (for example, one based on machine learning).

D. Controlling the Level of Theory

The ensemble XC energy functional is a significant source of information. For example,

if we calculate a derivative of the XC energy with respect to an element of the matrix wY ,

we would note that this functional corrects the derivative of the KS energy and introduces

the derivatives of the Levy functional. In practice, however, traditional XC approximations

lack this kind of property. One can resort to using hybrid functionals and single particle

energies. Regularly, these energies can approximate fundamental gaps. To employ hybrids

in our theory, we just need to replace the density matrix functional EY by

EnL
Y [D̂s,Y ](wY ) = tr

{[

T̂Y + λŴY +

∫

d3r vY (r)ρ̂Y (r)
]

D̂s,Y

}

+ Eλ
HXC[ρY ](wY ) . (64)

In this case the average of ŴY contains a Coulomb and a Fock term, while Eλ
HXC accounts

for the remaining portions of Hartree-exchange energy, and includes 100% correlation.

For accelerated calculations, tight-binding Hamiltonians may be suitable, or energy op-

erators based on neglect of differential overlap, to describe the fragments. For example,

ETB
Y [D̂s,Y ](wY ) = tr

{[

∑

µνσ

tYµν,σ d̂
†
µσ,Y d̂νσ,Y

]

D̂s,Y

}

, (65)

where the indices µ, ν run over the localized orbitals, and d̂†µσ,Y /d̂νσ,Y creates/annihilates

a localized orbital labeled µ, with spin σ, at the Y -th fragment. Different density-matrix

functionals may be used for different subsystems. This offers the possibility of treating some

fragments with correlated wave function methods, or assigning strongly correlated function-

als to regions/subsystems that need such functionals. Additionally, reference Hamiltonians
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could be applied to treat certain regions of the molecule as well, for example, an energy

of the form EY = tr{ĥs,Y D̂s,Y }. Treating some molecular regions in this manner differs

from the formalism presented in the previous section because of the different auxiliary wave

function domains (in the previous section we consider all possible configurations, whereas

in this section we consider a limited number of configurations). To automize the process of

theory-level assignment, an artificial intelligence method might be helpful, a topic of future

work.

V. TIME-DEPENDENT APPROACH

In this section we describe the TD versions of the many-body formalism and the DFT-

based approaches, which were discussed in Sections IIIC, IVB, and IVC. Although we

presented two DFT methodologies in Sections IVB and IVC, here we introduce a single

TD DFT-based formalism that can use as initial state any auxiliary wave function produced

by either of these two ground-state methods; implying the initial state dependency of the

potentials that are herein defined is quite relevant. We remark, however, that other initial

states are possible, such as linear combinations of auxiliary wave functions, etc.

The main goal of this section is to propose a set of equations, within the LCOS theory, that

can lead to the computation of the time evolution of density-derivable molecular electronic

properties. A positive advantage of a TD fragment-based approach is the possibility of

simulating how an electron charge is transferred between subsystems. Taking the system

A+B as an example, with A/B being donor/acceptor molecules, upon the application of an

external field, with an TD LCOS model one could compute the coherent dynamics of the

process A+B→A++B−. The TD electron population of a fragment, for instance, would be

computed by averaging the spatial integral of the fragment density operator with respect to

the TD auxiliary wave function of the system, in a similar fashion as shown in Eq. (37) (the

number of coefficients depends on the size of the ansatz), we discuss this type wave function

in this section. On the other hand, for this A+B system, with the introduction of a bath as

a third subsystem, one could study the effects of dissipation on the electron-transfer process.

In general, by solving a set of TD LCOS evolution equations, we can compute the den-

sity response to external perturbation and extract quantities such as transition frequencies

and transition dipole elements, which are properties needed to calculate optical/Raman
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intensities, charge-transfer rates etc.

A. Many-body Formulation

The formulation of the many-body TD LCOS method is motivated by the eigenvalue

problem shown in Eq. (32). As in standard quantum mechanics, a direct extension from the

ground-state domain to the TD regime is accomplished by replacing the eigenenergy by the

operator i∂/∂t. This leads to the evolution equation for the auxiliary wave function, which

represents the system driven by an auxiliary driving scalar field (θD):

i
∂

∂t
|Ψ̄(t)〉 =

{

Ĥ+(t) +

∫

d3r θD(r, t)η̂(r)
}

|Ψ̄(t)〉 . (66)

This equation can be solved with an ansatz similar to that shown in Eq. (22), but with TD

excitation coefficients CJ1N1,...,JMNM ,lS (t). If the nuclear positions are functions of time, one

may introduce a TD basis {ΨY
IY NY

({Rn(t)})} where [ĤY (t)−EY
IY NY

(t)]|ΨY
IY NY

({Rn(t)})〉 =
0. The simplest TD problem one can derive from the above evolution equation is a TD 2×2

propagation. For example, by replacing E by i∂/∂t in Eq. (36), and keeping the matrix

on the left hand side frozen. For a given initial state of the coefficients CN, CCT, solving

the TD 2×2 problem would tell us how these coefficients evolve as functions of time, and

indicate the TD behavior of the atomic charges.

As we show in Appendix D, the TD additive density (ρ+(r, t) = 〈Ψ̄(t)|ρ̂+(r)|Ψ̄(t)〉) and
current density (j+(r, t) = 〈Ψ̄(t)|̂j+(r)|Ψ̄(t)〉) satisfy the evolution equations:

∂ρ+
∂t

(r, t) = −∇ · j+(r, t) ,
∂j+
∂t

(r, t) = q+(r, t)− η(r, t)∇θD(r, t) .
(67)

where q+ is a force density term:

q+(r, t) = −i〈Ψ̄(t)|[̂j+(r), Ĥ+(t)]|Ψ̄(t)〉 . (68)

The evolution equations display a similar form as their full quantum mechanical counter-

parts. Similarly as in standard, formal TDDFT, we assume the initial state of the system

(|Ψ̄(t = 0)〉) is given. Furthermore, the potential θD determines the pseudo-density and

the total density uniquely. To prove this result, it can be shown that as long as the force

density −η∇θD is different from zero (and meets very similar conditions to those discussed
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in Ref. [33]) and the internal force density q+ is retarded (in time) with respect to vector

−η∇θD, the density will feature a non-zero response; implying that the density is uniquely

determined by the TD potential θD (there are cases where the conditions considered in Ref.

[33] do not hold, but such potentials are usually unphysical). This one-to-one map between

densities and auxiliary driving potentials allows us to introduce a functional such that, given

the initial states, and the TD density, it associates to the TD density ρ+ an auxiliary driving

potential θD.

For a given driving potential vD(r, t) [for example, a dipolar interaction with a laser field

vD(r, t) = r ·E(t)], the density of the locally coupled subsystems and the density of the real

molecule should be the same in theory [ρ+(r, t) = ρ(r, t)]. The density of the real system

reads ρ(r, t) = 〈Ψ(t)|ρ̂(r)|Ψ(t)〉, where |Ψ(t)〉 = exp(−i
∫ t

0
dt′Ĥ(t′))|Ψ0〉, and the “true”

Hamiltonian of the system is Ĥ(t) = T̂ + Ŵ +
∫

d3r[v0(r, t) + vD(r, t)]ρ̂(r), where v0(r, t) is

the electron-nuclei interaction.

Comparing the equations for ∂2ρ+/∂t
2 and ∂2ρ/∂t2, we obtain

∇ · [η(r, t)∇θD(r, t)] = ∇ · [ρ(r, t)∇vD(r, t)] + q+(r, t)− q(r, t) , (69)

where

q(r, t) = −i〈Ψ(t)|[̂j(r), Ĥ0(t)]|Ψ(t)〉 , (70)

and Ĥ0(t) = T̂ + Ŵ +
∫

d3r v0(r, t)ρ̂(r). The above comparison indicates that the potential

θD(r, t) has a contribution from the external driving field. We now introduce the TD coupling

potential θ(r, t), such that we can express

θD(r, t) = θ(r, t) + vD(r, t) . (71)

By inserting the above equation into Eq. (69), we note Eq. (69) is simplified if we also

neglect the term ∇· [ζ(r, t)∇vD(r, t)] (where ζ(r, t) = 〈Ψ̄(t)|ζ̂(r)|Ψ̄(t)〉). This decomposition

of the auxiliary potential allows us to express the TD coupling potential θ as a functional

of the density of the system [ρ+(r, t)], and, approximately, as an independent function of

the external driving field. Thus θ plays an analogous role to the XC potential of standard

TDDFT, in Section VC we briefly discuss approximating θ(r, t).
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B. TDDFT-based Framework

We now introduce the formalism in which the electronic density of each fragment is

represented by a system of non-interacting electrons. For formalism development purposes,

we assume that the density [ρ(r, t)] of the true system is known, as well as the auxiliary

driving potential required to represent this density by the fragmented MB system, θD(r, t).

This implies that the TD additive density [ρ+(r, t)] is equivalent to ρ(r, t).

As a direct simplification of the TD MB formalism presented in the previous subsection,

we define the evolution equation for the wave function of the auxiliary system of electrons

as:
{

Ĥs,+(t) +

∫

d3r θs,D(r, t)η̂(r)
}

|Ψ̄s(t)〉 = i
∂

∂t
|Ψ̄s(t)〉 , (72)

where Ĥs,+(t) =
∑

Y ĥs,Y (t) and

ĥs,Y (t) = T̂Y +

∫

d3r vs,Y (r, t)ρ̂Y (r) , (73)

here the KS potentials {vs,Y } are assumed to be given, but we show later how they can be

calculated. We introduced a new auxiliary potential, θs,D. This potential ensures that the

TD density of the auxiliary sytem is equivalent to ρ(r, t).

To find the solution to the above relation, we can use the eigenfunctions of a reference

Hamiltonian [for example, the ground state additive KS Hamiltonian plus
∫

d3r θ(r)η̂(r)]

and, in order to construct the auxiliary wave function ansatz, include all possible intramolec-

ular (singles, doubles, etc.) and intermolecular charge-transfer excitations. The method of

variation of parameters may be invoked to find the solution to the above equations: For ex-

ample, defining |Ψ̄s(t)〉 =
∑

J Cs,J(t)|J〉s (where {|J〉s} is constructed using non-interacting,

orthogonal, subsystem Slater determinants), the stationarity principle leads to the evolution

equation in matrix form: iĊs(t) = [Hs,+(t) +Θs,D(t)]Cs(t).

As in the ground-state formalism, the averages of fragment specific operators, such as Ĥs,Y

can be expressed in terms of density matrices. For example, the density, current-density,

and force-density terms of fragment Y can be expressed as

ρs,Y (r, t) = tr{ρ̂Y (r)D̂s,Y (t)}, js,Y (r, t) = tr{ĵY (r)D̂s,Y (t)} ,

qs,Y (r, t) =
1

i
tr{[̂jY (r), Ĥs,Y ]D̂s,Y (t)} ,

(74)

where D̂s,Y (t) =
∑

NY IY I′
Y
wY

IY I′
Y
NY

(t)|ΦY
IY NY

〉〈ΦY
I′
Y
NY

| and wY are calculated by tracing out

bath states, as shown in Section IVC.
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The motion equations of the total density and current density have similar forms as those

for the correlated locally coupled subsystems:

∂ρ+
∂t

(r, t) = −
∑

Y

∇ · js,Y (r, t) ,

∂js,+
∂t

(r, t) =
∑

Y

qs,Y (r, t)− ηs(r, t)∇θs,D(r, t) ,
(75)

where ηs(r, t) = 〈Ψ̄s(t)|η̂(r)|Ψ̄s(t)〉. We use the same symbol (ρ+) for the density because

we want to define KS potentials in such a way that the additive densities of the many-body

and auxiliary electron systems are the same. Comparing Eqs. (75) and (67), we can define

the TD KS potential of a fragment as the solution of the Sturm-Liouville equation:

∇ · ρs,Y (r, t)∇vs,Y (r, t) = ∇ ·
[

ρY (r, t)∇vY (r, t)

+
1

i
tr
{

[̂jY (r), T̂Y ]D̂s,Y (t)− [̂jY (r), T̂Y + ŴY ]D̂Y (t)
}

.
]

(76)

The pseudo-densities of both the MB and KS auxiliary systems are not strictly the same.

Hence, as a formal condition, we demand that

∇ · ηs(r, t)∇θs,D(r, t) = ∇ · η(r, t)∇θD(r, t) . (77)

The above two equations represent relations that can be used to construct the KS potential

for each fragment. Note that vs,Y depends on the initial states Ds,Y (0) and DY (0). In theory,

constructing the Y -th KS potential for all possible physical potentials leads to a map that

depends on the auxiliary potential θD, which can be determined as a functional of the TD

electronic density ρ+. And, all the quantities shown in the above two equations, except

{vY }, in principle could be given by maps that depend on θD (or ρ+). For self-consistent

calculations, however, a form for the HXC potential that depends on the Y -th fragment

density, or density-matrix, can be convenient (as explored below).

Using the above matching procedure, we consider KS and coupling potentials as function-

als of the total TD density of the system. In practice, the functionals discussed above could

be approximated and one could solve the evolution equation of |Ψ̄s(t)〉 self-consistently in

order to determine the dynamic behavior of the total density of the system upon application

of an external driving field.

Additional approximations can be considered, for example, the small overlap approxi-

mation in which ζ, ζs << ρ+, where ζs(r, t) = 〈Ψ̄s(t)|ζ̂(r)|Ψ̄s(t)〉. This allows us to write
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ρs,Y ≈ ρY , and by expressing vs,Y (r, t) = vHXC,Y (r, t) + vY (r, t) we obtain

∇ · ρs,Y (r, t)∇vHXC,Y (r, t) ≈ ∇ ·
[1

i
tr
{

[̂jY (r), T̂Y ]D̂s,Y (t)− [̂jY (r), T̂Y + ŴY ]D̂Y (t)
}]

. (78)

This HXC functional can be taken as a functional of the electronic density of the Y -th

fragment and the matrix wY (Appendix E). However, because this type of functional has

not been developed to date, one could employ, as a starting point, conventional functionals

that only depend on the density of the Y -th fragment; for example, invoking the LDA (local

density approximation) XC potential determined by ρY (r, t), and assign such potential to

fragment Y . Furthermore, ηs ≈ η suggests that we can estimate the driving potential of the

auxiliary system as

θs,D(r, t) ≈ θD(r, t) . (79)

The above approximations let us express θs,D(r, t) ≈ θ(r, t) + vD(r, t). This relation allows

us establishing a connection with the ground-state formalisms described in Sections IVB

and IVC, which can be useful for applications of the present formalism.

C. Remarks for Practical Implementation of the TDDFT-based LCOS approach

To estimate the coupling potential, a starting point is its computation via functional

derivation of the ground-state energy functional BMB:

θ(r, t) ≈ δBMB

δρ(r)

∣

∣

∣

∣

∣

ρ(r)=ρ+(r,t)

. (80)

This approximation is local in time, and neglects dependency on how the density evolves

between the initial propagation time and time t. One could also freeze the initial coupling

potential and analyze the response to the external driving field, this approximation has

shown benefits in the context of TD partition DFT [34].

Before performing propagations in practice, one firstly solves the ground-state problem

(taken from Section IVB or IVC), generates the initial wave function |Ψs(t = 0)〉, and
selects the approximations to the subsystem HXC and the coupling potentials; note that

θs,D(r, t) ≈ θ(r, t) + vD(r, t). Using these quantities, Eq. (72) can be solved and properties

of interest (such as the TD molecular dipole) may be determined. Because the HXC and

the coupling potentials are density functionals, similarly as in the case of the standard TD

KS equations, the propagation of |Ψs(t)〉 must be performed in a self-consistent fashion.
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The methodology we described in this subsection needs careful selection of subsystem

HXC potentials so it can be connected with any of the two DFT approaches we described

in the previous section. For example, these two methodologies (from Sections IVB and

IVC) in general produce different ground-state auxiliary wave functions that can be taken

as initial states for propagation. In this context, the initial-state dependence of the HXC

and coupling potentials may have important roles that will need to be investigated in future

work, and in numerical calculations.

Similarly as we mentioned in Section IIIB, TD coupling potentials can also be generated

using machine learning algorithms that can relate these potentials with variables such as

the nuclear positions, and external field parameters (such as laser frequency, intensity, po-

larization, etc.). This route can serve as an alternative to potential DFT-based approaches.

VI. SIMPLE EXAMPLE FEATURING REFERENCE DFT ORBITALS AND

TIME-DEPENDENT PROPAGATION

Na H

z

Ez=E0

Ex=Ey=0

FIG. 2: Sodium hydride model, where a static electric field (E0) is applied along the z

direction.

In this section, we examine the computation of the ground-state dissociation energy of

sodium hydride (NaH) and its TD behavior upon the application of a static electric field (Fig.

2). We begin by considering the ground-state potential energy curve, based on the steps

shown in Section IIID. We model the molecule with two subsystems, one representing the

sodium atom (subsystem A), and the other the hydrogen atom (subsystem B). We previously

studied the ground state of LiH, (Ref. [23]) and NaH (in the supplementary material of that

paper) using Hartree-Fock references for the subsystem wavefunctions. Here we employ DFT
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wave functions instead. We refer to the method employed in Ref. [23] as LCOS/HF, and

its slight variation considered in this work as LCOS/LDA. We continue employing atomic

units throughout this section.

Formally, as in previous work, we use the functional E+[ρ] and the additive hamiltonian

Ĥ+ = ĤA + ĤB. However, our LCOS/LDA application is quite close to employing the

theory described in Section IVB, in which one would use an additive Hamiltonian of the

form Ĥs,+ = ĥs,A + ĥs,B, where ĥs,Y (Y = A,B) represents the KS hamiltonian of fragment

Y . To implement an algorithm that uses this theory (Section IVB), and the operator Ĥs,+,

we would need to develop a coupling functional. As a starting point one could consider the

relation [which follows from the definitions of the functionals Bs and B
MB, Eqs. (46) and

(29)]:

Bs[ρ] = BMB[ρ] + (EMB
+ [ρ]− Es,+[ρ]) . (81)

Hence, approximating the term in parenthesis as an explicit density functional may facilitate

developing a connection between these two coupling functionals.
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FIG. 3: Comparison between NaH binding energy curves determined by various

techniques: LCOS/HF (as described in Ref. [23]), LCOS/LDA (studied in this work), and

CCSD. R is the internuclear distance. The curves “LCOS/HF” and “CCSD” were adapted

from Ref. [23].

First we run independent atomic KS calculations using the LDA functional

(Slater+VWN-5 form). To obtain pure doublet atomic states for the neutral configura-

tion, we employ spin-averaging of the atomic density matrices: The spin-up and spin-down

valence s orbitals of Na and H are assigned occupations one half, and compute the atomic
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ground states as restricted KS calculations. After completing the SCF procedures, we write

the wave function expressed by Eq. (35) in terms of LDA orbitals, but with a slight modifi-

cation – the valence s orbitals are now occupied by a single electron, so we can expand the

neutral configuration to represent a molecular singlet as 1/
√
2(|A, ↑〉|B, ↓〉 − |A, ↓〉|B, ↑〉).

Using the LDA valence orbitals we compute the coupling potential and the elements re-

quired to construct the Hamiltonian matrix shown in Eq. (36), which is then diagonalized

in a self-consistent fashion until differences in energy reach 1× 10−6 (the quantity IA − AB

was taken from atomic, coupled cluster, CCSD calculations). The coupling strength term is

taken from previous work: λAB = 20
√
2 (the

√
2 factor derives from the spin adaptation).

The present calculations are performed within the PyQuante suite [35], and the 6-31G basis

set.

The coupling functional for these calculations is expressed as follows: First, we write

BMB = BMB
k +BMB

xc +BMB
H,ext , (82)

where

BMB
H,ext[ρ] =

〈

Ψ̄
∣

∣

∣

∫

d3r d3r′
ρ̂A(r)ρ̂B(r

′)

|r− r′| +

∫

d3r [ρ̂A(r)vB(r) + ρ̂B(r)vA(r)]
∣

∣

∣
Ψ̄
〉

. (83)

For the kinetic contribution we use :

BMB
k [ρ] = C

∫

d3r
[

ρα(r)−
∑

Y=A,B

ρ̃αY (r)
]

, (84)

where C, α were determined in Ref. [23] as C = 4.5, and α = 2. We apply the LDA to the

XC portion of the functional BMB:

BMB
xc [ρ] = ELDA

xc [ρ]−
∑

Y

ELDA
xc [ρ̃Y ] , (85)

the densities {ρ̃Y } are functionals of the density, but during the self-consistent cycle they are

simply taken as the averaged atomic densities, 〈Ψ̄|ρ̂Y (r)|Ψ̄〉 [the averaging is done similarly

as in Eq. (37)]. We note that the functional BMB in combination with the LDA reference

yields quite similar results as the calculations done with Hartree-Fock orbitals, Fig. 3. This

implies that the binding curve is robust to relaxation effects introduced by the local KS

potential, with respect to Hartree-Fock densities. This indicates some potential degree of

functional transferability among references.
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FIG. 4: (a) Computed average of the z-component of the electronic position operator, in

NaH, as a function of time. Upper subplot shows results for E0 = −0.002, and bottom

subplot for E0 = +0.002. Purple lines: TD-LCOS/LDA; black line: TD-LDA (determined

with Octopus). The TD-LCOS/LDA curve is shifted to match the TD-LDA line at t = 0

(we subtract 0.48 from the original TD-LCOS/LDA data, 〈z(t)〉). (b) Same as (a), but

only displaying TD-LCOS/LDA curves in the range 0 < t < 6. (c) Hydrogen electron

population (〈NH(t)〉) as a function of time, as computed by our TD-LCOS/LDA simplified

model. Atomic units are implied.

We now consider TD propagations under external fields. The molecular model is aligned

with the z axis, and the origin is placed at the center of nuclear charge of the molecule

with the hydrogen atom positioned on the positive half of the z axis. For the TD evolution

the internuclear distance is held fixed at 3.554 au, taken from an LDA (Slater+VWN-5)

optimization with the basis set 6-31G* [36]. We employ the orbitals determined with LDA

to propagate a simple 2 × 2 Hamiltonian matrix. In this matrix we only let the coupling
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potential evolve as a function of time and density. However, for calculations involving more

states, propagation as described in Section VB could be more convenient.

These calculations follow the model discussed in Section VA, where the initial state is the

ground state obtained in the previous LCOS calculations with LDA orbitals. The evolution

equation that derives from Eq. (66) reads:




∫

d3r θD(r, t)ρN(r) ΘCT,N(t)

ΘCT,N(t) IA − AB +
∫

d3r θD(r, t)ρCT(r)









CN(t)

CCT(t)



 = i
d

dt





CN

CCT



 , (86)

where θD is the sum of the coupling and the external potential, as shown in Eq. (71).

The coupling potential is computed using the adiabatic approximation, Eq. (80). We thus

express the auxiliary wave function of the system as:

|Ψ̄(t)〉 = CN(t)|A,B〉S + CCT(t)|A+〉|B−〉 , (87)

and quantities such as the average electron position and hydrogen electron population

are determined with this wave function. Note that the Hamiltonian matrix is shifted

by the additive energy of the neutral configuration, for this reason the term IA − AB is

present in the above equation (this shifting does not affect the computation of observ-

ables). The external potential describes the interaction between the dipole and an ex-

ternal, static electric field. Hence we express this potential simply as vD(r, t) = zE0;

the electric field is zero in the x and y directions. The off-diagonal coupling reads

ΘCT,N(t) = (λAB/
√
2)

∫

d3r θD(r, t)ϕHOMO,A(r)ϕHOMO,B(r). The coupling strength λAB is

the same used for the ground-state case.

The above equation was solved with the Crank-Nicolson method. For each step the

Hamiltonian matrix is evaluated iteratively at the mid-step until self-consistency is achieved

(convergence criterion is 1 × 10−8 for the hydrogen occupation number). The calculations

reported in Fig. 4 are based on 20,000 propagation steps in the range range 0 ≤ t ≤ 100. For

comparison we ran simulations with the TDDFT program Octopus [37]. These are TD-LDA

calculations, but with the default functional, Slater exchange+Perdew-Zunger version of the

LDA correlation energy/potential. The propagations were performed with the same number

of steps and final time used for the TD-LCOS calculations, the spatial grid spacing is 0.2

au, the simulation sphere radius is 8.0 au.

We now consider the response of the ground state to two different static electric fields,

E0 = −0.002 and +0.002 (atomic units). The former field polarizes the molecule by transfer-
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ring electron density to the hydrogen atom, whereas E0 = +0.002 depolarizes the molecular

electron density, by moving electron charge toward the sodium atom. Fig. 4(a) shows the

dependency of the average electronic position on time for 0 < t < 50, and E0 = −0.002

(top subplot) and +0.002 (bottom subplot); both subplots show the corresponding TD-

LCOS/LDA and TD-LDA curves. The average position reads 〈z(t)〉 =
∫

d3r zρ(r, t). In

the top subplot we note that the molecule responds in a qualitatively correct fashion to

the polarizing static field (E0 = −0.002), by increasing the density polarization (recall that

the z-component of the TD dipole, µz(t), in this case is −〈z(t)〉). Although it displays

amplitudes somewhat close to those computed with TD-LDA, the function 〈z(t)〉 computed

by TD-LCOS/LDA (purple curve) oscillates with a higher frequency than in the TD-LDA

case (black curve). This discrepancy is caused by the high gap (9.52 eV) between the two

eigenvalues of the Hamiltonian matrix. In contrast, the first LDA (standard TDDFT, with

basis set 6-31G*) linear-response excitation energy is 2.06 eV (the oscillation frequency of

the real-time propagation should be close to the linear-response value, but it is not the same

due to the extra relaxation induced by the TD XC potential). We expect that the high

LCOS/LDA excitation energy can be improved by the addition of more configurations to

the ansatz wave function, and the use of coupling functionals that are capable of lowering

the zero-order transition frequencies via a linear-response analysis; this is further discussed

in the next section. On the other hand, for the field E0 = −0.002, we notice similar results,

but with the field now depolarizing the molecule. Fig. 4(c) shows the evolution of the

hydrogen electron population, computed as 〈Ψ̄(t)|
∫

d3r ρ̂B(r)|Ψ̄(t)〉. This figure indicates

that the populations oscillate with a relatively small amplitude.

The considered TD ansatz, Eq. (87), neglects atomic density polarization, which would

involve excitations from the valence s orbitals into orbitals with p and/or d character (not

captured by the current model). In contrast, a more detailed expansion of the auxiliary

wave function should include configurations in which one or more subsystems are excited,

for example, |A∗〉|B〉, where |A∗〉 has a valence orbital promoted to some virtual orbital.

Another required configuration is |A+,∗〉|B−〉, in which the cation A+ is also excited. A

larger wave function expansion can facilitate relaxation of the diagonal elements of the

Hamiltonian matrix: The external field could stabilize subsystems with polarized densities,

and the matrix propagation could give a dominant weight to the polarized configurations,

leading to more accurate results.
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VII. POTENTIAL APPLICATIONS OF THE TIME-DEPENDENT LCOS THE-

ORY AND FUTURE PROSPECTS

In Section V we discussed a formalism to perform TD propagations of auxiliary wave

functions. The theory requires a local coupling potential that can be determined using

a density functional approximation. Initial applications of this theory, we believe, may

encompass the computation of photo-absorption spectra within the linear response regime,

the calculation of frequency-dependent electronic polarizability for processes that involve

phonons such as in Raman spectroscopy, and coherent energy transfer.

For linear response calculations we can express the auxiliary wave function on the basis

of singly-excited states. To generate each of these states one starts from the ground state

and excite a single electron from a valence state of a given fragment into an unoccupied

state of the same fragment (this would be an intra-fragment excitation), or excite that

electron into a unoccupied state of a different one, which would entail an electron transfer

excitation. Solution of the evolution equation for |Ψ̄s(t)〉 in the linear regime and in the

frequency space would lead to an eigenvalue problem that is quite similar to the Casida

secular equation, which could be solved by methods based on Davidson algorithms. The

frequencies obtained by solving the LCOS Casida equations could estimate the excitation

frequencies of the real system, whereas the associated excitation vectors could be used to

compute transition multipolar moments and related couplings to calculate coherent energy

transfer rates.

For resonant Raman calculations one can apply an algorithm for accelerated computa-

tion of polarizabilities that could facilitate determining their gradients along normal-mode

coordinates, as discussed in Refs. [38, 39]. We expect the TD LCOS theory to offer ways

to analyze in detail the effect of charge-transfer excitations on the polarizability response to

vibrational motion, which could help in the assignment of experimental Raman bands. In

addition, for the study of surface-enhanced Raman spectra, the TD LCOS approach might

allow for controlling the level of theory needed to model the surface and plasmonic modes (if

present). LCOS techniques may also be used to improve the accuracy of excitation energies

associated to the transfer of an electron from/to the surface or nanoparticle (this is a topic

that has been challenging for standard DFT methods [40, 41]) and to reduce the amount of

computing power required with respect to standard DFT-based methodologies.
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Regarding future functional development, we believe there may be opportunities for in-

tegration of (TD) LCOS theories/methods with machine learning approaches. We note in

the approximation used in the previous section that the coupling potential is dominant in

regions with significant overlap between the subsystem electronic densities. In addition, the

features of the coupling energy functional depend on the nature of the subsystems, such

as their electron-nuclei potentials and their numbers of electrons. Assuming that the most

important contributions to the coupling potential and energy originate mainly from the

properties of the interface between subsystems, it could be feasible to design a machine

learning algorithm that produces an approximation to the coupling energy functional, for

example, by correlating descriptors of the interface with flexible functional forms that can

be expressed using kernel methods, or with functional parameters, such as C and α (which

were used in our modified Thomas-Fermi functional for the energy BMB).

The theories/methods we presented in this work are designed to feature three principal

aspects: i) controllability of computational scaling, so one can select the level of theory de-

sired to model each subsystem, ranging from orbital-free DFT up to high-level wave function

theory; ii), a Hamiltonian that includes a term that couples the fragments so energy and

electrons can be transferred/exchanged; and, iii) the ability to satisfy size-consistency when

one or more fragments are placed at very large distances from the rest (which are assumed

to be part of a conglomerate). To comply with point i), we selected a coupling operator that

includes a multiplicative potential where each of its values depends on a given point in space,

and in time (for the case of propagating an auxiliary wave function). However, the potential

can also depend non-locally on the electronic density. This dependency is illustrated, for

instance, by the Hartree potentials expressed in Eq. (83), which need integration over all

space in order to give values at a single point. Refined kinetic and XC coupling energies may

also display non-localities through approximations based on generalized density-gradients,

and beyond. In terms of time-dependency, as with the XC potential of standard TDDFT,

the TD coupling potential may (preferably) depend on the history of the density, and the

initial state of the system. Proper treatment of memory dependence has been suggested as

a potential source for the improvement of computations in TDDFT[42, 43], and this could

be relevant in the context of TD-LCOS as well.

Our choice for the form of the inter-fragment coupling is not unique. Using a single

coupling local potential is convenient for formalism development purposes and to establish a
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connection with a density functional. Nonetheless, other possibilities could be investigated

(few of them were briefly mentioned in Ref. [23], footnote 18), including combinations

of different coupling terms. Operators that involve more than two fragments may bring

benefits. For example, one can consider an operator of the form (which was not mentioned

in Ref. [23]): ψ†
A(r)ψ

†
B(r)ψC(r)ψD(r), with C and D being two additional subsystems. Non-

local interactions of the form c(|r′ − r|)ψ†
A(r

′)ψ†
A(r)ψB(r

′)ψB(r) could also be studied for

future work, where c is some two-body coupling potential. For non-local interactions, a

challenging aspect would be finding the relation between a coupling energy functional and

its related two-body potential of interest. In addition, it could be possible to model fragment

interaction with two different local potentials (β, ϑ) where one of them multiplies the additive

density (β(r)ρ̂+(r), for instance), and the other one multiplies the charge-transfer term:

for example, ϑ(r)
∑

Y 6=X τ̂Y X(r). This quantity, ϑ, might replace the interaction matrix λ

because it could control, locally, the strength of charge-transfer coupling between different

subsystems. This decomposition may be convenient to control energy and charge transfer

separately, but it might need two sources (perhaps two different energy functionals) to

approximate the mentioned potentials.

VIII. CONCLUSION

We presented a set of formalisms based on the concept of molecular open subsystems that

are locally coupled and can exchange electron charges, and energy. These models employ

auxiliary wave functions and Hamiltonians that can be used to develop simplified electronic-

structure algorithms to determine quantities such as ground-state energies and densities,

excited-state energies, electronic polarizabilities, photo-absorption/emission spectra, among

others. The new methodologies depend on linear combinations of tensor products of sub-

system wave functions, in which one can use fully correlated wave functions or Kohn-Sham

Slater determinants. We presented approximations that may allow for integration with tools

developed in other fragment-based formalisms such as subsystem, partition, and embedding

DFTs.

Finally, we include here (Fig. 5) a schematic summary showing how the DFT-based

theories may be applied in practice. The most important steps are the selection of a frag-

mentation scheme, approximations to the coupling energy, XC fragment potentials, the λ
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Select 

Fragments

Choose approximations to

coupling and fragment

XC energies/potentials; and

choose matrix

Select the ansatz, expression for

local coupling potential, and 

solve eigenvalue problem

self-consistently

Compute ground-state 

properties of interest

Generate initial state and

choose approximations to

TD coupling and fragment XC

 potentials

Propagate

 and compute properties

FIG. 5: Summary of the steps required to compute electronic properties with DFT-based

LCOS methods. An additional implicit step is the selection of ground-state DFT

formalism: The method based on reference Hamiltonians (Section IVB), or energy

functionals (Section IVC).

matrix, and the ansatz employed to solve the eigenvalue problem. Selecting the matrix λ is

optional, one can set λ as the identity matrix and include terms in the coupling potential

that account for the electron transfer processes.
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Appendix A: Tracing of States

For a state like:

|Ψ̄s〉 = C0|ΦA
0,2〉|ΦB

0,1〉+ C1|ΦA
0,1〉|ΦB

1,2〉+ C2|ΦA
1,2〉|ΦB

0,1〉 , (A1)

the projection (ΦA
0,2|Ψ̄s〉 reads

(ΦA
0,2|Ψ̄s〉 = C0|ΦB

0,1〉 ,

(ΦA
1,2|Ψ̄s〉 = C2|ΦB

0,1〉 ,
(A2)

and we have

wA
1,0;2 = C2C

∗
0

∑

n

〈ΦB
n,1|ΦB

0,1〉〈ΦB
0,1|ΦB

n,1〉 = C2C
∗
0 , (A3)

where {ΦB
n,1} is an eigenbasis. Also note that (ΦA

0,2|(ΦB
0,1|Ψ̄〉 = C0.

Appendix B: Spin Adaptation

To construct an auxiliary wave function that obeys some additive spin symmetry, one

could employ the Löwdin projection operators [44], or related techniques. For example,

OS =
∏

L 6=S

Ŝ2 − L(L+ 1)

S(S + 1)− L(L+ 1)
,

O′
mS

=
∏

µ6=mS

Ŝz − µ

mS − µ
.

(B1)

The product O′
mS

OS can thus be used to achieve the required spin eigenvalues. The applica-

tion of these operators can transform an impure state into a configuration with the desired

S and mS numbers. As an example, let us consider the auxiliary state (ignoring the core

shells):

|Ψ̄〉 = |φA ↑ ψA ↑〉|φB ↓ ψB ↓〉 . (B2)

The first state is a Slater determinant assigned to subsystem A, in which the orbitals φA

and ψA are occupied each with a spin-up electron. The second Slater determinant describes

subsystem B. In this case, the orbitals φB and ψB are singly occupied with spin-down

electrons.

We adapt Ψ̄ as a singlet state. The corresponding projection operator is O0 = 1/12(Ŝ4−
8Ŝ2+12). The operation O0|Ψ̄〉 can be carried out in terms of raise/lowering spin operators.
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For simplicity we express |φA ↑ ψA ↑〉 = | ↑↑〉A, and |φB ↓ ψB ↓〉 = | ↓↓〉B. The result is the

following linear combination:

O0|Ψ̄〉 = 1

3

[

| ↑↑〉A| ↓↓〉B + | ↓↓〉A| ↑↑〉B

− 1

2

(

| ↓↑〉A| ↑↓〉B + | ↑↓〉A| ↓↑〉B + | ↓↑〉A| ↓↑〉B + | ↑↓〉A| ↑↓〉B
)]

,
(B3)

which is a singlet state, with respect to the operator Ŝ2.

Appendix C: Expressing the derivative ∂EY /∂w
Y
γY γ

′

Y
NY

For convenience we drop the super/sub-index Y , and write

E0[D̂s](w) = tr
{[

T̂ +

∫

d3r v(r)ρ̂(r)
]

D̂s

}

+ EHXC[ρ](w) , (C1)

the density ρ is expressed as:

ρ(r) = tr{D̂sρ̂(r)} , (C2)

where D̂s =
∑

γγ ′N wγγ ′N |Ψs,γN〉〈Ψs,γ ′N |, and {Ψs,γN} are given combinations of Slater

determinants with desired symmetries. Here we thus work within the standard quantum

mechanical representation. First, note we can express the functional F [ρ](w) as follows:

F [ρ](w) =
∑

γγ ′N

wγγ ′N 〈Ψ̃γ ′N [ρ]|T̂ + Ŵ |Ψ̃γN [ρ]〉 , (C3)

where {Ψ̃γN [ρ]} are the wave functions that minimize the rhs of Eq. (38), these are func-

tionals of the density ρ. Similarly, we express the functional Ts[ρ](w) as:

Ts[ρ](w) =
∑

γγ ′N

wγγ ′N〈Ψ̃s,γ ′N [ρ]|T̂ |Ψ̃s,γN [ρ]〉 . (C4)

Employing the definition of the HXC energy functional [Eq. (40)] we have that:

E[D̂s](w) = F [ρ](w) +

∫

d3r v(r)ρ(r) + tr{D̂sT̂} − Ts[ρ](w) . (C5)

To compute the derivative of F with respect to wγγ ′N , note that

∂F

∂wγγ ′N

= lim
ǫ→0

1

ǫ

{

F [tr{ρ̂(D̂s + ǫ|Ψs,γN〉〈Ψs,γ ′N |)}](w′)− F [tr{ρ̂D̂s}](w)
}

, (C6)

where w′
γγ ′N = wγγ ′N + ǫ, and all the remaining entries of w′ equal those of w. Invoking

the set of wave functions {Ψ̃γ0N ′} (γ0N
′ are general indices) we obtain

∂F

∂wγγ ′N

= 〈Ψ̃γ ′N |T̂ + Ŵ |Ψ̃γN〉+
∑

γ0γ1N ′

wγ0γ1N ′

(

〈∂Ψ̃γ1N ′

∂wγγ ′N

|T̂ + Ŵ |Ψ̃γ0N ′〉+ c.c.
)

. (C7)
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A similar formula holds for the functional Ts[ρ](w):

∂Ts
∂wγγ ′N

= 〈Ψ̃s,γ ′N |T̂ |Ψ̃s,γN〉+
∑

γ0γ1N ′

wγ0γ1N ′

(

〈∂Ψ̃s,γ1N ′

∂wγγ ′N

|T̂ |Ψ̃s,γ0N ′〉+ c.c.
)

. (C8)

The derivatives of the wave functions {Ψ̃s,γ1N , Ψ̃γ1N} can be calculated using perturbation

theory. However, it may be computationally expensive to compute these terms. For the

sake of simplicity we ignore these derivatives, and assume that the terms tr{D̂sT̂}−Ts[ρ](w)

cancel mutually. With these approximations we have that

∂E

∂wγγ ′N

[D̂s](w) ≈ 〈Ψ̃γ ′N |T̂ + Ŵ +

∫

d3r ρ̂(r)v(r)|Ψ̃γN〉 . (C9)

If the wave functions {Ψ̃γ0N ′} are close to the eigenstates of the Hamiltonian T̂ + Ŵ +
∫

vρ̂,

then the derivative of E[D̂s](w) with respect to weights with γ 6= γ ′ can be neglected.

Finally, for applications and the self-consistent cycle, one could estimate the element

〈Ψ̃γN |T̂ + Ŵ +
∫

d3r ρ̂(r)v(r)|Ψ̃γN〉 in terms of the KS analogue of the wave function Ψ̃γN ,

Ψs,γN (where this is the wave function computed during the self-consistent cycle), perhaps

by introducing an auxiliary density-functional for this element that depends on Ψs,γN and

its electronic density.

Appendix D: Time-Dependent Equations for Additive Densities and Currents

To prove the form of the evolution equations for the density and current density, Eq.

(67), we start considering the general equation:

i
∂

∂t
〈Ψ̄(t)|Ω̂(r)|Ψ̄(t)〉 = 〈Ψ̄(t)|

[

Ω̂(r), Ĥ′
+(t) +

∑

Y 6=X

λY X

∫

d3r′ θD(r
′, t)τ̂Y X(r

′)
]

|Ψ̄(t)〉 , (D1)

where

Ĥ′
+(t) =

∑

X

{

T̂X + ŴX +

∫

d3r′ [vX(r
′, t) + θD(r

′, t)]ρ̂X(r
′)
}

=
∑

X

Ĥ ′
X(t) ,

(D2)

Ω̂(r) is either the additive density operator ρ̂+(r) =
∑

X ρ̂X(r), or current ĵ+(r) =
∑

X ĵX(r).

The above relation follows from applying Eq. (72) to expand its left hand side term.
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If we decompose the abstract operator, Ω̂(r), in terms of fragment-specific components,

Ω̂(r) =
∑

X Ω̂X(r), then we have that

i
∂

∂t
〈Ψ̄(t)|Ω̂(r)|Ψ̄(t)〉 = 〈Ψ̄(t)|

∑

X

[Ω̂X(r), Ĥ′
X(t)]

+

∫

d3r′ θD(r
′, t)

∑

Y 6=X

λY X [Ω̂(r), τ̂Y X(r
′)]|Ψ̄(t)〉 .

(D3)

The commutator [Ĥ′
X(t), Ω̂X(r)] is straightforward to evaluate for Ω̂X(r) = ρ̂X(r) or = ĵX(r).

It can be noted that the second commutator expression in the above relation can be written

out as:

[Ω̂(r), τ̂Y X(r
′)] = [Ω̂Y (r), ψ̂

†
Y (r

′)]ψ̂X(r
′) + [Ω̂X(r), ψ̂X(r

′)]ψ̂†
Y (r

′) . (D4)

By using standard commutation rules we find the above result leads to:

∫

d3r′ θD(r
′)[ρ̂X(r) + ρ̂Y (r), τ̂Y X(r

′)] = 0 , (D5)

and
∫

d3r′ θD(r
′)[̂jX(r) + ĵY (r), τ̂Y X(r

′)] =
1

i
∇θD(r)τ̂Y X(r) . (D6)

These last two expressions in combination with the calculation of the commutator

[Ω̂X(r), Ĥ
′
X(t)] indicate that the evolutions equations for the additive density (ρ+) and cur-

rent density (j+) take the forms shown in Eq. (67).

Appendix E: TD HXC Maps

There are different HXC maps we can use for the self-consistent cycle. The most natural

choice, based on the arguments above, is a map that depends on tr{D̂s,Y ρ̂Y }. We can instead

use a map that depends on the DM D̂s,Y more generally. For a given set of fragment weights

and auxiliary potential, the Y -th KS potential determines the density of the system. We

assume that D̂Y can be expressed as a function of D̂s,Y

D̂Y [θD](t) = F(D̂s,Y [θD]) . (E1)

For self-consistent calculations, we can thus express an approximation to the HXC potential

as a functional vIHXC,Y [D̂s,Y (t)]:

∇·ρY (r, t)∇vIHXC,Y (r, t) ≈ ∇·
[1

i
tr
{

[̂jY (r), T̂Y ]D̂s,Y (t)−[̂jY (r), T̂Y+ŴY ]F(D̂s,Y (t))
}]

, (E2)
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and for additional simplicity as a functional that depends only on the density ρY ,

ṽHXC,Y [ρY ](r, t;wY ). The above equation can be considered to develop HXC potentials

that depend on the weight matrix.

Appendix F: Connection with Partition Density Functional Theory

If we replace the operator η̂(r) by ρ̂+(r), and disregard the spin-adaption technique,

the resulting formalism becomes Partition Density Functional Theory [27], in which the

coupling potential would be the same as the partition potential. The interpretation, however,

is different. In PDFT, the subsystems are isolated from one another and they exchange

electrons with an external reservoir, where the system temperature is 0 K. Therefore, the

state of a subsystem in PDFT can be given by an open-system density matrix, or the

TP wave function of the whole collection of fragments can be expressed as a product of

independent kets in Fock space.
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