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The wave function for a quantum mechanical particle in a circular box can be prepared in shape-
preserving wave packets that rotate at constant angular speed around the center of the box. Some of
these rotating wave packets correspond to classical trajectories undergoing uniform circular motion
through the force-free interior of the box. This apparent violation of Ehrenfest’s theorem is resolved
by considering the force exerted on the particle’s wave packet by the enclosing wall. Remarkably,
the wave packet continues to rotate even after the wall potential is removed. We show that this
force-free finite-energy rotating state actually corresponds to classical motion with constant velocity,
again in agreement with Ehrenfest’s theorem. Even so, the classical angular momentum carried by
the rotating states poses a conceptual challenge because it differs from its quantum mechanical
angular momentum, and indeed can have the opposite sign.

In 1979, Berry and Balazs reported the discovery of
shape-preserving wave packets for quantum mechanical
particles that translate with uniform acceleration in one
dimension [1]. Taking the form of Airy functions, these
wave packets appear to violate Ehrenfest’s theorem be-
cause they accelerate in the absence of any applied force.
This conundrum is resolved by recognizing that an Airy
wave packet is not square-integrable and thus is best
interpreted as an ensemble of non-accelerating single-
particle plane-wave states [1, 2]. Optical analogs to
Airy wave packets have been realized in holographically-
patterned laser beams, the temporal evolution of the
quantum state being modeled through the spatial evo-
lution of the light’s intensity profile [3–5]. In this case,
the beam’s intensity profile translates along a parabolic
path as it propagates, without otherwise distorting. The
analogy between the spatial structure of a propagating
light beam and the temporal evolution of a quantum me-
chanical wave packet reflects the homology of the paraxial
wave equation with Schrödinger’s equation.

Here, we focus on an alternative class of shape-
preserving wave packets in two dimensions that describe
a particle undergoing uniform circular motion. The ap-
parent radial acceleration of these self-rotating states has
been described previously, although not its apparent vi-
olation of Ehrenfest’s theorem [6]. Here, we demonstrate
that not all rotating states are classically accelerating in
the sense identified by Berry and Balazs. We analyti-
cally demonstrate that the confined states’ radial accel-
eration arises from the wave packet’s interaction with the
confining potential, and so is consistent with Ehrenfest’s
theorem. We furthermore show that unconfined rotating
states of the kind presented in [6] do not accelerate at
all, nor do they even rotate. Counterintuitively, these
“rotating” states actually undergo uniform translation.
This surprising observation corrects a misinterpretation
of the data in [6]. These states also have the surprising
property that the classical angular momentum they carry
differs from their quantum mechanical angular momen-
tum, and indeed can have the opposite sign. We illus-
trate these properties through experimental realizations

of analogous propagation-invariant laser modes projected
with intermediate-plane holography [7].

The wave function, Ψ(r), of a nonrelativistic par-
ticle of mass m moving in a two-dimensional circular
box of radius R can be expressed in polar coordinates,
r = (r, φ), in terms of eigenfunctions of the force-free
time-independent Schrödinger equation,
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subject to the boundary condition

Ψ(R,φ) = 0. (1c)

Equation (1) is satisfied by the Bessel wave functions,
|n, ν〉, whose spatial representation is

Ψn,ν(r) = 〈r|n, ν〉 (2a)

= An,ν Jn

(
jn,ν

r

R

)
einφ, (2b)

where Jn(x) is a Bessel function of the first kind of order
n, and where jn,ν is its ν-th zero. The prefactor

An,ν =
[
π1/2RJn+1(jn,ν)

]−1
(2c)

ensures that the corresponding probability density

ρn,ν(r) = |Ψn,ν(r)|2 , (3)

is properly normalized. The Bessel states then are or-
thonormal:

〈n′, ν′|n, ν〉 = δn,n′δν,ν′ . (4)

Their eigenenergies,

En,ν =
h̄2j2n,ν
2mR2

, (5)
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FIG. 1. (color online) Rotation of solenoidal states with n =
6, ν = 15, and ν′ = ν − 1. (a) Non-accelerating wave packet
with ∆n = n′ − n = 2. (b) Accelerating state with ∆n = 1.

depend on both the azimuthal quantum number, n, and
the radial quantum number, ν. The associated frequency,
ωn,ν = En,ν/h̄, establishes the eigenstates’ time evolu-
tion,

Ψn,ν(r, t) = 〈r|n, ν〉 e−iωn,νt. (6)

The states described by Eqs. (2) and (6) are analogous
to optical Bessel beams [8, 9], with the time in Eq. (6)
serving as an analog to the light wave’s axial coordi-
nate. Like their optical counterparts, Bessel wavefunc-
tions carry angular momentum with expectation value

〈Lz〉 = −ih̄
∫

Ψ∗n,ν(r)
∂

∂φ
Ψn,ν(r) d2r = nh̄ (7)

that depends on n, but not on ν. For optical Bessel
beams, this orbital angular momentum is a classical prop-
erty of the electromagnetic field [10, 11] that also is a
quantum mechanical property of the individual photons
[12]. For the particle in a circular box, it is strictly a
quantum mechanical property. The particle’s probabil-
ity density, ρn,ν(r), is independent of time, which means
that the particle is stationary in the classical sense and
therefore carries no classical angular momentum. Simi-
lar discrepancies between the classical and quantum me-
chanical angular momentum have been noted for Landau
states in free electron beams [13].

Although individual Bessel eigenmodes are time-
invariant, some of their superpositions have probability
densities that rotate at a uniform rate without otherwise
distorting [6, 14–17]. Some of these rotating wave pack-
ets constitute accelerating states in the sense that the
expectation value of the particle’s position traces out an
accelerating trajectory [6]. These are not simply related
to two-dimensional Airy states or to related Matthieu
and Weber states [18] or to their generalizations [19–21],
and thus constitute a distinct class of accelerating states
in two dimensions.

Minimal examples of rotating wave packets can be con-
structed by superposing two Bessel states:

Ψ(r, t) =
1√
2

[Ψn,ν(r, t) + Ψn′,ν′(r, t)] . (8)

Similar superpositions describe helicon waves in plasmas
[14], which also are known as whistlers. For clarity, we
arrange indices so that ∆n = n′ − n > 0. This superpo-
sition’s probability density

ρ(r, t) =
1

2
[ρn,ν(r) + ρn′,ν′(r)] +

[ρn,ν(r)ρn′,ν′(r)]
1/2

cos (∆n[φ− Ωt]) , (9)

rotates around the origin with an angular frequency

Ω =
h̄

2mR2

j2n′,ν′ − j2n,ν
∆n

. (10)

Aside from this rotation, the state neither broadens nor
otherwise distorts. The resulting periodic recurrence dif-
fers from the breathing modes identified in generalized
Airy states [5]. Instead, it closely resembles the dis-
crete propagation invariance of rotating optical modes
[22], particularly solenoidal beams [6, 16]. For this rea-
son, we refer to the rotating wave functions described
by Eq. (8) as solenoidal states. Figure 1 shows the time
evolution of two illustrative examples.

Most solenoidal wave packets are not accelerating
states in the sense identified by Berry and Balazs. Those
with ∆n > 1, such as the example in Fig. 1(a), are sym-
metric about the origin; the expectation value of the par-
ticle’s position coincides with the center of the box. Clas-
sically, therefore, such states resemble their constituent
Bessel states in that the particle remains motionless at
the origin even as its probability density rotates.

Solenoidal states with ∆n = 1 are asymmetric, as can
be seen in Fig. 1(b). The expectation value for the par-
ticle’s position,

〈r(t)〉 = αR [cos(Ωt) x̂+ sin(Ωt) ŷ] , (11)

undergoes uniform circulation motion at angular fre-
quency Ω and radius 〈r〉 = αR, where

α =

∫ 1

0
Jn+1(jn+1,ν′x) Jn(jn,νx)x2 dx

Jn+2(jn+1,ν′) Jn+1(jn,ν)
(12a)

=
2jn+1,ν′jn,ν

(j2n+1,ν′ − j2n,ν)2
. (12b)

This seems remarkable because no force acts on the par-
ticle within the box. Such force-free acceleration appears
to violate Ehrenfest’s theorem,

d2 〈r(t)〉
dt2

=
1

m
〈F (r(t))〉 , (13)

which relates the expectation value of the particle’s ac-
celeration to the expectation value of the force acting on
the particle. In the present case, F (〈r(t)〉) = 0 in the
force-free region within the box, but

d2 〈r(t)〉
dt2

= −αRΩ2r̂. (14)
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FIG. 2. (color online) Optical realization of accelerating solenoidal states. Volumetric reconstructions of asymmetric solenoidal
waves described by Eq. (8) with ∆n = 1. (a) Positive helicity: n = 20, ν = 15, ν′ = 14. (b) Negative helicity: ν = 14, ν′ = 15.
(c) Four-mode (n = 10, 11, 12, 13) superposition yielding improved in-plane localization.

The apparent discrepancy can be explained because
F (〈r(t)〉) 6= 〈F (r(t))〉.

The integrability of the solenoidal wave packets comes
at the cost of applying the boundary condition from
Eq. (1c) at r = R. The confined particle exerts a pressure
on the wall,

P = − 1

2πR

dE

dR
(15a)

=
h̄2

4πmR4

(
j2n+1,ν′ + j2n,ν

)
. (15b)

By Newton’s third law, the wall exerts a complementary
force on the wave packet that is directed radially inward.
When averaged over angles, the net force acting on the
particle located at 〈r〉 is

〈F (r)〉 = −βRP r̂, (16a)

where

β = lim
ε→0

∫ 2π

0
ρ(r, t) cos(φ− Ωt) dφ

∣∣∣
r=R−ε∫ 2π

0
ρ(r, t) dφ

∣∣∣
r=R−ε

(16b)

=
2jn+1,ν′jn,ν
j2n+1,ν′ + j2n,ν

. (16c)

Comparison with Eq. (14) confirms that Ehrenfest’s the-
orem is satisfied: the force responsible for the particle’s
classical circular motion is exerted by the wave function’s
interaction with the bounding wall.

In principle, accelerating solenoidal states can be pre-
pared as superpositions of Bessel beams without confin-
ing boundary conditions. Such unconfined states rotate

without a central force, and so appear to violate Ehren-
fest’s theorem. Because Bessel states are not square-
integrable, however, they are best interpreted as superpo-
sitions of plane-wave states [1]. The rotation of solenoidal
wave packets then represents the ensemble-average of
multiple particles’ non-accelerating trajectories.

The possibility of Ehrenfest violations arises again
for normalizable approximations to unconfined solenoidal
wave packets that are prepared by truncating Ψ(r, t) at
r = R. These truncated wave packets still appear to ro-
tate, and they evolve under truly force-free conditions.
To illustrate this phenomenon, Fig. 2 presents optical
analogs of truncated solenoidal states. We prepare these
solenoidal beams of light by using intermediate-plane
holograms [7] to convert the linearly polarized Gaussian
TEM00 beam from a solid state laser (Coherent Verdi
5W) into a superposition of helical Bessel modes of the
form described by Eq. (8). The mode-converting holo-
grams are imprinted on the beam with a phase-only liquid
crystal spatial light modulator (Hamamatsu X10468-16).

Figure 2(a) and Fig. 2(b) show volumetric reconstruc-
tions of two solenoidal laser beams with ∆n = 1. The
data for these reconstructions were obtained by translat-
ing a video camera (NEC TI-324AII) along the optical
axis and combining the resulting stack of images. Each
reconstruction shows three complete cycles of shape-
preserving propagation. The solenoid in Fig. 2(a) has
a right-handed twist while that in Fig. 2(b) is left-
handed. Each volumetric reconstruction is paired with
three transverse slices from the planes labeled (i), (ii)
and (iii) in the renderings. These slices show three stages
in the intensity distributions’ rotation about the optical



4

axis at 120◦ intervals. Additional planes in the render-
ings correspond to each of the three complete rotations
captured over the course of 1 m of propagation. The full
non-diffracting range of these beams extends beyond 2 m.

The two-state superpositions discussed so far are not
the only accelerating wave packets. Figure 2(c) shows
a four-state superposition designed to better localize the
wave packet as it spirals around the origin. In this case,
there can be no doubt that the intensity maximum pre-
cesses steadily around the optical axis. Incorporating
higher-order terms in the superposition can further im-
prove localization [16] at the cost of reducing diffraction
efficiency.

Figure 3(a) shows a representative simulation of r∗(t)
superimposed on a snapshot of the initial distribution,
ρ(r, 0). Figure 3(b) shows the corresponding experi-
mental measurement of r∗(z). The angular position of
the peak, θ∗(t), advances uniformly, as can be seen in
Fig. 3(c). For clarity, we have scaled the simulation time
to best superimpose the temporal evolution of the simu-
lation data on the spatial evolution of the experimental
data, θ∗(z). The shaded experimental error range was
estimated by measuring variations in the apparent posi-
tion of a non-rotating n = 0 Bessel state using the same
protocol as we use for the rotating superposition states.
These variations arise from mechanical vibrations in the
translation stage used to move the camera and from the
influence of Gaussian noise in the measured images. Dis-
crepancies between the measured and simulated results
also can be attributed to speckle and other imperfections
in the projected beam’s mode structure.

This apparent contradiction of the Ehrenfest theorem
is resolved by tracking the mean particle position, 〈r(t)〉,
which also is plotted in Fig. 3. Results for 〈x(t)〉 and
〈x(z)〉 are plotted in Fig. 3(d), with the simulation time
again scaled as in Fig. 3(c). In both simulation and
experiment, the classical trajectory of the unconfined
rotating wave packet actually translates steadily away
from the beam’s axis with an impact parameter, b set
by the average position at t = 0. The experimental
center of brightness closely follows a linear trajectory
along b = (0.11± 0.01) mm with a standard deviation
of ∆x = 0.02 mm. The experimental trajectory’s impact
parameter is shifted by ∆b = 0.05 mm relative to the
simulation value due to imperfections in the projected
mode’s shape.

The unconfined solenoidal mode’s linear translation
arises because the truncated wave packet diffracts be-
yond r = R by precisely the amount needed to conserve
momentum under force-free conditions [23]. The nature
of the state’s time evolution is masked because diffrac-
tion has little apparent influence on the wave packet’s
structure at early times, particularly near the center of
the system. Remarkably, this means that freely propa-
gating solenoidal laser modes neither accelerate [6] nor

FIG. 3. (color online) Translation of an apparently rotating
wave packet. (a) Simulation of an unconfined solenoidal state
with n = 20, n′ = 21, ν = 16 and ν′ = 17. The image shows
a region of interest around the center of the probability den-
sity ρ(r, t). Discrete points show the time evolution of the the
most probable position, r∗(t), which circulates, and of the ex-
pectation value of the position, 〈r(t)〉, which translates. (b)
Corresponding experimental realization. (c) Time evolution
of the mode position, θ∗(t), in the simulation (solid curve)
compared with θ∗(z) from the experimental data (discrete
points with instrumental error estimate in yellow shade). (d)
Time evolution of the simulated wave packet’s mean position,
〈x(t)〉, compared with the position of the experimental center
of brightness, 〈x(z)〉. Both translating states carry classical
angular momentum because of the impact parameter, b. An
animation of these states’ evolution is available in Supplemen-
tary Material [23].

even rotate [14]; they are translating states.
Although the confined particle’s classical acceleration

can be accounted for by the influence of boundary con-
ditions, its rate of circulation is less straightforward to
interpret. The classical angular momentum carried by
an accelerating solenoidal wave packet is

L(c)
z = mα2R2Ω (17a)

= 2
j2n+1,ν′j2n,ν

(j2n+1,ν′ − j2n,ν)3
h̄, (17b)

which differs from the state’s quantum mechanical angu-
lar momentum,

〈Lz〉 =

(
n+

1

2

)
h̄. (18)

Indeed, L
(c)
z and 〈Lz〉 can have opposite signs depending

on the choice of radial quantum numbers ν and ν′. The
solenoidal states represented in Figs. 2(a) and 2(b), for
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example, have opposite classical angular momentum even
though they carry the same quantum mechanical angular
momentum. Such discrepancies are surprising because
they are not generically observed in quantum mechanical
systems carrying angular momentum [24, 25].

Unconfined solenoidal states also carry classical angu-
lar momentum

L(c)
z = m

[
〈r(0)〉 × d 〈r(t)〉

dt

]
· ẑ (19)

that is equal to the confined value from Eq. (17) and
generally differs from the quantum-mechanical value,
Eq. (18). Analogous discrepancies have been been re-
ported in holographically-patterned electron beams [13].

We have demonstrated that the radial acceleration as-
sociated with confined solenoidal states does not carry
over to the unconfined states that are experimentally re-
alizable with light beams [6, 14, 16]. Instead, the small
amount of diffraction that occurs for these states is pre-
cisely what is required to transform their acceleration
into uniform translation. This does not account for the
observed discrepancy between classical and quantum me-
chanical angular momentum, which therefore remains an
outstanding challenge.
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