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Abstract

Using an entanglement-preserving approach, we theoretically study the reservoir-induced pho-

tonic dissipations in waveguide quantum electrodynamic (wQED) systems coupled to an excitable

reservoir consisting of oscillators. For the single-photon case, we show that the effects of dissipation

can be described by a reduced Hamiltonian and a restricted eigenstate. For the multi-photon case,

we show that the reduced Hamiltonian approach is, in general, not valid. Nonetheless, we identify

a weak-reservoir condition for the reduced Hamiltonian approach to be approximately valid, which

applies to the majority of current experiments. In addition, we apply the density matrix approach

to investigate the same physical system, and show that the Markovian density matrix approach can

describe only the lowest-order dissipative effect. The deviations from the weak-reservoir scenario

are suggested to be observable in an engineered excitable reservoir consisting of optical cavities.
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I. INTRODUCTION

The interactions between the microscopic constituents of a physical system fundamentally

lead to the quantum entanglement between the constituent parts. Often, due to either

computational constraints or physical considerations, we restrict ourselves simply to the

quantum states of the part of the physical system of interest and average out the degrees of

freedom of the residual parts. For example, when solving a quantum-mechanical problem

of the spontaneous decay of an excited atom, or the problem of the decay of the radiation

field inside a cavity with partially transparent mirrors, what we really do is divide the entire

physical system into two parts–the part of the system of interest (henceforth will simply be

called ‘system’ for brevity) and the rest of the system (which is also called the environment

or the reservoir) with a large number of degrees of freedom [1, 2]. As a consequence, a

dissipation (damping) term emerges in the system which characterizes the leakage rate of

particle or energy from the system to the reservoir.

Conventionally, a very fruitful approach to studying the effects of dissipation is the den-

sity matrix approach. Such an approach traces over the environmental degrees of freedom

and phenomenologically parametrizes the system-environment interaction as damping terms

in the Lindblad superoperators in the resultant quantum master equation for a dissipative

system [2, 3]. The detailed information of the system-environment entanglement is elimi-

nated at the very beginning in the density matrix approach. As a result, the density matrix

approach provides a probabilistic measure for the system evolutions in terms of mixed states.

Another aspect is that, as the density matrix approach does not include the wave function

of the photon field, the photon-atom entanglement can not be directly described. Other

successful approaches include the quantum Langevin approach, which is also widely used

to investigate the dissipation-driven fluctuation and temporally-correlated statistics [4]; and

the quantum jump approach which has been developed for statistical single-photon loss

processes [5] and can be numerically simulated using the Monte-Carlo techniques [6]. The

limitations of the density matrix approach with regard to the entanglement also apply to

the quantum Langevin and the quantum jump approaches.

Recently, an entanglement-preserving approach [7] is adopted to treat the problem of

reservoir-induced dissipation when the environment is non-excitable (e.g., a vacuum or a

homogeneous transparent medium) [8]. The explicit example considered is the reservoir-
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induced dissipation of a two-level atom in a waveguide QED (wQED) system with an input

of quantized optical field. The atom is coupled to an optical waveguide and a reservoir that

is a homogeneous, three-dimensional, non-excitable, photonic space with infinitely many

photonic scattering channels. It is shown that, for an input of an arbitrary photonic Fock

state or a coherent state, the dissipative dynamics of the system can be described by reduced

Hamiltonian (i.e., adding a renormalized term and an imaginary part −iγ in the atomic

transition frequency) and a restricted eigen-state which are restricted to the Hilbert space

of the wQED system only (i.e., omitting the scattering channels of the environment in

the wavefunction). That is, the dissipation rate γ due to the reservoir can be measured

by a single-photon scattering experiment (e.g., a transmission measurement); the resulting

reduced Hamiltonian is then valid for all quantized optical input.

In this article, we apply this approach to investigate the wQED system of the same con-

figuration as that in Ref. [8], but now instead with an excitable reservoir that consists of

infinitely many quantum oscillators. Such a scenario is ubiquitous in practical photonic sys-

tems (e.g., free-carrier absorption in highly-doped semiconductor waveguide [9], absorption-

driven cladding loss in photonic crystal fiber [10], and generic material absorption in other

silica-based photonic devices [11, 12]), and has been of great theoretical and experimental

interest to the studies of the quantum dynamics of many cavity and waveguide QED sys-

tems [13–23]. Throughout the approach, the entanglements between each constituent parts

(photons, the two-level atom, and the reservoir oscillators) are explicitly retained. It is found

that in this scenario the reduced Hamiltonian description is valid only when the input is

a single-photon Fock state, and breaks down when the input field contains more than one

photons. Specifically, we found that for an N -photon Fock state input (N > 1), the reduced

Hamiltonian description remains valid for the eigen-state describing the uncorrelated plane

waves of photons. For all these cases (single-photon input and uncorrelated photons), the

reduced Hamiltonian is straightforwardly obtained by replacing the transition frequency Ω

of the two-level system with the renormalized complex transition frequency Ω̄ = Ω + α in

the system Hamiltonian. The real part and the imaginary part of the complex α = ∆Ω− iγ

describe the shift of the transition frequency and the dissipation rate, respectively, due to

coupling to the excitable reservoir. The expression of α is shown to be identical for all uncor-

related states and a closed form for α is derived, which involves summing over all admissible

closed trajectories of the leaking photons hopping among the oscillators in the reservoir.
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Nonetheless, for correlated eigen-states describing the bound states of photons [24] and the

hybrid states (which are product states of the plane waves and bound states, see Ref. [25] for

classification details), the reduced Hamiltonian description is no longer valid. The reason for

breaking down is due to the presence of the photonic correlations in these states: When the

reservoir is excitable, the escaped photons from the system to the reservoir have a chance

to be scattered back to the system and thus change the existing correlations. In contrast, in

the non-excitable reservoir case [8], after being dissipated, the photon can never come back

to the system. Finally, we also carry out the calculation using the density matrix approach

and show that the result obtained from the Markovian density matrix approach is the lowest

order of α obtained using the entanglement-preserving approach. Our findings indicate that

the dissipation rate γ obtained from the single-photon scattering experiments in general

cannot be directly used to account for the multi-photon dynamics. In the weak-reservoir

limit when the couplings to and within the reservoir is weak, the correlated eigenstates can

otherwise be described by a reduced Hamiltonian, and both the entanglement-preserving

approach and the density matrix approach yield the same results.

This article is organized as follows. In Sec. II, we introduce the physical model to describe

the microscopic material loss mechanism (Henceforth, we shall call the dissipation induced

by the non-excitable reservoir the scattering loss and by the excitable reservoir the material

loss.) In Sec. III, we investigate the effects of the reservoir for the single-photon case, and

validate the reduced Hamiltonian approach. Then, in Sec. IV and Sec. V, we study the

two-photon and the arbitrary N -photon Fock state cases. In addition, we also derive the

weak-reservoir conditions for the reduced Hamiltonian approach to be approximately valid.

In Sec. VI, we apply the density matrix approach to investigate the material loss model,

and compare the results with those of our entanglement-preserving approach. Finally, in

Sec. VII, we draw conclusions and provide an outlook for our work.

II. MODEL AND HAMILTONIAN

The physical wQED system considered is shown schematically in Fig. 1. The system (S)

consists of a two-level atom coupled to a single-mode photonic waveguide, and an N -photon

Fock state, |N〉, is injected into the waveguide from the left. The incoming photons interact

with the atom through absorptions, spontaneous, and stimulated emission processes. On the
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FIG. 1. Schematics of the waveguide QED system with an excitable reservoir. A two-level atom

(represented by a red sphere) is coupled to the one-dimensional single-mode photonic waveguide.

The atom is further coupled to a reservoir that consists of infinitely many excitable oscillators

(represented by yellow dots). j and l are indices of any two oscillators (j, l = 1, 2, · · · ). Ω and ωa

denote transition frequencies for the atom and the oscillators, respectively. V̄ , η, and β are the

atom-photon, atom-oscillator, and the inter-oscillator coupling strengths, respectively. |N〉 denotes

the incoming N -photon Fock state.

other hand, due to the coupling between the atom and the external excitable oscillators, the

photon may leak out to the reservoir and undergo secondary scattering processes between

the oscillators. The Hamiltonian describing the wQED system in Fig. 1, HS, is

HS

~
=

∫
dx

{
c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

+V̄ δ(x)[(c†R(x) + c†L(x))σ− + σ+(cR(x) + cL(x))]
}

+ωea
†
eae + ωga

†
gag,

(1)

where the linear dispersion approximation and the rotating-wave approximation are em-

ployed [7]. c†R(x) (cR(x)) denotes the creation (annihilation) operator for a right-moving

photon at position x. c†L(x) and cL(x) are similarly defined for a left-moving photon. a†g

(ag) denotes the creation (annihilation) operator for the atomic ground state with energy

~ωg. a
†
e and ωe are similarly defined for the atomic excited state. Ω ≡ ωe −ωg is the atomic

transition frequency. σ+ = a†eag (σ− = a†gae) is the atomic raising (lowering) operator. vg

denotes the group velocity of photons in the waveguide. V̄ is the atom-photon coupling
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strength. The Hamiltonian describing the reservoir, HR, is given by

HR

~
=
∑

j

[
(ωej − iε)a†ejaej + ωgja

†
gj
agj

]

+
∑

j,l,j 6=l

βjl
2

(σj+σl− + σl+σj−) ,

(2)

where a†gj (agj) denotes the creation (annihilation) operator for the ground state of the

j-th oscillator with energy ~ωgj (j = 1, 2, · · · ); a†ej , aej , and ωej are similarly defined for

its excited state; and ωaj ≡ ωej − ωgj is the transition frequency of the j-th oscillator.

σj+ = a†ejagj (σj− = a†gjaej ) denotes the raising (lowering) operator for the j-th oscillator.

βjl represents the inter-oscillator coupling strength between the j-th and the l-th oscillators.

In the following, a general description is provided without imposing special constraints

on the functional form of βjl’s, thus allowing the incorporation of various scenarios. For

example, the value of βjl can decrease as the separation between the the j-th and the l-th

oscillators increases according to a specified fashion so that only short-ranged hops make

contributions. Each oscillator has an intrinsic scattering loss rate ε, which is taken to be 0+

at the end of the calculation to ensure the causality condition. It is worth noting that albeit

only frequency and inter-oscillator coupling of the reservoir are considered, our approach can

readily incorporate more reservoir degrees of freedom (e.g., mode, polarization, spin, intrinsic

scattering loss, and etc). The Hamiltonian describing the system-reservoir coupling, HSR, is

HSR

~
=
∑

j

ηj (σj+σ− + σ+σj−) , (3)

where ηj is the coupling strength between the atom and the j-th oscillator. The Hamiltonian

describing the combined system S ⊕ R (wQED system + reservoir), H , is given by HS +

HR +HSR.

III. SINGLE-PHOTON CASE

We first study the case of the excitable reservoir for the case of single-photon input. The

general single-photon eigenstate of the combined system, |Φ1〉, is

|Φ1〉 =
(∫

dx
[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+ eσ+ +

∑

j

φjσj+

)
|∅〉, (4)

where φR (φL) denotes the right- (left-) moving single-photon wave function. e and φj

denote the excitation amplitude for the atom and the j-th oscillator, respectively. |∅〉 is the
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photonic vacuum state that has no waveguided photons; the atom is in the ground state;

and none of the oscillators are excited. By applying Schrödinger Equation H|Φ1〉 = ~ǫ̃|Φ1〉,
where ~ǫ̃ = ~(ωk + ωg +

∑
j ωgj) is the total energy of the combined system with ~ωk being

the energy of the incident photon, and equating the coefficients for each basis, the equations

of motion are obtained as follows,

ωkφR(x) = −ivg∂xφR(x) + V δ(x)e, (5a)

ωkφL(x) = ivg∂xφL(x) + V δ(x)e, (5b)

ωke = V [φR(0) + φL(0)] + Ωe+
∑

j

ηjφj, (5c)

ωkφj = (ωaj − iε)φj + ηje+
∑

l,l 6=j

βjlφl. (5d)

Note that Eq. (5d) can be rearranged as

φj =
ηj

(ωk − ωaj + iε)
e+

1

(ωk − ωaj + iε)

∑

l,l 6=j

βjlφl. (6)

From Eq. (6), φj can be solved for recursively and yields the following expression

φj =
( ηj
ωk − ωaj + iε

+
∑

l,l 6=j

βjlηl
(ωk − ωaj + iε)(ωk − ωal + iε)

+
∑

l,l 6=j

∑

m,m6=l

βjlβlmηm
(ωk − ωaj + iε)(ωk − ωal + iε)(ωk − ωam + iε)

+ · · ·
)
e.

(7)

In each term of φj, the numerator describes a path of the photons hopping between the

oscillators and the two-level atom with an increasing length. For example, the first term

denotes a one-hop path of the photon jumping from the j-th oscillator directly to the two-

level atom, while the second term describes a two-hop path of the photon jumping from the

j-th oscillator to an intermediate l-th oscillator (l 6= j) and then to the two-level atom. By

plugging the expression of φj (Eq. (7)) into Eq. (5c), Eq. (5c) now reads as

ωke = V [φR(0) + φL(0)] + (Ω + α)e, where

α =

∞∑

n=1

αn, α1 =
∑

i1

η2i1
ωk − ωai1

+ iε
,

αn =
∑

i1

∑

i2,i2 6=i1

· · ·
∑

in,in 6=in−1

ηi1βi1i2 · · ·βin−1inηin∏n
l=1(ωk − ωail

+ iε)
, n = 2, 3, · · · .

(8)

Note that for each αn, the numerator describes a closed path of the photon, starting from

the two-level atom (the ηi1 term) and hopping n − 1 times between the oscillators in the
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reservoir (the β’s terms), and eventually ending with the two-level atom (the ηin term). The

real part and the imaginary part of the complex frequency renormalization α = ∆Ω − iγ

describe the shift of the transition frequency of the two-level atom and the dissipation

rate, respectively, due to coupling to the excitable reservoir. Fig. 2 provides a graphic

representation of the numerators of αn. The returning nature of the single-photon paths

has a far-reaching consequence for the correlated multi-photon transport, as the returning

times are statistical and generally breaks down the photonic temporal entanglement within

the waveguide.

FIG. 2. Graphic representation of the complex frequency renormalization α ≡ ∑
n αn: for each

αn, the numerator describes a closed path of the photon, staring from the two-level atom (η) and

hopping n − 1 times between the oscillators in the reservoir (β’s), and finally ending with the

two-level atom (η).

Together, Eqs. (5a), (5b), and (8) now form a set of self-consistent equations which only

involve the system amplitudes φR, φL, and e. Such a result states that after taking into ac-

count the statistical fluctuations of the system-reservoir coupling (i.e., η) and the secondary

scattering characteristic of the reservoir (i.e., β), the wave function information of φj can

be traced over and incorporated in the renormalized frequency Ω̄ ≡ Ω + α (α ≡
∑∞

n=1 αn).

That is, the combined system can be described by a reduced Hamiltonian (substituting Ω

with the renormalized transition frequency Ω̄ in the system Hamiltonian HS), and a re-

stricted eigenstate |Φ1〉 = (
∫
dx

[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+ eσ+)|∅〉 which contains only

the degrees of freedom of the system.

For an ensemble of oscillators with closely spaced frequencies that form a quasi-continuous

frequency distribution (which occurs even for identical oscillators due to, for example, het-

erogeneous local conditions), we can convert the n-th order renormalization αn (n = 1, 2, · · · )
from the discrete expression to the continuum case as follows: the discrete frequency ωaj

is replaced by the continuous frequency variable ωj ; the discrete-valued function βimil and
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ηil now become functions of continuous frequency variables, β(ωm, ωl) and η(ωl), respec-

tively; and the discrete summation
∑

il
is replaced by the integral of continuous frequency

distribution
∫
dωlD(ωl), where D denotes the density of states in the reservoir.

Here, we first make coarse approximations for the magnitude of αj to gain insights.

When the relevant variables change slowly with respect to the frequency, the integrals can

be approximated by using the average values that are independent of the frequency. That is,

η, D, and β are approximated by η̄, D̄, and β̄, respectively; ωk−ω+iε is approximated by the

average atom-reservoir detuning δ̄; and the integral
∫
dω can be approximated by multiplying

an average reservoir bandwidth ∆ω. By plugging such approximations in Eq. (8), one has

that αj ≈ η̄2β̄j−1D̄j∆ωj/δ̄j (j = 1, 2, · · · ). Apparently, when αj+1/αj = β̄D̄∆ω/δ̄ ≪ 1,

dissipative effects that are described by terms of orders higher than one can be neglected.

That is, α can be approximated by its lowest-order term α1 when a combined condition of

weak secondary scattering strength, low density of states, narrow reservoir bandwidth, and

large photon-reservoir detuning, i.e., β̄D̄∆ω/δ̄ ≪ 1, is satisfied.

For the continuum case, the first-order and second-order renormalizations α1 and α2 take

the following forms (hereafter, we shall assume that the incoming photon is intune with the

atom ωk ≈ Ω, which is the typical case of interest in practice):

α1 =

∫
dω1

η2(ω1)D(ω1)

Ω− ω1 + iε
,

α2 =

∫∫

ω1 6=ω2

dω1dω2
β(ω1, ω2)η(ω1)η(ω2)D(ω1)D(ω2)

(Ω− ω1 + iε)(Ω− ω2 + iε)
.

(9)

By invoking the Sokhotski-Plemelj (S-P) theorem, (i.e., lim
ε→0+

1/(ω − ω1 + iε) = P [1/(ω −
ω1)]− iπδ(ω−ω1), P denotes the Cauchy principal value), and the Poincaré-Bertrand (P-B)

formula (i.e., P 1
X−Y

P 1
X−Z

= P 1
Y−Z

(P 1
X−Y

−P 1
X−Z

)+π2δ(X−Y )δ(X−Z)), it follows that

α1 = ∆1 − iγ1, α2 = ∆2 − iγ2, where

∆1 = P

∫
dω1

η2(ω1)D(ω1)

Ω− ω1

, γ1 = πη2(Ω)D(Ω),

∆2 = P

∫∫
dω1dω2

f(ω1, ω2)

ω1 − ω2

(
1

Ω− ω1
− 1

Ω− ω2

)
,

γ2 = π

[
P

∫
dω2

f(Ω, ω2)

Ω− ω2
+ P

∫
dω1

f(ω1,Ω)

Ω− ω1

]
,

f(ω1, ω2) = β(ω1, ω2)η(ω1)η(ω2)D(ω1)D(ω2),

(10)
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where ∆1 and γ1 represent the resulting first-order transition frequency shift, and the first-

order intrinsic dissipation rate, respectively. ∆2 and γ2 are similarly defined for the second-

order terms. By recursively applying the S-P theorem and the P-B formula, higher-order

frequency renormalizations αn = ∆n − iγn can also be obtained, where ∆n and γn are

the n-th order transition frequency shift and dissipation rate, respectively (n = 3, 4, · · · ).
Noting that the first-order renormalization only involves the system-reservoir interaction

while the second-order term provides further information on the inter-oscillator interaction

in the reservoir. Then, by defining the collective transition frequency ∆ =
∑∞

n=1∆n, and

the collective dissipation rate γ =
∑∞

n=1 γn, α now reads as α = ∆ − iγ. As a result, the

effect of the reservoir manifests as a transition frequency shift ∆, and an intrinsic dissipation

rate γ.

To summarize the single-photon case, we show explicitly that the effects of the reservoir

can be described by a reduced Hamiltonian (with a renormalized frequency Ω → Ω̄ =

Ω + ∆− iγ in HS), and a restricted eigenstate (|Φ1〉 = (
∫
dx

[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+

eσ+)|∅〉). To simplify the notations, in the above derivation we have assumed that all η’s

and β’s are real-valued. The general case when these variables are complex numbers can be

straightforwardly obtained in the same manner.

IV. TWO-PHOTON CASE

Having solved the single-photon dynamics in the presence of the reservoir, we now study

the case when the input is a two-photon Fock state. Specifically, we will first solve the

equations of motion for the two-photon dynamics for the interacting eigenstates of the

Hamiltonian for the restricted system variables (i.e., omitting the degrees of freedom in the

reservoir). We then apply the Lippmann-Schwinger formalism to obtain the corresponding

in- and out- states to construct the restricted scattering matrix, which will be denoted as Sr.

As the restricted Hamiltonian is not hermitian, consequently, the restricted scattering matrix

Sr is not unitary. For the dissipationless two-photon case when no reservoir is present, it has

been shown that the two-photon plane-wave states alone do not form a complete set of two-

photon eigenstates of the scattering matrix, and a two-photon bound state must be included

for the completeness [24, 26]. We now examine the effects of the reservoir for the plane-

wave states and the bound state solutions separately. (See Ref. [26] and [25] for detailed
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procedures for the two- and N -photon case, respectively, when no reservoir is present).

A. Hamiltonian and Equations of Motion

As a first step, it is mathematically convenient to convert the Hamiltonian H to that in

the even mode (He) and that in the odd mode (Ho, H = He +Ho) such that He and Ho are

decoupled ([He, Ho] = 0). Ho is an interaction-free chiral Hamiltonian, while He describes a

nontrivial, interacting chiral Hamiltonian. Since the photon-atom interactions are encoded

in the even mode, not the odd mode, we will focus on the even-mode physics hereafter. The

transformation of the wavefuctions and the S-matrix from the even and odd chiral modes

to the physical two-mode case has been investigated [26].

By invoking the operator transformations, c†e(x) = [c†R(x) + c†L(−x)]/
√
2 and c†o(x) =

[c†R(x) − c†L(−x)]/
√
2, one obtains the following even-mode Hamiltonian He describing the

combined system,

He

~
=

∫
dx

{
c†e(x)(−ivg∂x)ce(x) + V δ(x)

[
c†e(x)σ− + σ+ce(x)

]}

+ωea
†
eae + ωga

†
gag +

∑

j

ηj (σj+σ− + σ+σj−)

+
∑

j

(
(ωej − iε)a†ejaej + ωgja

†
gj
agj

)

+
∑

j,l,j 6=l

βjl
2

(σj+σl− + σl+σj−) ,

(11)

where c†e(x) (ce(x)) is the operator to create (annihilate) a photon at position x in the even

mode. V =
√
2V̄ is the atom-photon coupling strength in the even mode. The general form

of the two-photon interacting eigenstate of the combined system, |Φ2〉, is given by

|Φ2〉 =
(∫∫

dx1dx2φ(x1, x2)
1√
2
c†e(x1)c

†
e(x2)

+

∫
dxe(x)c†e(x)σ+ +

∑

j

∫
dxφj(x)c

†
e(x)σj+

+
∑

j

ejσ+σj+ +
∑

j,l,j<l

ejlσj+σl+

)
|∅〉,

(12)

where φ(x1, x2) denotes the wave function for two waveguided photons in the even mode. Due

to the boson statistics, the wave function satisfies φ(x1, x2) = +φ(x2, x1), and is continuous

on the line x1 = x2. e(x) is the probability amplitude distribution of one waveguided photon
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while the atom in the excited state. φj(x) denotes the probability amplitude distribution

of one waveguided photon while the j-th oscillator in the excited state. ej represents the

excitation amplitude wherein two photons are absorbed by the atom and the j-th oscillator,

respectively. ejl is the excitation amplitude wherein two photons are absorbed by the j-

th and the l-th oscillators, respectively. By applying the Schrödinger Equation, He|Φ2〉 =

~ǫ̃|Φ2〉, one obtains the following equations of motion,

ǫφ(x1, x2) =− ivg (∂x1 + ∂x2)φ(x1, x2)

+
V√
2
[δ(x1)e(x2) + δ(x2)e(x1)] ,

(13a)

ǫe(x) =− ivg∂xe(x) +
V√
2
[φ(0, x) + φ(x, 0)]

+Ωe(x) +
∑

j

ηjφj(x),
(13b)

ǫφj(x) =− ivg∂xφj(x) + V δ(x)ej + (ωaj − iε)φj(x)

+ηje(x) +
∑

l,l 6=j

βjlφl(x),
(13c)

ǫej =V φj(0) +
∑

l,l<j

ηlelj +
∑

l,l>j

ηlejl

+
(
ωa + ωaj − iε

)
ej +

∑

l,l 6=j

βjlel,
(13d)

ǫejl =ηjel + ηlej +
(
ωaj + ωal − 2iε

)
ejl +

∑

m,m6=l,m<j

βlmemj

+
∑

m,m6=l,m>j

βmlejm +
∑

m,m6=j,m<l

βjmeml +
∑

m,m6=j,m>l

βmjelm,
(13e)

where ~ǫ = ~(ǫ̃− ωg −
∑

j ωgj) gives the total energy of two photons.

Our computational strategy is as follows. We will solve Eqs. (13a), (13b), and (13c) to

obtain the solution of the interacting eigenstate of He for the variables restricted in the

system of interest (i.e., φ(x1, x2) and e(x)). In particular, we will show that the wavefunc-

tions of the reservoir degrees of freedom (i.e., φj(x), ej , and ejl) can be traced over, and

have no direct relevance to our results, which is similar to the single-photon case. Thus, in

the end, Eqs. (13d) and (13e) are not directly involved in the calculation. The two-photon

in- and out- states can be constructed based upon the interacting eigenstates for restricted

system variables (i.e., |Φ2〉 =
( ∫∫

dx1dx2φ(x1, x2)c
†
e(x1)c

†
e(x2)/

√
2 +

∫
dxe(x)c†e(x)σ+

)
|∅〉),

and further normalized to obtain eigenstates of the restricted scattering matrix.

12



B. Two-photon Plane-wave Solution for Excitable Reservoir Case

FIG. 3. The divide and conquer scheme to solve the two-photon interacting eigenstates. Due to

bosonic symmetry, only half of the entire x1-x2 coordinate plane (i.e., x1 < x2) is involved in the

calculation. The x1-axis, the x2-axis, and the x1 = x2 line further dissect the half plane into three

regions, i.e., Region 1 (0 < x1 < x2), 2 (x1 < 0 < x2), and 3 (x1 < x2 < 0). When given φ(x1, x2)

in Region 3, the boundary condition is imposed to obtain φ(x1, x2) in other regions, as indicated

by the arrows.

We first focus on the two-photon plane-wave solution when the waveguide is coupled to

an excitable reservoir. Due to bosonic symmetry of photon wave functions, we only consider

the solution of φ(x1, x2) for half of the entire x1-x2 plane. Without loss of generality, we

will focus on the x1 < x2 half plane, which is further sub-divided into three ordered regions:

Region 1 (0 < x1 < x2); 2 (x1 < 0 < x2); and 3 (x1 < x2 < 0), as indicated in Fig. 3.

Note that the photon-atom interactions occur only on the two coordinate axes of x1 = 0

and x2 = 0. Region 3 and 1 correspond to the wave functions wherein two photons are both

on the left of the atom (i.e., before scattering), and both on the right of the atom (i.e.,

after scattering), respectively; Region 2 corresponds to the case wherein one photon is on

the right of the atom while the other photon on the left. Following the Bethe Ansatz, the

13



two-photon plane-wave solution takes the following form,

φ(x1, x2) =





B3e
i
ωk
vg

x1+i
ωp

vg
x2 + A3e

i
ωk
vg

x2+i
ωp

vg
x1, in Region 3,

B2e
i
ωk
vg

x1+i
ωp

vg
x2 + A2e

i
ωk
vg

x2+i
ωp

vg
x1, in Region 2,

B1e
i
ωk
vg

x1+i
ωp

vg
x2 + A1e

i
ωk
vg

x2+i
ωp

vg
x1, in Region 1.

(14)

ωk and ωp denote the angular frequencies of two photons, respectively. We adopt the divide

and conquer scheme to solve for φ(x1, x2) (i.e., the amplitudes A’s and B’s) in the x1 < x2

half plane, in the order of Region 3 → 2 → 1, as indicated by the arrows in Fig. 3, which

corresponds to a pictorial representation of the scattering process.

Applying the equations of motions on the boundaries between adjacent Region 2 and 3

gives rise to the following boundary condition for x < 0,

φ(x, 0+) = φ(x, 0−)− i
V√
2vg

e(x). (15)

By plugging Eq. (15) into Eq. (13b), one has that

−ivg∂xe(x) =
(
ǫ− Ω + i

Γ

2

)
e(x)

−
√
2V φ(x, 0−)−

∑

j

ηjφj(x),
(16)

where Γ = V 2/vg is the atomic decay rate into the waveguide in the even mode. The general

solution of Eq. (16) for x < 0 is

e(x) = coe
i
vg

(ǫ−Ω+iΓ
2
)x
+

i

vg
e

i
vg

(ǫ−Ω+iΓ
2
)x

∫ x

−∞
dx′e

− i
vg

(ǫ−Ω+iΓ
2
)x′

[−
√
2V φ(x′, 0−)−

∑

j

ηjφj(x
′)],

(17)

where co is a constant to be determined. To determine co, we note that when the atom

is decoupled from the waveguide (i.e., V = 0), neither the atom nor any oscillator can be

excited, thus leading to e(x) = 0 and φj(x) = 0 ∀x. As a result, one obtains co = 0. In

addition, φj(x) for x < 0 takes the following general form,

φj(x) =cje
i
ωk
vg

x
+ dje

i
ωp

vg
x
. (18)

By plugging Eq. (18) and φ(x, 0−)|x<0 = B3e
iωkx/vg + A3e

iωpx/vg into Eq. (17), one obtains

e(x) for x < 0,

e(x) =

√
2V B3(1 + ξB)e

i
ωk
vg

x

ωp − Ω+ iΓ
2

+

√
2V A3(1 + ξA)e

i
ωp

vg
x

ωk − Ω+ iΓ
2

, (19)
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where ξA ≡ ∑
j djηj/

√
2V A3, ξB ≡ ∑

j cjηj/
√
2V B3 are defined for brevity. To eliminate

ξA and ξB, one now further plugs Eq. (19) into Eq. (13c) to obtain φj(x) for x < 0, which

takes the following form

φj(x) =
ηj
√
2V B3(1 + ξB)

(ωp − Ω + iΓ
2
)(ωp − ωaj + iε)

e
i
ωk
vg

x

+

∑
l,l 6=j βjlcl

(ωp − ωaj + iε)
e
i
ωk
vg

x

+
ηj
√
2V A3(1 + ξA)

(ωk − Ω + iΓ
2
)(ωk − ωaj + iε)

e
i
ωp

vg
x

+

∑
l,l 6=j βjldl

(ωk − ωaj + iε)
e
i
ωp

vg
x
.

(20)

By equating Eq. (18) and Eq. (20), cj and dj can be determined. Specifically, cj is given by

cj =
ηj

(ωp − ωaj + iε)
f +

∑
l,l 6=j βjlcl

(ωp − ωaj + iε)
, (21)

where f ≡
√
2V B3(1 + ξB)/(ωp − Ω + iΓ/2). Similar to Eqs. (6) and (7), cj can be solved

for recursively and expressed in terms of f as follows

cj =
( ηj
Ω− ωaj + iε

+
∑

l,l 6=j

βjlηl
(Ω− ωaj + iε)(Ω− ωal + iε)

+
∑

l,l 6=j

∑

m,m6=l

βjlβlmηm
(Ω− ωaj + iε)(Ω− ωal + iε)(Ω− ωam + iε)

+ · · ·
)
f,

(22)

where the intune condition ωp ≈ Ω is assumed here, the same as in the single-photon case.

(dj can be analogously derived and shown to have a similar expression, which is not detailed

here.) Note that the terms in the parentheses in Eq. (22) are identical to those in Eq. (7),

the excitation amplitude for the oscillators. Consequently, by substituting Eq. (22) into the

summation
∑

j cjηj, one obtains
∑

j cjηj = αf , where α here is identical to the frequency

renormalization obtained in the single-photon case (Eq. (8)). By further plugging
∑

j cjηj

into ξB, one obtains ξB = α(1 + ξB)/(ωp − Ω + iΓ/2). With such explicit form of ξB, the

coefficient of eiωkx/vg in Eq. (19) can be simplified such that the factor (1+ξB)/(ωp−Ω+iΓ/2)

now reduces to 1/(ωp − Ω + iΓ/2 − α). By performing similar calculations for the eiωpx/vg

term, Eq. (19) now reads as

e(x) =
√
2V B3

e
i
ωk
vg

x

ωp − Ω̄ + iΓ
2

+
√
2V A3

e
i
ωp

vg
x

ωk − Ω̄ + iΓ
2

, (23)
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where Ω̄ = Ω+α = Ω+∆− iγ is the renormalized transition frequency that is the same as

the single-photon case. Having solved e(x) for x < 0, we now follow the divide and conquer

scheme to obtain φ(x1, x2) in Region 2. By applying the boundary condition between Region

2 and 3, when x < 0, one obtains

φ(x, 0+) =φ(x, 0−)− i
V√
2vg

e(x)

=t̄pB3e
i
ωk
vg

x
+ t̄kA3e

i
ωp

vg
x
,

(24)

where t̄k,p = (ωk,p − Ω̄− iΓ/2)/(ωk,p − Ω̄ + iΓ/2). Note that the single-photon transmission

coefficient in reservoir-free case is given by tk,p = (ωk,p−Ω− iΓ/2)/(ωk,p −Ω+ iΓ/2). Thus,

t̄k and t̄p are the renormalized single-photon transmission coefficients that can be described

by the same frequency renormalization Ω → Ω̄. By equating Eq. (24) and φ(x, 0+)|x<0 =

B2e
iωkx/vg + A2e

iωpx/vg from Eq. (14), one obtains that B2 = t̄pB3 and A2 = t̄kA3.

So far, we have laid out the analysis for e(x)|x<0, and the relation of amplitudes between

Region 2 and 3. Following similar procedures, one can also obtain e(x)|x>0, and the relation

of amplitudes between Region 1 and 2. As a result, eigen wave functions of the restricted

system variables (i.e., φ(x1, x2) and e(x)) for the two-photon plane-wave solution is obtained,

as summarized in Fig. 4. Note that by invoking the continuous boundary condition for the

atomic wave function, i.e., e(0−) = e(0+) (deduced from Eq. (13b)), the amplitude relation

of B3/A3 = (ωp − ωk − iΓ)/(ωp − ωk + iΓ) can be determined. Interestingly, the solutions

follow the same form as that in the reservoir-free case (see Fig. 7 in Ref. [26]), yet with a

frequency renormalization Ω → Ω̄ that is the same as the single-photon case. By using the

Lippmann-Schwinger formalism, the solved set of interacting eigenstates for the restricted

system variables can be used to construct the in-state |in〉 for the two-photon plane-wave

solution in the following

|in〉 =
∫∫

dx1dx2φin(x1, x2)
1√
2
c†e(x1)c

†
e(x2)|∅〉, where

φin(x1, x2) =Ext[φ(x1, x2)|x1<x2<0],

=Ext[B3e
i
ωk
vg

x1+i
ωp

vg
x2 + A3e

i
ωk
vg

x2+i
ωp

vg
x1],

(25)

where Ext denotes the extension of the functional form from the constrained region (e.g.,

x1 < x2 < 0 here) to the entire space (−∞ < x1, x2 < ∞) (see Eqs. (88)-(90) in Ref. [26],
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FIG. 4. Interacting eigenstate solution of the restricted system variables φ(x1, x2) and e(x) to

Eqs. (13) for the two-photon plane-wave state case. φ(x1, x2) is specified in Region 1, 2, and 3.

e(x) is specified for both x > 0 and x < 0.

and Eqs. (8), (9) in Ref. [25] for detailed derivations). Similarly, the out-state is given by

|out〉 =
∫∫

dx1dx2φout(x1, x2)
1√
2
c†e(x1)c

†
e(x2)|∅〉, where

φout(x1, x2) =Ext[φ(x1, x2)|0<x1<x2],

=Ext[t̄pt̄k(B3e
i
ωk
vg

x1+i
ωp

vg
x2 + A3e

i
ωk
vg

x2+i
ωp

vg
x1)],

(26)

Based on the in- and the out-states, one can construct the normalized eigenstate |Wk,p〉 of
the restricted even-mode S-matrix, Sr

e(2)
, in the following form,

|Wk,p〉 =
∫∫

dx1dx2Wk,p(x1, x2)
1√
2
c†e(x1)c

†
e(x2)|∅〉, where

Wk,p(x1, x2) =

√
2eiKxc[2∆ cos∆xd − κsgn(xd) sin∆xd]

2π
√
[4∆2 + κ2]

,

(27)
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where K = ǫ/vg, xd = x1 − x2, xc = (x1 + x2)/2, κ = Γ/vg, ∆ = (ωk − ωp)/2vg and sgn

is the sign function. It can be immediately obtained from the analysis outlined above that

Sr
e(2)

|Wk,p〉 = t̄k t̄p|Wk,p〉. Here, we note that |Wk,p〉 follows exactly the same functional form

as that in the reservoir-free case.
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FIG. 5. Density plot for the wavefunction of the two-photon plane-wave state. (a) |Wk,p|2 when

∆ = κ. (b) Gaussian-modulated two-photon plane-wave state |WG
k,p|2 when ∆ = κ. |WG

k,p|2 is

centered at x1 = x2 = xo = 0. (c) |WG
k,p|2 when ∆ = 0.2κ. (d) |WG

k,p|2 when ∆ = 5κ. For the

density plot, the numerical values for one unit scale are (a) 0.25, (b) 0.23, (c) 0.027, and (d) 5 in

units of Γ2/v2g (which has a unit of 1/Length2).

To visualize the real-space representation of the two-photon plane-wave state, here we plot

the wave function density |Wk,p(x1, x2)|2 in Fig. 5 for the case ωk 6= ωp (∆ 6= 0). (The density

is equal to zero everywhere when ∆ = 0.) Fig. 5(a) plots the case of ∆ = κ, wherein the

interference fringes are extended along the diagonal (x1 = x2), and periodically modulated

in the transverse direction (x1 = −x2). Such a periodic structure results from the fact that

given a fixed ∆, |Wk,p|2 only depends on the distance between two individual photons, i.e.,

x1−x2, and is modulated by the sinusoidal functions. The spatial period is π/
√
2∆, and the
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corresponding spatial frequency is 2
√
2∆. The maximal density is |Wk,p|2max = 1/2π2, which

is attained when ∆xd = mπ − arccos(2∆/
√
4∆2 + κ2) (m = 0,±1,±2, · · · ). Nonetheless,

the density on the x1 = x2 line does not attain the maximal density, which is equal to only

4∆2/(4∆2 + κ2) of |Wk,p|2max.

In practice, the two-photon states exist as wavepackets (pulses), which have a finite spatial

size and a finite frequency bandwidth. Fig. 5(b) plots the density of the Gaussian-modulated

plane-wave state WG
k,p ≡ Wk,p ×M, where M ≡ exp[−(x1 − xo)

2/4σ2
x − (x2 − xo)

2/4σ2
x] is

the modulation function. xo is the center position of the wave packet. The spatial width of

the modulation σx is chosen to be 5vg/Γ such that the pulse has a narrow bandwidth Γ/10.

|WG
k,p|2 decreases as |x1 − x2| increases. Figure 5(c) and (d) plot |WG

k,p|2 for ∆ = 0.2κ and

∆ = 5κ, respectively, wherein the number of fringes reflects the spatial beating frequencies

of the two photons.

C. Two-photon Bound State Solution for Excitable Reservoir Case

1. Reservoir-free case:

To fully characterize the two-photon scattering processes requires a complete set of

eigenstates of Sr
e(2)

, which span the free two-photon Hilbert space. For the reservoir-

free case, it has been shown that the two-photon plane-wave states {|Wk,p〉, k ≤ p} do

not form a complete set while an additional two-photon bound state |BK〉 has to be

taken into account for the completeness [24, 26]. The two-photon bound state, |BK〉 =
∫∫

dx1dx2BK(x1, x2)c
†
e(x1)c

†
e(x2)/

√
2, is labeled by the total energy ǫ of two photons, or

equivalently, the total wave vector K ≡ ǫ/vg; BK(x1, x2) =
√
κ/4πeiKxc−κ|x1−x2|/2 (see

Ref. [24] for the expression of bound state). The properties of the two-photon bound

state: (i) |BK〉 describes a two-photon bound state as the probability amplitude decays

exponentially when the distance between two photons, |x1 − x2|, increases. (ii) |BK〉
is orthogonal to |Wk,p〉, that is, 〈BK |Wk,p〉 = 0, ∀K, k, and p. (iii) |BK〉 is an eigen-

state of the scattering matrix the reservoir-free case. (iv) In momentum space represen-

tation, BK(k1, k2) =
√
κ3/4πδ(K − k1 − k2)/[(k1 − K/2)2 + κ2/4], where BK(k1, k2) =

∫∫
dx1dx2BK(x1, x2)e

−i(k1x1+k2x2)/2π. The Dirac-δ function here (i.e., δ(K − k1 − k2)) indi-

cates that in the momentum space, the frequencies of the two photons are anti-correlated.
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The two-photon bound state has been experimentally confirmed [27].

2. Reservoir is present:

When an excitable reservoir is present, as is the case here, the set {|Wk,p〉, k ≤ p} again

do not form a complete set. In the following, we show that a two-photon bound state

exists even when the excitable reservoir is present. Such a reservoir-modified two-photon

bound state has a much more involved expression than the two-photon bound state |BK〉
for the reservoir-free case. Before we embark on the detailed mathematical derivation, here

we outline the physical reason why |BK〉 fails to be an eigenstate in the presence of the

reservoir. Similar to the plane-wave state case, we only take into account half of the entire

x1-x2 plane, i.e., x1 < x2. The functional form of BK(x1, x2) in Region 3 is given by

φ(x1, x2) ∝ ei[(Kvg−iΓ)x1+(Kvg+iΓ)x2]/2vg . By applying the divide and conquer scheme, one

determines the atomic excitation e(x) in the following form

e(x)|x<0 =
√
2V

e
i
vg

Kvg−iΓ

2
x

Kvg
2

− Ω+ + iΓ
,

e(x)|x>0 =
√
2V

Kvg
2

− Ω+

Kvg
2

− Ω−

e
i
vg

Kvg+iΓ

2
x

Kvg
2

− Ω+ + iΓ
, where

Ω± =Ω+ µ±,

µ± =
∑

i1

η2i1
Ω− ωai1

+ i(±Γ
2
+ ε)

+

∞∑

n=2

∑

i1

∑

i2,i2 6=i1

· · ·
∑

in,in 6=in−1

ηi1βi1i2 · · ·βin−1inηin∏n
l=1[Ω− ωail

+ i(±Γ
2
+ ε)]

.

(28)

We note that a self-consistent solution must satisfy the continuous boundary condition

e(0+) = e(0−). However, it can be directly checked that e(0+) 6= e(0−) due to the µ± terms

from coupling to the reservoir, indicating that |BK〉 is not an eigenstate.

Reservoir-modified two-photon bound state: To find the reservoir-modified two-photon

bound state solution, we start with the following general form in Region 3 (x1 < x2 < 0):

φ(x1, x2) =e
i
ωk1
vg

x1+i
ωk2
vg

x2 , (29)

where ωk1 and ωk2 are angular frequencies of two respective photons that are to be determined

from boundary conditions. In general, ωk1 and ωk2 are complex numbers. We now adopt the
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aforementioned divide and conquer scheme, and obtain the interacting eigen wavefunctions

of He for the restricted state variables (i.e., φ(x1, x2) and e(x)), as shown in Fig. 6, where

Ω1,2 =Ω + µ1,2,

µ1,2 =
∑

i1

η2i1
ωk1,2 − ωai1

+ iε

+

∞∑

n=2

∑

i1

∑

i2,i2 6=i1

· · ·
∑

in,in 6=in−1

ηi1βi1i2 · · ·βin−1inηin∏n
l=1(ωk1,2 − ωail

+ iε)
.

(30)

And the transmission coefficient for the reservoir-modified two-photon bound state t̃
(2)
K is

given by

t̃
(2)
K =

ωk1 − Ω1 − iΓ/2

ωk2 − Ω2 + iΓ/2
. (31)

To determine the photon frequencies, we now impose the boundary condition e(0+) = e(0−),

and the energy conservation condition ωk1 + ωk2 = Kvg, thus leading to

ωk1 =
Kvg
2

− µ2 − µ1

2
− i

Γ

2
,

ωk2 =
Kvg
2

+
µ2 − µ1

2
+ i

Γ

2
.

(32)

Further simplification arrives by imposing the following two constraints: (1) the summation

of ωk1 and ωk2 is a real number, Kvg, indicating ωk1 and ωk2 are complex conjugate numbers;

(2) for the atomic excitation amplitude e(x), as given in Fig. 6, to remain finite for all x,

we must have Im(ωk1) < 0 and Im(ωk2) > 0 (Im represents the imaginary part of a complex

number). Thus, the photon frequencies should take the following form

ωk1 = ξ1
Kvg
2

− i
Γ

2
ν,

ωk2 = ξ2
Kvg
2

+ i
Γ

2
ν,

(33)

where ξ1,2 = 1∓ Re(µ2 − µ1)/Kvg and ν = 1 + Im(µ2 − µ1)/Γ. Note that ν > 0 is required

for Eq. (32) to have solutions. By plugging Eq. (33) into Eq. (29), Eq. (29) now reads as

eiKx̃c+κν(x1−x2)/2, where x̃c = (ξ1x1 + ξ2x2)/2 is the position of the center of mass of two

photons when the reservoir is present.

Noting that in the reservoir-free case, the transmission coefficient for the bound state

is t
(2)
K = (Kvg/2 − Ω − iΓ)/(Kvg/2 − Ω + iΓ). We can show that t̃

(2)
K reduces to t

(2)
K in

the absence of the reservoir. Specifically, in the absence of the reservoir (i.e., η = β = 0),

ωk1 = Kvg/2 − iΓ/2, ωk2 = Kvg/2 + iΓ/2, and Ω1,2 = Ω. By plugging such relations into
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FIG. 6. Interacting eigenstate solution of the restricted system variables φ(x1, x2) and e(x) to

Eqs. (13) for the reservoir-modified two-photon bound state case.

Eq. (31), t̃
(2)
K reduces to t

(2)
K . Nonetheless, when the reservoir is present, the renormalized

transmission coefficient for the reservoir-modified bound state t̃
(2)
K can not be obtained by

simply using a frequency renormalization in t
(2)
K .

We now construct the normalized reservoir-modified bound state |DK〉 based on the

restricted system variables of the interacting eigenstate (shown in Fig. 6), which takes the

following form,

|DK〉 =
∫∫

dx1dx2DK(x1, x2)
1√
2
c†e(x1)c

†
e(x2), where

DK(x1, x2) =

√
κν

4π
eiK

ξ1x1+ξ2x2
2

−κν
2
|x1−x2|.

(34)

By applying the Fourier transform on DK(x1, x2) from real space to momentum space

(i.e., DK(k1, k2) =
∫∫

dk1dk2DK(x1, x2)e
−i(k1x1+k2x2)/2π), one obtains that DK(k1, k2) =
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√
κ3ν3/4πδ(K − k1 − k2)/[(k1 − ξ1K/2)

2 + κ2ν2/4]. The Dirac-δ function here (i.e., δ(K −
k1 − k2)) again indicates that the two photons described by the reservoir-modified bound

state is anti-correlated in the momentum space.
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FIG. 7. Wave function density plot for the reservoir-free two-photon bound state |BK〉 and

the reservoir-modified two-photon bound state |DK〉. (a) Two-photon bound state |BK |2. (b)

Gaussian-modulated two-photon bound state |BKM|2. The correlation length and the coherence

width are given by 1/κ and σx, respectively. |BKM|2 is centered at x1 = x2 = xo = 0. (c)

Gaussian-modulated reservoir-modified bound state |DKM|2 when ν = 0.5. (d) |DKM|2 when

ν = 2. For the density plot, the numerical values of one unit scale is (a) 0.4, (b) 0.0025, (c) 0.00012,

and (d) 0.005 in units of Γ2/v2g (which has a unit of 1/Length2).

To illustrate the reservoir-induced effect on the bound state, we now plot the wave func-

tion density for the bound state |BK〉 and the reservoir-modified bound state |DK〉 in Fig. 7.

Figure 7(a) plots |BK |2 wherein the bound state is unmodulated and thus extends along the

diagonal (x1 = x2); the state has a correlation width of 1/κ along the transverse direction

(x1 = −x2). That is, two photons propagate in a collocated manner within a spatial range of

1/κ. To represent a practical pulse of finite spatial size, we plot the density for a Gaussian-
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modulated bound state |BKM|2 in Fig. 7(b) using the same parameter set of M as the

preceding plane-wave case. For the modulated state, the spatial size of the modulation is

the coherence length, which also determines the coherence time of the pulse. Specifically,

the coherence length of |BKM|2 is determined by the Gaussian modulation parameter σx

while the correlation width remains the same as |BK |2. We further plot the wave function

density of the Gaussian-modulated reservoir-modified bound state |DKM|2 to visualize the

effect of the reservoir on the bound state. Figure 7(c) and (d) plot |DKM|2 for ν = 0.5 and

ν = 2, respectively, wherein the correlation width is doubled and halved, respectively. That

is, the correlation width of |DKM|2 now becomes 1/κν where varying ν values depends on

the system-reservoir coupling (i.e., described by η) and the secondary scattering strength

in the reservoir (i.e., described by β). Unmodulated reservoir-modified bound state |DK |2

is not plotted because all entanglement information is already provided in the plots for the

modulated case in Fig. 7(c) and (d).

D. Restricted scattering matrix

The information of the scattering eigenstates of the system dictates the scattering matrix.

The scattering matrix S maps an arbitrary in-state (the prepared photonic state injected

into the waveguide) into the out-state: S|in〉 = |out〉 [26]. In reality, however, only the

waveguided photonic states are measurable but not those leaked into the reservoir. Conse-

quently, a restricted scattering matrix which maps the in-state into the waveguided photonic

states solely is of practical importance. In this section, we discuss the construction of the

restricted scattering matrix for the excitable-reservoir case.

Due to the presence of the reservoir, to which the photons leak into, the waveguided out-

states are spanned by the set of bases consisting of zero-photon (both photons leak to the

reservoir), one-photon (one photon leaks to the reservoir), and two-photon Fock states. As

a comprehensive treatment of the complete restricted scattering matrix is rather involved,

here we will limit the discussion to the two-photon sector of the the restricted scattering

matrix Sr
e(2)

for the even-mode case which is described by Eq. (11). (That is, the output

waveguided photonic states contain two photons.) The generalization to include the zero-

and one-photon sectors are straightforward.

By construction, |DK〉 is a scattering eigenstate of the restricted scattering matrix
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Sr
e(2)

such that Sr
e(2)

|DK〉 = t̃
(2)
K |DK〉. One can directly check the orthogonality relation

〈DK ′|DK〉 = δ(K − K ′)2
√
νν ′/(ν + ν ′), where ν and ν ′ are determined by K and K ′,

respectively. In Ref. [26], it has been confirmed that the reservoir-free two-photon bound

state |BK〉 is orthogonal to the two-photon plane-wave state |Wk,p〉, i.e., 〈Wk,p|BK〉 = 0 ∀k,
p, and K. In contrast, when the excitable reservoir is present, we find that

〈Wk,p|DK〉 =
√
κ3ν

2π

(ν − 1)∆√
∆2 + κ2

4

(
∆2 + κ2ν2

4

)δ(K − (k + p)). (35)

(Note that |Wk,p〉 has the same form for both the reservoir-free case and the excitable-

reservoir case, as described above.) That is, the reservoir-modified bound state |DK〉 and

the plane-wave state |Wk,p〉 are degenerate and not orthogonal when the two states have

the same energy i.e., 〈Wk,p|DK〉 6= 0 when K = k + p. The fact that the two states have a

non-zero overlap at the same energy indicates the two states can transform to each other.

The physical reason is that, due to the existence of the scatterers in the excitable reservoir,

when a waveguided photon in either state leaks into the reservoir, the photon has a non-zero

amplitude to scatter back to the waveguide. The re-entrant photon can form a different

state with the remaining photon.

Thus, the restricted out-state of an arbitrary in-state can be straightforwardly obtained

by decomposing the in-state into linear superposition of |Wk,p〉 and |DK〉, and followed by

operating the scattering matrix on each eigenstate. To this end, we investigate the explicit

form of Sr
e(2)

under the bases of its eigenstates, |Wk,p〉 and |DK〉, which, by imposing eigen-

relations Sr
e(2)

|Wk,p〉 = t̄k t̄p|Wk,p〉 and Sr
e(2)

|DK〉 = t̃
(2)
K |DK〉, after some algebra, can be shown

to have the following form

Sr
e(2) =

∑

k≤p

t̄k t̄p|Wk,p〉〈Wk,p|+
∑

K

t̃
(2)
K

(1 + ν)2

4ν
|DK〉〈DK |

−
∑

k≤p,K

t̄k t̄p

√
κ3ν

2π

(ν − 1)∆√
∆2 + κ2

4

(
∆2 + κ2ν2

4

)
(1 + ν)2

4ν
δ(K − k − p)|Wk,p〉〈DK |

−
∑

k≤p,K

t̃
(2)
K

√
κ3ν

2π

(ν − 1)∆√
∆2 + κ2

4

(
∆2 + κ2ν2

4

)
(1 + ν)2

4ν
δ(K − k − p)|DK〉〈Wk,p|

+
∑

k1≤p1,k2≤p2

t̄k1 t̄p1
∑

K

κ3ν

2π

(ν − 1)2∆1∆2√(
∆2

1 +
κ2

4

) (
∆2

2 +
κ2

4

) (
∆2

1 +
κ2ν2

4

) (
∆2

2 +
κ2ν2

4

)
(1 + ν)2

4ν

×δ(K − k1 − p1)δ(K − k2 − p2)|Wk1,p1〉〈Wk2,p2|,
(36)
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where ∆1,2 = (k1,2 − p1,2)/2. Here, we note that the off-diagonal terms emerge because the

scattering eigenstates are non-orthogonal.

To compare the results in the excitable reservoir scenario here with those in the reservoir-

free and non-excitable scenarios to gain deeper insights, we now express the scattering ma-

trix in terms of orthogonal bases |Wk,p〉 and |BK〉. In the reservoir-free case, |Wk,p〉 and

|BK〉 are orthogonal eigenstates of the scattering matrix so that the scattering matrix is

diagonal, given by Se(2) =
∑

k≤p tktp|Wk,p〉〈Wk,p| +
∑

K tK |BK〉〈BK | [24]; and in the non-

excitable reservoir scenario, e.g., a surrounding vacuum or homogeneous dielectric medium,

to which the waveguided photons leak into, the restricted scattering matrix is Sr
e(2)

=
∑

k≤p t̄
′
k t̄

′
p|Wk,p〉〈Wk,p|+

∑
K t̄

′(2)
K |BK〉〈BK | , where t̄′k,p = (ωk,p−Ω̄′−iΓ/2)/(ωk,p−Ω̄′+iΓ/2),

t̄′
(2)
K = (Kvg − 2Ω̄′ − 2iΓ)/(Kvg − 2Ω̄′ + 2iΓ), and the renormalized frequency Ω̄′ = Ω− iγS,

where γS is the photonic scattering loss rate [8]. Here, for the excitable reservoir case,

Eq. (36) can be recast into the following form

Sr
e(2) =

∑

k≤p

t̄k t̄p|Wk,p〉〈Wk,p|+
∑

K

t̃
(2)
K |BK〉〈BK |

+
∑

k≤p

∑

K

√
κ3

8π

(ν2 − 1)∆√
∆2 + κ2

4

(
∆2 + κ2ν2

4

)(t̃
(2)
K − t̄k t̄p)δ(K − k − p)|Wk,p〉〈BK |,

(37)

where the first term describes the transmission of uncorrelated two-photon states, while

second and third terms describe the transmission of correlated states. We note that the

off-diagonal term that maps the correlated state |BK〉 to uncorrelated state |Wk,p〉.
Furthermore, it can be straightforwardly shown that Sr

e(2)
S
r †
e(2)

6= 1, indicating that Sr
e(2)

is

not unitary. When the external reservoir is present, the resulting photon loss leads to a non-

unitary property as the total photonic flux in the waveguide is not conserved and decreased

(i.e., transmission coefficients, |t̄′kt̄′p|2, |t̄k t̄p|2, |t̄′
(2)
K |2, and |t̃(2)K |2 < 1). The properties of the

restricted scattering matrix for each scenario are summarized in Table I.

Finally, we comment on the validity of the reduced Hamiltonian approach for the two-

photon transport. For the plane-wave state solution, the functional form of the interacting

eigenstate for the restricted system variables (i.e., φ(x1, x2), e(x)), and transmission coeffi-

cients follow similar forms to those in the reservoir-free case, with a frequency renormaliza-

tion (Ω → Ω̄). For the reservoir-modified bound state solution, however, the functional form

of the interacting states for restricted system variables and t̃
(2)
K cannot be easily obtained

from those in the reservoir-free case simply by a frequency renormalization. Consequently,
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TABLE I. Properties of restricted scattering matrix Sr
e(2)

in the {|Wk,p〉, |BK〉} bases.

Scenarios Diagonal Unitary

reservoir-freea
√ √

non-excitable
√ ×

excitable × ×

a Refer to the scattering matrix S
e
(2) .

due to the existence of the bound states, the effect of the reservoir in general can not be

described by a reduced Hamiltonian approach.

E. Weak-reservoir Condition

For scenarios wherein the material loss is weak (but the photonic scattering loss can be

arbitrary as the reduced Hamiltonian approach is valid for arbitrary photonic scattering loss

[8]), we derive the condition such that the reduced Hamiltonian approach is approximately

valid for the two-photon case. This is called the weak-reservoir condition.

The weak-reservoir condition requires: the system-reservoir coupling η̄ and the secondary

scattering strength β̄ are both weak enough, i.e., η̄, β̄ ≪ Ω,Γ; and the photon-reservoir

detuning δ̄ is much larger than the photon-atom interaction strength, i.e., δ̄ ≫ Γ/2. When

such a condition is fulfilled, the photon frequencies of the reservoir-modified bound state are

approximated by ωk1 ≈ Ω− iΓ/2 and ωk2 ≈ Ω+ iΓ/2 because ‖µ1,2‖ ≈ η̄2D̄∆ω/δ̄

1−β̄D̄∆ω/δ̄
≪ Ω,Γ and

‖µ1−µ2‖/2 ≪ Ω,Γ (where ‖‖ denotes the norm of a complex number and we have used the

relation D̄∆ω ≈ 1, β̄/δ̄ ≪ 1, η̄/δ̄ ≪ 1, and η̄ ≪ Ω,Γ). Noting that Ω−ωaj + i(±Γ/2+ ε) ≈
Ω − ωaj + iε due to larger photon-reservoir detuning. One now plugs such approximations

into µ1,2 (Eq. (30)) to obtain µ1 ≈ µ2 ≈ α, and Ω1 ≈ Ω2 ≈ Ω̄. It is worth noting that when

both criteria are satisfied, β̄ ≪ Γ ≪ δ̄, and D̄∆ω ≈ 1. That is, β̄D̄∆ω/δ̄ ≪ 1 is fulfilled such

that α can be approximated by its first-order term (i.e., α ≈ α1). When the weak-reservoir

condition is satisfied, the interacting eigenstates for the restricted system variables for the

reservoir-modified bound state solution (shown in Fig. 6) reduces to the functional forms in

Fig. 8. As can be immediately identified, φ(x1, x2) and e(x) now follow similar functional

forms to those in the reservoir-free case that can be described by a frequency renormalization
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FIG. 8. Interacting eigenstate solution of the restricted system variables φ(x1, x2) and e(x) to

Eqs. (13) for the reservoir-modified two-photon bound state case when the weak-reservoir condition

is satisfied.

Ω → Ω̄ = Ω + ∆ − iγ. Thus, the solutions for both the plane-wave state (Fig. 4) and the

bound state (Fig. 8) are renormalized by a frequency renormalization (Ω → Ω̄). As a result,

the reduced Hamiltonian approach remains valid for the two-photon case when the weak-

reservoir condition is satisfied. The same conclusions apply to the two-photon two-mode

case.

V. N-PHOTON CASE

Having studied the single-photon and the two-photon cases, we now examine the case

for an arbitrary N -photon Fock state transport. It has been rigorously confirmed that,

in the reservoir-free case, a complete set of N -photon in-states can be classified into three
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categories, i.e., the N -photon extended state, N -photon bound state, and N -photon hybrid

states [25]. Specifically, the N -photon extended state is a generalization of two-photon

plane-wave state to the N -photon case, wherein all N photons are uncorrelated. For the N -

photon bound state, all photons are entangled. In particular, any two-photon pair is spatially

characterized by a correlation width vg/Γ. The N -photon hybrid states are product states

of plane-wave and bound states. Hereafter we will focus on the extended and bound state

solutions. The hybrid state case can be examined through a similar procedure.

A. General State and Equations of Motion

To describe the N -photon scattering process, the N -photon interacting eigenstate de-

scribing the combined system in the even mode, |ΦN 〉 is given by

|ΦN 〉 =
(∫

· · ·
∫ N∏

l=1

dxlφ(x1, · · · , xN)
∏N

m=1 c
†
e(xm)√
N !

+

∫
· · ·

∫ N−1∏

l=1

dxle(x1, · · · , xN−1)
σ+

∏N−1
m=1 c

†
e(xm)√

(N − 1)!

+
∑

j

∫
· · ·

∫ N−1∏

l=1

dxlφj(x1, · · · , xN−1)
σj+

∏N−1
m=1 c

†
e(xm)√

(N − 1)!

+
∑

j

∫
· · ·

∫ N−2∏

l=1

dxlej(x1, · · · , xN−2)
σ+σj+

∏N−2
m=1 c

†
e(xm)√

(N − 2)!

+ · · ·
)
|∅〉,

(38)

where only variables that are relevant to our analysis are explicitly given above. φ(x1, · · · , xN)
denotes the wave function for N waveguided photons. e(x1, · · · , xN−1) is the atomic excita-

tion amplitude wherein one photon is absorbed by the atom, and the other N − 1 photons

remain waveguided. φj(x1, · · · , xN−1) is the oscillator excitation amplitude wherein one

photon is absorbed by the j-th oscillator while the other N −1 photons remain waveguided.

ej(x1, · · · , xN−2) represents the excitation amplitude wherein two photons are absorbed by

the atom and the j-th oscillator, respectively, and the other N − 2 photons are waveguided.

By applying Schrödinger Equation He|ΦN 〉 = ~ǫ̃|ΦN 〉, one obtains the following equations
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of motion that are relevant to our analysis,

ǫφ(x1, . . . , xN ) = (−ivg
N∑

l=1

∂xl)φ(x1, . . . , xN)

+
V√
N

N∑

l=1

δ(xl)e(x1, · · · , xl−1, xl+1, · · · , xN ),
(39a)

ǫe(x1, . . . , xN−1) = (−ivg
N−1∑

l=1

∂xl)e(x1, . . . , xN−1)

+
V√
N

[φ(0, x1, . . . , xN−1) + · · ·+ φ(x1, . . . , xN−1, 0)]

+Ωe(x1, . . . , xN−1) +
∑

j

ηjφj(x1, . . . , xN−1),

(39b)

ǫφj(x1, . . . , xN−1) = (−ivg
N−1∑

l=1

∂xl)φj(x1, . . . , xN−1)

+
V√
N − 1

N−1∑

l=1

δ(xl)el(x1, · · · , xl−1, xl+1, · · · , xN−1)

+ωajφj(x1, . . . , xN−1) + ηje(x1, . . . , xN−1),

(39c)

where ~ǫ̃ = ~(ǫ+ωg +
∑

j ωgj) is the total energy of the combined system with ~ǫ being the

energy of incident N photons. Due to bosonic symmetry and wave function continuity at

the boundary, only the restricted region of x1 < x2 < · · · < xN is considered. To facilitate

the description of the divide and conquer scheme, we now further divide such a region into

N + 1 ordered sub-regions, which are specified by





x1 < x2 < · · · < xN < 0, Region N + 1

x1 < x2 < · · · < xj−1 < 0 < xj < · · · < xN , Region j, j = N,N − 1, · · · , 2

0 < x1 < x2 < · · · < xN , Region 1.

(40)

Region N +1 and Region 1 correspond to the cases before and after scattering, respectively

while all other regions correspond to the cases during the scattering process.

Here we introduce our computational strategy. We first solve Eqs. (39) to obtain the

solution of the interacting eigenstates of He for restricted system variables (i.e., φ and e). In

particular, we will show that the reservoir degrees of freedom (i.e., φj , ej , and those that are

omitted in Eq. (38)) can be traced over and are not relevant to our analysis. By applying the

divide and conquer scheme, the interacting eigenstates are solved for to obtain in- and out-

states, which are further normalized to construct the eigenstates of the restricted S-matrix.
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B. N-photon Extended State Solution When The Reservoir Is Present

Following the Bethe Ansatz in the N -particle case, the wave function for the N -photon

extended state in Region N + 1 takes the following form,

φ(x1, · · · , xN) =
∑

P∈SN

AN+1(P) exp
(
i

N∑

j=1

ωkj

vg
xPj

)
, (41)

where ωk1, · · · , ωkN are real-valued angular frequencies of N respective photons subject to

the energy conservation constraint
∑N

j=1 ωkj = ǫ. SN is the permutation group of the set

{1, 2, · · · , N}. P is an element of SN specifying one particular permutation. Pj denotes the

j-th location in a specific arrangement P. AN+1 denotes the coefficient in Region N + 1.

Following the divide and conquer scheme (Region N + 1 → N → · · · → 1), one obtains the

following transmitted wave function in Region 1,

φ(x1, · · · , xN) =
N∏

j=1

t̄kj
∑

P∈SN

AN+1(P) exp
(
i

N∑

m=1

ωkm

vg
xPm

)
, (42)

where t̄kj = (ωkj − Ω̄ − iΓ/2)/(ωkj − Ω̄ + iΓ/2) is the aforementioned renormalized single-

photon transmission coefficient in the even mode. The atomic excitation wave function e

can be determined, which follows a similar functional form to that in the reservoir-free case

but with a frequency renormalization Ω → Ω̄. Based on the interacting eigenstate for the

restricted system variables (i.e., |ΦN〉 =
[ ∫

· · ·
∫ ∏N

l=1 dxlφ(x1, · · · , xN)
∏N

m=1 c
†
e(xm)/

√
N !+

∫
· · ·

∫ ∏N−1
l=1 dxle(x1, · · · , xN−1)σ+

∏N−1
m=1 c

†
e(xm)/

√
(N − 1)!

]
|∅〉), we can construct the fol-

lowing normalized N -photon extended state as an eigenstate of the restricted S-matrix Sr
e(N)

in the N -photon Hilbert space,

|Wk1,··· ,kn〉 =
∫

· · ·
∫ N∏

l=1

dxl
v

N(N−1)
2

g√∏
m<n[ω

2
km

− ω2
kn
] + Γ2)N !(2π)N

∑

P∈SN

AN+1(P) exp
(
i

N∑

j=1

ωkj

vg
xPj

)∏N
m=1 c

†
e(xm)√
N !

,

(43)

such that Sr
e(N) |Wk1,··· ,kn〉 =

∏N
j=1 t̄kj |Wk1,··· ,kn〉. We note that the N -photon extended state

remains the same form as that in the reservoir-free case whereas the transmission amplitudes

are renormalized. The aforementioned single-photon and the two-photon plane-wave cases

are special cases. The form of the extended state solution indicates that the N photons

interact with the lossy atom independently.
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C. N-photon Bound State Solution When The Reservoir Is Present

Reservoir-free case: To describe the N -photon scattering processes, we also need to

find the complete set of Sr
e(N) that spans the N -photon Hilbert space. Such a com-

plete set has been analytically investigated in Ref. [25]. Among all admissible N -photon

states, a particular entangled state of interest is the N -photon bound state, i.e., |BK〉 =
∫
· · ·

∫ ∏N
l=1 dxlBK(x1, · · · , xN)

∏N
m=1 c

†
e(xm)√

N !
, where BK(x1, · · · , xN) =

√
κN−1(N−1)!

2Nπ
eiKxc−

κ
∑

m<n |xm−xn|

2 .

xc =
∑N

j=1 xj/N and K = ǫ/vg are the center position and total wave vector of N photons,

respectively. In the reservoir-free case, given the total energy ~Kvg of N photons, the

frequencies of the N -photon bound state is given by ωk1 = Kvg/N − i(N − 1)Γ/2, ωk2 =

Kvg/N − i(N − 3)Γ/2, · · · , ωkN = Kvg/N + i(N − 1)Γ/2. The probability amplitude de-

cays exponentially as the distance between any two photons increases. In the momentum

space representation, it can be shown that the momentum wave function BK(k1, · · · , kN) ≡
∫
· · ·

∫ ∏N
l=1 xlBK(x1, · · · , xN)e−i

∑N
m=1 kmxm/(2π)N/2 yields BK(k1, · · · , kN) ∝ δ(K−

∑N
l=1 kl),

indicating that the frequencies of the N photons in the N -photon bound state are anti-

correlated.

Reservoir is present: Similar to the two-photon case, it can be shown that the N -photon

bound state |BK〉 fails to be an eigenstate of restricted scattering matrix Sr
e(N) in the presence

of the reservoir, as it would give rise to a discontinuity of the atomic excitation wave function

(i.e., e(x1, · · · , xN−1) is not continuous at the boundary between any two adjacent Region

j + 1 and j for j = 1, · · · , N).

Reservoir-modifiedN-photon bound state: To find the reservoir-modified N -photon bound

state solution, we start with the following general form in Region N + 1,

φ(x1, · · · , xN) = exp

[
i

(
ωk1

vg
x1 +

ωk2

vg
x2 + · · · ωkN

vg
xN

)]
, (44)

where ωk1, · · · , ωkN are complex numbers to be determined from the continuous boundary

condition of atomic excitation wave function. By applying the divide and conquer scheme,

one obtains the wave function after scattering in Region 1, which takes the following form,

φ(x1, x2, · · · , xN) =t̃(N)
K e

i(
ωk1
vg

x1+···+
ωkN
vg

xN )
, (45)
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where the transmission coefficient for the reservoir-modified bound state, t̃
(N)
K , is given by

t̃
(N)
K =

N∏

j=1

t̃kj , t̃kj =
ωkj − Ωj − iΓ/2

ωkj − Ωj + iΓ/2
, j = 1, 2, · · · , N, where

Ωj =Ω + µj,

µj =
∑

i1

η2i1
ωkj − ωai1

+ iε

+
∞∑

n=2

∑

i1

∑

i2,i2 6=i1

· · ·
∑

in,in 6=in−1

ηi1βi1i2 · · ·βin−1inηin∏n
l=1(ωkj − ωail

+ iε)
.

(46)

To simplify t̃
(N)
K , we now recursively invoke the continuous boundary condition of e(x1, · · · , xN−1)

between two adjacent regions, Region j + 1 and Region j, for j = 1, 2, · · · , N . Noting that

in Region j + 1 (i.e., x1 < · · · < xj < 0 < xj+1 < · · · < xN), e can be analytically solved for

and takes the following form,

e(x1, · · · , xj−1, xj+1, · · · , xN) =
√
NV

∏N
l=j+1 t̃kl

ωkj − Ωj + iΓ
2

exp i
ωk1x1 + · · ·+ ωkj−1

xj−1 + ωkj+1
xj+1 + · · ·ωkNxN

vg
.

(47)

Likewise, in Region j (i.e., x1 < · · · < xj−2 < xj−1 < 0 < xj < · · · < xN ), e is given by

e(x1, · · · , xj−2, xj, · · · , xN ) =
√
NV

∏N
l=j t̃kl

ωkj−1
− Ωj−1 + iΓ

2

exp i
ωk1x1 + · · ·+ ωkj−2

xj−2 + ωkjxj + · · ·ωkNxN

vg
.

(48)

By applying the continuous boundary condition between adjacent Region j + 1 and j (de-

duced from Eq. (39b)),

e(x1, · · · , xj−2, 0
−, xj+1, · · · , xN) =

e(x1, · · · , xj−2, 0
+, xj+1, · · · , xN),

(49)

one obtains

ωkj − ωkj−1
= µj − µj−1 + iΓ, j = 2, · · · , N. (50)

Such N − 1 relations and the energy conservation constraint
∑N

j=1 ωkj = Kvg uniquely

determine the photon frequencies for the reservoir-modified bound state in the following

form,

ωkj =
Kvg
N

−
∑N

l=1 µl

N
+ µj + i

2j − (N + 1)

2
Γ, j = 1, 2, · · · , N. (51)
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Thus, t̃
(N)
K can be simplified using Eq. (51) in the following

t̃
(N)
K =

ωk1 − Ω1 − iΓ/2

ωkN − ΩN + iΓ/2
. (52)

Noting that in Eq. (51), since all µj’s (j = 1, · · · , N) and all ωkj ’s are mutually depen-

dent, the explicit expressions of ωkj do not exist. Recall that in the reservoir-free case,

t
(N)
K = (Kvg −NΩ− iN2Γ/2)/(Kvg −NΩ+ iN2Γ/2). t̃

(N)
K reduces to t

(N)
K in the absence of

the reservoir. Specifically, in the absence of the reservoir (i.e., η = β = 0), ωk1 = Kvg/N −
i(N−1)Γ/2, ωkN = Kvg/N+i(N−1)Γ/2, and Ω1 = ΩN = Ω. By plugging such relations into

Eq. (52), t̃
(N)
K reduces to t

(N)
K . The complex frequencies can be determined through the same

procedures as those in the two-photon case, which yield ωk1 = ξ1Kvg/N − i(N − 1)Γν1/2,

ωk2 = ξ2Kvg/N − i(N − 3)Γν2/2, · · · , ωkN = ξNKvg/N + i(N − 1)ΓνN/2. Here, ξ1, · · · , ξN ,
ν1, · · · , νN are dimensionless real numbers, and should satisfy the following constraints:
∑N

j=1 ξj = N , and
∑N

j=1 [N − 1− 2(j − 1)] νj = 0, wherein the constraints here are equiva-

lent conditions to Eq. (51) and the energy conservation condition. With explicit expressions

of ωk1, ωk2, · · · , ωkN as outlined above, the in-state wave function (Eq. (44)) now reads as

φ(x1, · · · , xN ) = exp

[
iKx̃c −

κ

2

∑

m<n

λm|xm − xn|
]
, where

x̃c =

N∑

j=1

ξjxj
N

, λ1 = ν1,

λj =

j−1∑

l=1

λl
N − j

+
(N − 2j + 1)νj

N − j
, j = 2, · · · , N − 1.

(53)

Based on Eq. (53), one can construct the normalized reservoir-modified N -photon bound

state |DK〉 in the following form

|DK〉 =
∫

· · ·
∫ N∏

l=1

dxlDK(x1, · · · , xN )
1√
N !

N∏

m=1

c†e(xm), where

DK(x1, · · · , xN) =

√∏N−1
l=1 λlκN−1(N − 1)!

2Nπ
eiKx̃c−κ

2

∑
m<n λm|xm−xn|,

(54)

which is an eigenstate of Sr
e(N) such that Sr

e(N) |DK〉 = t̃
(N)
K |DK〉. In contrast to the reservoir-

freeN -photon bound state (BK(x1, · · · , xN ) ∝ eiKxc−κ
∑

m<n |xm−xn|/2), the reservoir-modified

bound state has a modified inter-photon correlation width 1/κ → 1/κλj and a modified

N -photon center position of xc → x̃c. By applying the Fourier transform on DK(x1, · · · , xN)
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from the real space to the momentum space (i.e., DK(k1, · · · , kN ) =
∫
· ··

∫ ∏N
l=1 xlDK(x1, · · · , xN ) e

−i
∑N

m=1 kmxm

(2π)N/2 ),

one can show that DK(k1, · · · , kN) ∝ δ(K −
∑N

l=1 kl), indicating once again the frequency

anti-correlation in the reservoir-modified N -photon bound state.

Note for the reservoir-modified bound state, neither the interacting eigenstates for the

restricted system variables (i.e., φ and e), nor the transmission coefficient (t̃
(N)
K ) can be

described by a simple frequency renormalization of the results in the reservoir-free case (see

Eqs. (19), (A28), and (A29) in Ref. [25]). Furthermore, the reservoir-modified N -photon

hybrid states can be determined through a similar procedure, and it is also found that

the hybrid states can not be obtained by a frequency renormalization of the results in the

reservoir-free case. Thus, the existence of the reservoir-modified bound state and the hybrid

states make the reduced Hamiltonian approach invalid in the N -photon case.

D. Weak-reservoir Condition

Similar to the two-photon case, here we also provide the weak-reservoir condition for the

reduced Hamiltonian approach to be approximately valid in the N -photon case when the

reservoir is present. Such a weak-reservoir condition states that: first, the system-reservoir

coupling η̄ and secondary scattering strength β̄ are both weak enough (i.e., η̄, β̄ ≪ Ω,Γ);

secondly, the reservoir-photon detuning is much larger than the photon-atom interaction

strength, i.e., δ̄ ≫ (N − 1)Γ/2. Similar to the two-photon case, when both criteria are

fulfilled, the photon frequencies of the reservoir-modified bound state are approximated by

ωk1 ≈ Ω− i(N − 1)Γ/2, ωk2 ≈ Ω− i(N − 3)Γ/2, · · · , ωkN ≈ Ω + i(N − 1)Γ/2 and it follows

that µ1 ≈ µ2 · · · ≈ µN ≈ α, Ω1 ≈ Ω2 · · · ≈ ΩN ≈ Ω̄. It is worth noting that when both

criteria are fulfilled, β̄D̄∆ω/δ̄ ≪ 1 also holds such that the frequency renormalization can be

approximated by its first-order term (i.e., α ≈ α1). The result implies that when the weak-

reservoir condition holds, the interacting eigenstates for the restricted system variables (i.e.,

φ(x1, · · · , xN) and e(x1, · · · , xN−1)) are renormalized, which can be described by a frequency

renormalization (Ω → Ω̄). When the weak-reservoir condition holds, it can be similarly

shown that the solution for the reservoir-modified hybrid states now can be obtained by

renormalizing the atomic transition frequency in the reservoir-free case (Ω → Ω̄).

To sum it up, when the weak-reservoir condition holds, the interacting eigenstate solutions

of the restricted system variables for the extended state, bound state, and hybrid states can
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be obtained by a frequency renormalization (Ω → Ω̄) from the reservoir-free results, which

immediately indicates the validity of the reduced Hamiltonian approach for the N -photon

Fock state transport, when the weak-reservoir condition holds. The same conclusions also

apply to the N -photon two-mode case.

VI. DENSITY MATRIX APPROACH

In this section, we compare our approach with the density matrix approach. The density

matrix approach provides a probabilistic measure of the system dynamics while does not

directly provide the information of the photonic wave function and the entanglement. To

illustrate this point, here we first use a concrete but simple example of atomic spontaneous

decay into the reservoir to show that the density matrix approach yields a mixed-state

solution. The procedures below follow those in Ref. [2]. The system of interest here is the

atom, denoted by A, and described by the Hamiltonian, HA/~ = ωea
†
eae + ωga

†
gag. The

external reservoir and the atom-reservoir interaction are still described by HR (Eq. (2)) and

HSR (Eq. (3)), respectively. The Hamiltonian that characterizes the combined system, HAR,

is HA +HR +HSR, which is further written as Ho(free) +HI(interaction), where

Ho

~
=ωea

†
eae + ωga

†
gag +

∑

j

[(ωej − iε)a†ejaej + ωgja
†
gj
agj ],

HI

~
=
∑

j

ηj(σj+σ− + σ+σj−) +
∑

j,l,j 6=l

βjl
2
(σj+σl− + σl+σj−).

(55)

HI in the interaction picture, V(t), is

V(t) =eiHot/~HIe
−iHot/~

=
∑

j

ηj(e
i(ωaj

−Ω−iε)tσj+σ− + e−i(ωaj
−Ω−iε)tσ+σj−)

+
∑

j,l,j 6=l

βjl
2
(ei(ωaj

−ωal
)tσj+σl− + e−i(ωaj

−ωal
)tσl+σj−).

(56)

By invoking the Markovian assumptions as in Ref. [2], the density matrices obey ρAR(ti) =

ρA(ti)⊗ ρR(ti), where ρA, ρR, and ρAR are density matrices for the atom, reservoir, and the

combined system, respectively. that is, at the initial time of ti, the atom and the external

reservoir are unentangled. Thus, the equation of motion for the reduced density operator
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ρA is

ρ̇A(t) =− i

~
TrR[V(t), ρA(ti)⊗ ρR(ti)]

− 1

~2
TrR

∫ t

ti

dt′[V(t), [V ′(t), ρA(t
′)⊗ ρR(ti)]].

(57)

By inserting Eq. (56) into Eq. (57), the terms that yield non-vanishing results on the right-

hand side of Eq. (57), are given by

∑

j,l

ηjηl

∫ t

ti

dt′
{
ei(ωaj

−Ω−iε)t−i(ωal
−Ω−iε)t′TrR[σj+σl−ρR(ti)]

[σ−σ+ρA(t
′)− σ+ρA(t

′)σ−] + e−i(ωaj
−Ω−iε)t+i(ωal

−Ω−iε)t′

TrR[σj−σl+ρR(ti)][σ+σ−ρA(t
′)− σ−ρA(t

′)σ+] + h.c.
}
,

(58)

where h.c. denotes the hermitian conjugate. Assuming that no oscillators are excited initially,

the initial state of the reservoir at ti is described by |ψ〉 = |g1〉|g2〉 · · · , and its density

matrix is ρR(ti) = |ψ〉〈ψ|, where |gj〉 (|ej〉) denotes that the j-th oscillator is at the ground

(excited) state. We now apply the fermionic algebra {σj−, σl+} = δjl ({} denotes the anti-

commutator), and employ the identity of TrR[σj+σl−ρR(ti)] = 〈ψ|σj+σl−|ψ〉 = 0 in Eq. (58).

The right-hand side of Eq. (57) is simplified as

ρ̇A(t) =−
∑

j

η2j

∫ t

ti

dt′e−i(ωaj
−Ω−iε)(t−t′)

[σ+σ−ρA(t
′)− σ−ρA(t

′)σ+] + h.c.

(59)

Similar to Eq. (9), we now convert Eq. (59) to the continuum limit and get

ρ̇A(t) =−
∫ ∞

0

dωη2(ω)D(ω)

∫ t

ti

dt′e−i(ω−Ω−iε)(t−t′)

[σ+σ−ρA(t
′)− σ−ρA(t

′)σ+] + h.c.

(60)

Noting that D(ω)|ω<0 = 0, we now extend the lower limit of the integral by
∫∞
0
dω →

∫∞
−∞ dω. Then, similar to the Weisskopf-Wigner theory, we approximate η2(ω)D(ω) using

the value when ω is around the atomic transition frequency Ω, and invoke the identity
∫∞
−∞ e−i(ω−Ω−iε)(t−t′)dω = 2πδ(t − t′) and

∫ t

ti
δ(t − t′)dt′ ≈ 1

2

∫∞
−∞ dt′δ(t − t′), to yield the

following equation

ρ̇A =− γD[σ+σ−ρA − 2σ−ρAσ+ + ρAσ+σ−], (61)

where γD = πη2(Ω)D(Ω) is the resulting dissipation rate. The right-hand side of Eq. (61) is

exactly the Lindblad superoperator with a damping rate γD.

37



By applying Eq. (61) to the case of atomic spontaneous decay into the reservoir, the

dynamics for the reduced density matrix is given by

ρA =


ρee ρeg

ρge ρgg


 ,






ρ̇ee = −2γDρee,

ρ̇eg = −γDρeg,

ρ̇gg = 2γDρee,

(62)

where ρee and ρgg are the probabilities of being at the excited and ground states, respectively;

ρeg and ρge represent the transition probabilities from excited state to the ground state and

the reverse process. To satisfy the initial condition that the atom is initially at the excited

state, i.e., ρee(0) = 1, ρeg(0) = 0, and ρgg(0) = 0, the solutions to Eq. (62) are obtained by

ρee(t) = e−2γDt, ρeg(t) = 0, and ρgg(t) = 1− e−2γDt. It can be straightforwardly checked that

this is not a pure-state solution.

Next, we compare the results of the reservoir-induced photonic dissipation between those

using the Markovian density matrix and those using the entanglement-preserving approach.

First, the dissipation rate γD obtained in Eq. (61), the Lindblad superoperator for the

density operator, is the same as the lowest-order dissipation rate γ1 in Eq. (10) in our

entanglement-preserving approach, as the density matrix approach does not describe the

photonic dynamics in the reservoir (i.e., the coherent hopping events described by the β’s).

That is, for coherent processes, only in the weak-reservoir limit (β̄D̄∆ω/δ̄ ≪ 1), does the

density matrix approach yields the approximate dissipation rate. Nonetheless, the frequency

shift ∆1 is not predicted by the density matrix approach even in the weak-reservoir limit. Our

approach provides a framework to investigate the photonic loss mechanisms by engineering

the excitable reservoir and beyond the weak-reservoir limit.

As a further comparison, we now apply the non-Markovian density matrix approach to

investigate the same excitable reservoir scenario (Hamiltonian described by Eq. (56)). Our

results show that although the non-Markovian approach can readily describe the effects of

dissipations up to an arbitrary order of accuracy but it does not provide information of

multi-photon entanglement, and again only yields a mixed state solution [28]. Notably, the

non-Markovian condition requires that the system and the reservoir are initially entangled,

i.e., the general system-reservoir state is described by |ΨAR(t)〉 = ao|g〉⊗|g1〉|g2〉 · · ·+a(t)|e〉⊗
|g1〉|g2〉 · · ·+

∑
j bj(t)|g〉⊗ |g1〉|g2〉 · · · |ej〉 · · · where |e〉 (|g〉) is atomic excited (ground) state

and |ej〉 (|gj〉) is defined the same as the Markovian approach. ao, a, and bj are wave
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function amplitudes for ground, atomic excited, and reservoir excited states, respectively.

By applying the Schrödinger equation, i.e., i~∂t|ΨAR(t)〉 = V(t)|ΨAR(t)〉, one obtains the

following equations of motion to describe the wave function evolution

ȧ(t) =− i
∑

j

ηjbj(t)e
−i(ωaj

−Ω−iε)t, (63a)

ḃj(t) =− iηja(t)e
i(ωaj

−Ω−iε)t − i
∑

l,l 6=j

βjle
i(ωaj

−ωal
)tbl(t), j = 1, 2, · · · , (63b)

subject to the initial condition: the atom is fully excited at initial time ti, i.e., a(ti) =

1, bj(ti) = 0. By definition, the combined density matrix is ρAR(t) = |ΨAR(t)〉〈ΨAR(t)|.
The reduced density matrix ρA can be further acquired by tracing over reservoir degrees of

freedom, i.e., ρA = TrR[ρAR] =
∑

|r〉〈r|ρAR|r〉 where a complete set of reservoir eigenstates

{|r〉} includes the reservoir ground state |ro〉 = |g1〉|g2〉 · · · and singly-excited states |rj〉 =
|g1〉|g2〉 · · · |ej〉 · · · . It can be shown that ρA fulfills

ρ̇A(t) = −i∆NM (t) [σ+σ−, ρA(t)]− γNM(t) [σ+σ−ρA(t) + ρA(t)σ+σ− − 2σ−ρA(t)σ+] , (64a)

∆NM (t) = −Im

[
ȧ(t)

a(t)

]
, γNM(t) = −Re

[
ȧ(t)

a(t)

]
, (64b)

ȧ(t) =(−i)2
∑

i1

η2i1e
−i(ωai1

−Ω−iε)t

∫ t

ti

a(t1)e
i(ωai1

−Ω−iε)t1dt1

+

∞∑

n=2

(−i)n+1
∑

i1

∑

i2 6=i1

· · ·
∑

in 6=in−1

ηi1βi1i2 · · ·βin−1inηine
−i(ωai1

−Ω−iε)t×

∫ t

ti

e
i(ωai1

−ωai2
)t1dt1 · · ·

∫ tn−2

ti

e
i(ωain−1

−ωain
)tn−1dtn−1

∫ tn−1

ti

a(tn)e
i(ωain

−Ω−iε)tndtn,

(64c)

where ∆NM(t) and γNM(t) are time-dependent frequency shift and dissipation rate for non-

Markovian approach, respectively. Eq. (64c) is obtained by recursively integrating and sub-

stituting Eq. (63b) in Eq. (63a) to eliminate bj . Apparently, such a non-Markovian approach

can describe photon hopping processes up to an arbitrary order of accuracy. Moreover, such

a approach does not apply when multi-photon entanglement is necessarily taken into ac-

count, e.g., N -photon bound state solution in Sec. V. The comparison of the Markovian,

the non-Markovian density matrix approaches, and the entanglement-preserving approach

is summarized in Table II.
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TABLE II. Comparison of Markovian and non-Markovian density matrix (DM) approach and the

entanglement-preserving approach.

Markovian DM non-Markovian DM Entanglement-Preserving

order of accuracy lowest-order all-order all-order

multi-photon entanglement × × √

state description mixed state mixed state pure state

VII. CONCLUSION AND OUTLOOK

In this article, we present a comprehensive study on the effects of reservoir-induced dissi-

pation for an arbitrary photonic Fock state transport in wQED systems. Specifically, using

the entanglement-preserving approach, we rigorously validate the reduced Hamiltonian ap-

proach in the single-photon case, wherein the Hamiltonian is renormalized by an added

complex number ∆ − iγ in the atomic transition frequency. For the multi-photon case, we

show that the photon transport, in general, can not be described by a reduced Hamiltonian

approach. In addition, we also identify a weak-reservoir condition such that, when it holds,

the multi-photon transport can still be described by the reduced Hamiltonian approach.

In essentially all quantum optical scenarios, photonic dissipation results from both pho-

tonic scattering loss (coupling with a non-excitable reservoir) and material loss (coupling

with an excitable reservoir). For photonic scattering loss, it has been shown that, for all

input states, the effects can be incorporated by adding an imaginary part −iγS in the renor-

malized transition frequency (γS is the photonic scattering loss rate) [8]. Thus, when the

weak-reservoir condition is satisfied, to take into account the effects of both scattering loss

and material loss, the reduced Hamiltonian approach is valid via the frequency renormal-

ization Ω → Ω+∆− i(γ + γS). As a coherent state is a linear superposition of Fock states,

the reduced Hamiltonian approach is also valid when the input is a coherent state under the

weak-reservoir condition. Moreover, by employing the explicit photon-cavity interactions,

and applying the same approach outlined above, it can be shown that the reduced Hamil-

tonian approach is also valid in the presence of cavity dissipations. That is, the dissipation

rate γ due to the reservoir can be measured by a single-photon scattering experiment (e.g., a

transmission measurement); the resulting reduced Hamiltonian is then valid for all quantized
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optical input.

An example of the excitable reservoirs could be, for example, a layer of doped semicon-

ductor coupled to a photonic waveguide at cryogenic temperatures. The dissipation rate

can be altered via changing the doping concentration. On the other hand, with the ad-

vent of advanced nano-fabrication technologies, we speculate that the reservoir could be

engineered so that the weak-reservoir condition is no longer satisfied. One possibility is an

engineered excitable reservoir consisting of optical cavities as the oscillators. The number

and the placement of the optical cavities determine the various interaction strengths and,

more importantly, the admissible closed paths for the hopping photons. For an engineered

excitable reservoir, the dissipation rate obtained from a single-photon scattering experiment

is inadequate to predict the precise quantum dynamics for an input of a correlated photonic

state (e.g., a two-photon bound state).

Our results provide a tremendous convenience for both analytical investigations and nu-

merical modelings of correlated few-photon transport in wQED systems in the dissipative

regime [29, 30], and can be generalized to more complicated wQED architectures [31–33].

Moreover, our results also provide valuable insights on the studies of effects of dissipation

in quantum many-body systems [34–36].
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