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Abstract 
 
Backscattering depolarization of non-spherical particles plays a critical role in active LiDAR 
retrievals of cloud or aerosol parameters, as well as in particle characterization techniques. 
However, the interpretation of backscattering light from particles is a challenging research 
subject. This study addresses the depolarization of nearly spherical particles by using the 
Debye series approach. Specifically, the T-matrix is represented as an infinite sum of terms; 
the terms in the expansion are correspondingly associated with diffraction and reflection (p = 
0), and multiple transmissions (p > 0) from the particle to medium as waves undergo internal 
reflections. We found that the enhanced depolarization for optically soft particles stems from 
multiple transmissions. However, this is mostly from the transmission after one internal 
reflection (p = 2), when the refractive index is larger than 1.3. Moreover, the interference 
among multiple transmissions was found to play an essential role in suppressing the 
depolarization ratio as the refractive index approaches unity. These findings have implications 
in interpreting the backscattering optical properties of atmospheric aerosols and hydrosols in 
water.  
 
1. Introduction 
The polarized LiDAR can obtain fruitful microphysical information about atmospheric aerosols 
and hydrometeors. As a critical quantity, the linear depolarization ratio (LDR) is most frequently 
used to discriminate cloud phase or aerosol types [1-3]. Thus, extensive theoretical studies, 
laboratory measurements, and field campaigns have been carried out to understand the 
depolarization capabilities of various atmospheric particles [4]. In addition to the application of 
atmospheric detection and retrievals of cloud or aerosol parameters, the LDR (near-backscattering, 
in particular) can be also used in particle characterization techniques to obtain the microphysical 
information of particle systems in laboratory [5]. However, there is no simple relation between the 
LDRs and the particle shape and refractive index. For example, the LDRs peaking at aspect ratios 
of spheroids very close to unity was discovered by Mishchenko and Hovenier [6] and illustrates 
the inherent difficulty of treating the LDR as an indicator of the degree of particle non-sphericity. 
 
Owing to the advances on the invariant imbedding T-matrix method (II-TM) [7-10], recently, 
depolarization capabilities of non-spherical particles have been extensively assessed in a 



super-ellipsoidal space and with a large range of refractive indices [11]. It has been shown that the 
enhanced LDRs are relatively common for optically soft particles (a range of refractive index from 
1.05-1.20). Also, the large LDRs exist for nearly spherical particles in a refractive regime with the 
real part ranging from 1.3 to 1.7. However, the physical mechanism leading to the enhanced LDRs 
is unclear. As an example, Figure 1 shows the LDRs of prolate spheroids (top panel) and oblate 
spheroids (bottom panel) as functions of the size parameter and refractive index. It is evident that 
the pronounced LDRs locate at two ranges of refractive indices, namely (1.05,1.2) and (1.3,1.6).  

 

Fig. 1. LDRs for randomly oriented spheroids (aspect ratio is 0.95 and 1.05). The horizontal and 
vertical axes of a spheroid are denoted as a and c, respectively. k=2π/λ, where λ is the wavelength 
of the incident light.  
 
It is not straightforward to understand the scattering mechanism leading to the phenomenon above, 
because the T-matrix solution contains all the effects that contribute to the scattering. This study is 
indented to provide an in-depth analysis of the depolarization in the framework of Debye’s series. 
The Debye series was first proposed by Debye for an infinite circular cylinder [12], and then has 
been extensively used for spherical particles [13-16], coated spherical particles [17-23], coated 
cylinder [24] and further extended to spheroidal particles based on the separation of the variable 



method [25-26]. The recent development of Debye’s approach for non-spherical particles with the 
extended boundary condition method (EBCM) [27-28] is a breakthrough that makes it possible to 
perform accurate analyzes of the scattering mechanism by non-spherical particles. The concept of 
Debye’s series is similar to the geometric optics (GO) approach. In the GO approach, the incident 
beam consists of a bundle of rays. When a geometric ray is incident upon a particle, it will be 
partially reflected, and partially refracted into the particle, which could be absorbed into the 
particle or undergo an arbitrary number of internal reflections. In conjunction with each internal 
reflection, there will be transmitted rays from the particle to the medium, which contributes to the 
scattering. Different from the GO, the Debye approach is rooted rigorously in the framework of 
Maxwell’s equations. Each term in the Debye series contains the information of the GO, but also 
includes semi-classical effects that cannot be interpreted in the GO [29-31]. According to the 
conventional notations for a sphere, the zeroth-order term (p = 0) corresponds to diffraction and 
reflection by particle surfaces (note that the diffraction and external reflection are essentially 
bundled together, but can be separated from each other approximately based on the GO and 
physical-geometric optics approaches), and the pth term indicates the contribution to scattering 
from transmitted waves after making p-1 internal reflections.  
 
In this paper, we explore the powerfulness of Debye-series-based T-matrix method, and in 
particular, interpret the depolarization of incident polarized electromagnetic waves by nearly 
non-spherical particles, assumed to be spheroids with an aspect ratio close to unity. To analyze 
depolarization, an explicit formalism is developed in this study by expanding the T-matrix in terms 
of Debye’s series. The EBCM is used to compute reflection and transmission matrices in the 
Debye’s series (See details in Section 2). Thus, the phase matrices associated with each order of 
Debye’s series for either oriented particles or randomly oriented particles could be accurately 
obtained. Specifically, the contributions from waves associated with diffraction, external reflection, 
and transmission (with and without interference) can be cleary identified. This paper is organized 
as follows. In Section 2, we briefly summarize the theoretical formalism that represents the 
T-matrix as a series. Representative results with discussions are given in Section 3. Section 4 is the 
summary and conclusion of this study. 
 

 
2.  Theoretical Formalism 
Here, we outline a formalism that is developed to assess the underlying mechanism of 
backscattering. In the framework of the T-matrix, the incident field and the scattered field are 
expanded in terms of vector spherical wave functions [32]:  
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where k is the wave vector in the medium, Rg lM  and Rg lN are the regular vector spherical 

functions, and lM  and lN  are the irregular vector spherical functions.  For simplicity, two 



subindices of vector spherical functions are combined as one index via ( 1)l n n m= + + , where 

n  is the total angular momentum, and m  is the projected angular momentum. The T-matrix T
is defined as a transition matrix that transfers the coefficients of the incident field to those of the 
scattered field. Explicitly, we have the following equation: 
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where maxl is the truncation number. Based on the Debye’s concept, the T-matrix can be expanded 

in terms of a series:  
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where 11R  is defined as a matrix that transforms the coefficient of the incident vector spherical 

wave field to those of the reflected field, 21T  is defined as a matrix that transforms the 

coefficient of the incident vector spherical wave field to those of the refracted field, 22R  is 

defined as a matrix that transforms the coefficient of the internal outgoing vector spherical wave 

field to those of the reflection field within the particle, and 12T is defined as a matrix that 

transforms the coefficient of the internal outgoing vector spherical wave field to those of the 

transmitted field exiting the particle.  11R , 21T , 22R , and 12T are computed from the EBCM 

[27]. Note that the sub-indices (11,12,21,22) in Eq. (4) are not intended to indicate the elements of 

matrices but symbolize the particle (as 2) and the medium (as 1). The first equality of Eq. (4) is 
obtained from physical concept involved in Debye’s series. It can be directly validated for 
homogeneous spherical particles, which have analytical solutions. However, for non-spherical 
particles, it is not straightforward to prove Eq. (4), because analytical solutions do not exist. 
Instead, Eq. (4) has been numerically validated through the second equality to avoid truncation 
errors in summation; the left and right sides are computed from the II-TM and the EBCM, 
respectively. The agreement of phase matrices computed from the both sides of Eq. (4) also 
indirectly verified the equation (shown in Section 3).  
 
To separate the contributions from diffraction, reflection, and higher order transmissions, the 
following quantities are defined: 
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The physical implications of all the above terms are clear. 0T contains all the information 

associated with diffraction and reflection. In particular, the edge effect associated with a tunneling 
process can be rigorously obtained, which have been studied in Bi et al. [33] and Lin et al. [34]. 

1T  contains all the information associated with the contribution to the scattered field from the 

waves that transmitted to the particle without internal reflection. NT represents the contribution 

from transmitted waves after N-1 internal reflections. For simplicity, p<=NT is defined to sum all 

the contributions up to the Nth order. For a polarized plane-wave incident field, the phase matrix 
can be derived from the T-matrix. The phase matrix of randomly oriented particles (with mirror 

symmetry) that determines the change in the Stokes vector [ ], , , T
inc inc inc incI Q U V  of the incident 

wave to that of scattered waves [ ], , , T
sca sca sca scaI Q U V  is given by [35]:  
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where θ  is the scattering angle ranging from 0 to 180 degrees, P12=P21, and P43=-P34. For a 

linearly polarized incident wave with the Stokes vector [ ]1 1 0 0 T , the Stokes vector of the 

scattered wave is [ ]11 12 21 22P +P  P +P  0 0 T . Given the phase matrix, the LDR (defined as the intensity 

of electric field perpendicular to the scattering plane 
2E⊥  to that parallel to the scattering plane 

2
E ) can be straightforwardly computed by: 
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At direct backscattering, the LDR can be shown to be less than or equal to 100%; this is because 
P12 is zero, and 22 11/ 0P P ≥  according to the reciprocity theorem [6]. However, for the side 
scattering, the LDR could be much larger than 100% (To the best of our knowledge, this feature 
has not been discussed in previous literature; examples will be shown in Section 3). 
 
The concept and technical details of the T-matrix formulation, the II-TM and the EBCM are not 
iterated here because they were thoroughly described in previous studies [7-10,27,32, 36,37]. The 
present study focuses on the optical properties of spheroids with aspect ratios close to unity, 
although other nearly spherical particles could also have enhanced backscattering depolarization.  
 
Now we consider two computational schemes: 

(1) Compute the phase matrix from p<=NT , and understand the convergence of T-matrix and 

contributions of each order waves to the scattered field. Note that the interferences between 
the different order of waves are taken into account.  

(2) Compute the phase matrix from NT , and then sum all the phase matrices with weighting 

functions. The comparison of this phase matrix from the summations and the phase matrix 
computed from the T-matrix can be used to assess the interference effect among the different 
order of waves. To compute the final phase matrix, the weights, namely, the “scattering cross 
section” for each term should be computed. The scattering cross sections can be employed to 
understand the relative contribution of each order of scattered waves. The p-th order scattering 
cross-section of a randomly oriented particle can be computed from the following formula: 
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definition of T ). The phase matrix elements neglecting the interference are computed by 
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where p
ijP  is the phase matrix element computed from the pth order Debye series.  

 
3. Results 

3.1 Numerical Validation 
Figure 2 shows a comparison of the phase matrix computed from the II-TM and Debye’s series. 
The II-TM directly computes the T-matrix by employing an invariant embedding procedure, 

whereas the Debye’s series approach first computes the reflection and transmission matrices 11R ,



22R , 21T , and 22T , and then computes the T-matrix through Eq. (4). Once the T-matrix is 

obtained, the two methods share the same algorithm to compute the phase matrix of randomly 
oriented particles. An excellent agreement between the two scattering phase matrixes validates 
Debye’s approach, as well as its numerical implementation. Note that the second formula with the 

inverse of 22−1 R  in Eq. (4) is employed in the computation to avoid possible truncation errors 

in Figure 2.   

 
Fig. 2. Comparison of the phase matrix of randomly oriented spheroids (the aspect ratio a/c = 0.95) 
computed from the invariant imbedding T-matrix and Debye’s series. The refractive index is 1.33, 
and the size parameter is kc = 50. 
 
 



 
Fig. 3. The contributions of Debye’s series of various order to six nonzero phase matrix elements 
for randomly oriented spheroids with the aspect ratio of 0.95.  
 
Now we turn to the contributions of waves (of various orders) to the phase matrix of randomly 
oriented spheroids. As expected, the contribution from the diffraction and external reflection to the 
phase function is featureless, except for a strong diffraction peak. A comparison of the 
diffraction plus reflections computed from the zeroth-order Debye series and physical optics 
approximation has been given in Bi and Yang [38], showing an excellent agreement. From 
this study, it is evident from Figure 3 that the superposition of the first order transmission and 
diffraction and reflection yields close results with the II-TM for scattering angles less than 85 
degrees. Addition of the transmission after one internal refection dominates the scattering 
contributions in the scattering angle from 130 to 180 degrees. The transmission after two 
internal reflections has critical contributions to the phase function at scattering angles 
between 85 and 130. It is evident from Figure 3 that the summation of wave contributions 
with p ≤ 3 reasonably explain the phase function computed from the II-TM, although the 
accuracy can be improved by including higher order terms. However, from the P22/P11 
comparison, the maximum of summation terms should be sufficiently large (upto a few tens) 
to guarantee the convergence of P22/P11 between 60 and 120 degrees.     
 

3.2 Linear Depolarization Ratios 
 



 
Fig. 4. Depolarization ratios at scattering angles ranging from 160 and 180 degrees for six selected 
refractive indices. The size parameter is kc = 50. The aspect ratio a/c = 0.95.  
 
For nearly spherical particles, the LDRs are quite small when the scattering angles are less 
than 160 degrees. Figure 4 shows the depolarization ratio at the scattering angles larger than 
160 degrees at six refractive indices. Tp<=1 indicates the result with transmission without 
internal reflections. It is evident that the LDR is zero for all the refractive indices. This is 
because the diffraction and reflection produce no depolarization, and the first order 
transmission has no contribution to the backscattering scattering angles. For the refractive 
indices (1.10 and 1.20), a superposition of different orders has an obvious contribution to the 
depolarization. However, for the refractive indices (1.33, 1.45, 1.55, and 1.70), the 
contribution from the second order transmission dominate in the backscattering depolarization. 
A little impact from p > 2 can also be seen at the refractive index of 1.33.  



 
 
Fig. 5. Depolarization ratios of a particle with different orientations.  
 
Figure 5 shows the comparison of LDR as a function of particle orientation. The incident 
angle is defined as the angle between the direction of the incident light and the symmetric 
axis of spheroids. For the refractive index 1.10, high order transmissions could significantly 
increase the depolarization. However, at the orientation 70o, the depolarization is almost 
solely from the p = 2 term. At the refractive index 1.20, the multiple transmission decreases 
the depolarization in general. From Figures 5c–e, we can see that the impact of multiple 
transmissions becomes smaller and smaller as the refractive index increases.  
 



 
Fig. 6. Scattering cross sections for the different order of waves. 
 
Figure 6 shows the “scattering cross section” as a function of the refractive index. From 
Figure 6a, we can see that the scattering cross section increases as the refractive index 
increases. In this case, the diffraction energy is about the averaged projected area, but the 
energy from reflected light increases as the refractive index increases, whereas the “scattering 
cross section” associated with the transmission (p = 1) shown in Figure 6b decreases as the 
refractive index increases. For higher order terms, the scattering cross section could first 
increase and then decrease as the refractive index increases (see Figure 6e).  

 
Fig. 7. Interference effect on depolarization ratio. 
 
Based on the scattering cross sections given in Figure 6, the phase matrices neglecting the 
phase interference can be computed. Thus, the interference effect on the LDR can be 
investigated. Figure 7 shows the depolarization ratio as a function of the refractive index for 
randomly oriented spheroids. The blue curve (with high oscillations) is the rigorous solution 



computed from the T-matrix method. The red curve (relatively smooth) is computed from the 
Debye series. However, the interference among the different order of transmissions is 
neglected. As evident is that the interference can be reasonably neglected for the refractive 
index larger than 1.5. The main reason for this is that the p = 2 term dominates in the 
backward scattering. In the 1.3 to 1.5 refractive region, the interference effect is obvious, but 
the results without interference can still capture the general trend of LDRs as a function of the 
refractive index. However, as the refractive index decreases, the difference between the two 
results can be huge. In particular, for the refractive index approaching 1.0, the interference 
effect plays an essential role in suppressing the depolarization. From this comparison, it is 
easy to understand how, when ignoring interference, the accuracy of the geometric-optics 
method becomes poor as the refractive index decreases. Because the LDRs are sensitive to the 
interference among the different order of waves, modeling LDRs for optically soft particles 
should be done carefully when modeling the particle geometry and choosing computational 
methods (geometric optics could lead to large uncertainties).   
 
4. Summary and conclusions 
In this paper, we explored the use of Debye’s series to compute the phase matrix of spheroids 
with either random or fixed orientations. By defining the T-matrix with different orders and 
computing the associated phase matrix, we analyzed the contribution from the different 
transmitted waves to the scattering. As expected, diffraction and external reflection cause no 
depolarization. For optically soft particles, the superposition of some transmitted waves is 
critical to the depolarization. But for a particle with the refractive index larger than 1.3, the 
depolarization of backscattered light is dominated by the p = 2 terms. Namely, the 
backscattering contributed to the transmission after one internal reflection. These findings 
have strong implications in LiDAR retrievals of cloud or aerosol parameters, as well as in 
particle characterization techniques. At present, this study only focuses on nearly spherical 
particles. The existing formalism of T-matrix Debye series [27] is applicable to other 
convex-shape non-spherical particles than spheroids discussed here. However, some efforts 
on numerical implementation are necessary to decompose the electromagnetic scattering by 
large-size and large-aspect ratio particles (such as particles with size parameter over 100 and 
aspect ratio over 3-5). One highly possible way to resolve this constraint is to apply the 
invariant imbedding procedure [7] to Debye series, which has been proved by our progress on 
calculating total light scattering by arbitrarily shaped large non-spherical particles [8-10]. 
These will be our future research subject.  
 
 
Acknowledgments 
 
Dr. Lei Bi was supported by the National Natural Science Foundation of China (41675025), and 
the Fundamental Research Funds for the Central Universities (2017QNA3017). The work by 
co-author Feng Xu was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology under a contract with the National Aeronautics and Space Administration. 
 
References: 
1. D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. 

Young, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. 
Atmos. Ocean. Technol. 26(11), 2310–2323 (2009). 

2. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, 
S. Rodier, K. Powell, C. Trepte, and D. Winker, “The depolarization-attenuated backscatter 
relation: CALIPSO lidar measurements vs. theory,” Opt. Express 15(9), 5327–5332 (2007). 

3. L. Bi, W. Lin, Z. Wang, X. Tang, X. Zhang, and B. Yi, “Optical modeling of sea salt aerosols: 
the effects of nonsphericity and inhomogeneity,” Journal of Geophysical Research 
Atmospheres, 123, 543–558 (2018). https://doi.org/10.1002/2017JD027869 

4. K. Sassen, “The polarization lidar technique for cloud research: a review and current 
assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991). 



5. E. Järvinen, O. Kemppinen, T. Nousiainen, T. Kociok, O. Möhler, T. Leisner and M. 
Schnaiter, “Laboratory investigations of mineral dust near-backscattering depolarization 
ratios,” J. Quant. Spectrosc. Radiat. Transf. 178, 192–208 (2016). 

6. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly 
oriented nonspherical particles,” Opt. Lett. 20(12), 1356–1358 (1995). 

7. B. R. Johnson, “Invariant imbedding T-matrix approach to electromagnetic scattering,” App. 
Opt. 27, 4861–4873 (1988). 

8. L. Bi, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Efficient implementation of the 
invariant imbedding T-matrix method and the separation of variables method applied to large 
nonspherical  inhomogeneous particles,” J. Quant. Spectrosc. Radiat. Transfer, 116, 169–183 
(2013). 

9. L. Bi, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “A numerical combination of 
extended boundary condition method and   invariant imbedding method to light scattering by 
large spheroids and cylinders,” J. Quant. Spectrosc. Radiat. Transfer, 123, 17–22 (2013). 

10. L. Bi and P. Yang, “Accurate simulation of the optical properties of atmospheric ice crystals 
with invariant imbedding T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer. 138, 
17–35 (2014).  

11. L. Bi, W. Lin, D. Liu, and K. Zhang, “Assessing the depolarization capabilities of 
nonspherical particles in a super-ellipsoidal shape space,” Optics Express, 26(2) 1726–1742 
(2018). 

12. P. Debye, Phys. Zeit. 9, 775 (1908). SPIE Milestone Series Vol. MS89 (1994), pp. 198-204 
(in English)]. 

13. B. Van der Pol and H. Bremmer, Philos. Mag. 24, 141, 823 (1937). 
14. J. A. Lock, “Cooperative effects among partial waves in Mie scattering,” J. Opt. Soc. Am. A 5, 

2032–2044 (1988). 
15. G. Gouesbet, “Debye Series Formulation for Generalized Lorenz‐Mie Theory with the 

Bromwich Method,” Part. Part. Syst. Charact. 20, 382–386,(2003). 
16. J. A. Lock, “Semiclassical scattering of an electric dipole source inside a spherical particle,” J. 

Opt. Soc. Am. A 18, 3085–3097 (2001). 
17. J. A. Lock, J. M. Jamison, and C.-Y. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt. 

33, 4677 (1994). 
18. J. A. Lock, “Debye series analysis of scattering of a plane wave by a spherical Bragg grating,” 

Appl. Opt. 44, 5594–5603 (2005). 
19. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave 

theory,” J. Opt. Soc. Am. A 25, 2980–2990 (2008). 
20. R. Li, X. Han, L. Shi, K. F. Ren, and H. Jiang, “Debye series for Gaussian beam scattering by 

a multilayered sphere,” Appl. Opt. 46, 4804–4812 (2007). 
21. J. A. Lock, “Linear system approach to the Debye series for electromagnetic scattering by a 

multi-layer sphere: A tutorial,” J. Quant. Spectrosc. Radiat. Transfer 178, 38–49 (2016) 
22. J. A. Lock and P. Laven, "Understanding light scattering by a coated sphere Part 1: 

Theoretical considerations," J. Opt. Soc. Am. A 29, 1489–1497 (2012)  
23. P. Laven and J. A. Lock, "Understanding light scattering by a coated sphere Part 2: Time 

domain analysis," J. Opt. Soc. Am. A 29, 1498-1507 (2012) 
24. Z. Wu and H. Li, “Debye series of scattering by a multi-layered cylinder in an off-Axis 2D 

Gaussian beam,” Chin. Phys. Lett. 25, 1672 (2008). 
25. J. A. Lock, and F. Xu, "Optical caustics observed in light scattered by an oblate spheroid," 

Appl. Opt. 49, 1288–1304 (2010) 
26. F. Xu, J. A. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. 

Soc. Am. A 27, 671 (2010).  
27. F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical 

particle,” Phys. Rev. A 81, 043824 (2010). 
28. F. Xu, and J. A. Lock, “Debye series for light scattering by a coated non-spherical particle,” 

Phys Rev A 81, 063812 (2010) 
29. E. A. Hovenac and J. A. Lock, “Assessing the contribution of surface waves and complex 

rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A 9, 781 (1992). 
30. H. M. Nussenzveig and W. J. Wiscombe, “Efficiency factors in Mie scattering,”Phys. Rev. 

Lett. 59, 1667 (1987). 



31. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial 
ellipsoidal particles for a size parameter range from Rayleigh to geometric-optics 
regimes,” Appl. Opt. 48, 114–126 (2009).  

32. M. I. Mishchenko, L. D. Travis, A. A. Lacis Scattering, absorption and emission of light by 
small particles. Cambridge: Cambridge University Press; 2002. 

33. L. Bi, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Optical tunneling of arbitrary 
macroscopic 3D objects,” Phys. Rev. A. 92,013814 (2015). 

34. W. Lin, L. Bi, D. Liu, and K. Zhang, “Use of Debye's series to determine the optimal 
edge-effect terms for computing the extinction efficiencies of spheroids,” Optics Express, 
25(17), 20298-20312 (2017). 

35. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981). 
36. ] G. Gouesbet, “T-matrix formulation and generalized Lorenz-Mie theories in spherical 

coordinates, ” Optics Communications, 283:517–521 (2010). 
37. G. Gouesbet and J.A. Lock, “On the electromagnetic scattering of arbitrary shaped beams by 

arbitrary shaped particles: A review,” Journal of Quantitative Spectroscopy and Radiative 
Transfer, 162, 31–49 (2015). 

38. L. Bi,  and P. Yang, “Tunneling effects in electromagnetic wave scattering  by nonspherical 
particles: A comparison of the Debye series and  physical-geometric optics 
approximations,” J. Quant. Spectrosc. Radiat. Transfer, 178,93–107 (2015). 


