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We map out the interaction effects on the first six virial coefficients of one-dimensional Fermi
gases with zero-range attractive and repulsive interactions, and the first four virial coefficients of
the two-dimensional analogue with attractive interactions. To that end, we use two non-perturbative
stochastic methods: projection by complex stochastic quantization, which allows us to determine
high-order coefficients at weak coupling and estimate the radius of convergence of the virial ex-
pansion; and a path-integral representation of the virial coefficients. To complement our numerical
calculations, we present leading-order results in a semiclassical lattice approximation, which we find
to be surprisingly close to the expected answers.

INTRODUCTION

The thermodynamics of strongly coupled matter is a
topic of current interest in areas of physics that cover
a wide range of scales, from quantum chromodynam-
ics (QCD) [1] to ultracold atoms [2–4]. The finite-
temperature and density behavior of QCD is, in fact, one
of the pressing challenges of that field, as QCD at finite
baryon chemical potential is realized in relativistic heavy-
ion collisions and deep inside neutron stars [1, 5]. On the
other hand, ultracold atoms have become an especially
appealing laboratory to probe the properties of strongly
coupled matter, due to their purity and malleability, and
in particular due to the experimentalists’ power to mod-
ify the interaction by dialing an external magnetic field
across a Feshbach resonance [6]. Naturally, this amount
of control on the experimental side poses a challenge to
theoretical approaches. Indeed, strongly coupled atoms
can be routinely studied, but their precise quantitative
analysis on the theory side usually requires ab initio non-
perturbative tools such as quantum Monte Carlo meth-
ods.

An alternative way to characterize the thermodynam-
ics of a many-body system has historically been given
by the virial expansion (VE), which is non-perturbative
and valid in the dilute limit. The VE is an expansion in
powers of the fugacity z = eβµ (where β is the inverse
temperature and µ is the chemical potential), such that
the grand-canonical partition function is written as

Z =

∞∑
n=0

Qnz
n, (1)

whereQn are the n-particle canonical partition functions.
We arrive at the most common form of the VE by ex-
panding the pressure P in powers of z:

βPV = lnZ = Q1

∞∑
n=1

bnz
n, (2)

where V is the (d-dimensional, spatial) volume and bn are
the virial coefficients. Other quantities of interest besides

P can also be expanded in powers of z (see e.g. [7]). The
appeal of the VE is that it encodes, at order n, how the
2- through n-body problems govern the physics of the
many-body system. Using Eq. (1) in Eq. (2) one sees
this explicitly:

b2 =
Q2

Q1
− Q1

2
, (3)

b3 =
Q3

Q1
−Q2 +

Q2
1

3
, (4)

b4 =
Q4

Q1
−Q3 −

Q2
2

2Q1
+Q2Q1 −

Q3
1

4
, (5)

and so forth. The above equations are entirely based on
thermodynamics and valid for arbitrary interaction and
spatial dimension.

The task of calculating bn has typically been equated
with solving the n-body problem, constructing the Qn,
and inserting those in the above equations. It is therefore
not surprising that second-order VEs are easily carried
out, as all that is needed for b2 is the solution to the two-
body problem. In fact, formulas exist for b2 for many
cases, some of which we quote below, based on the cele-
brated Beth-Uhlenbeck result [8]. Obtaining b3 and be-
yond, however, typically requires numerical methods (see
e.g. [9–11]). Although the bn are a proxy for other quanti-
ties, their calculation has become an attractive challenge
per se, especially in cases such as the unitary limit [12]
(the universal limit of zero interaction range and infinite
scattering length), where the bn represent universal con-
stants of quantum many-body physics. For that reason,
the calculation of the bn has been vigorously pursued by
several groups [11, 13–18].

In this work we focus on the virial coefficients of the
generic lattice Hamiltonian of two-species nonrelativistic
fermions with zero-range interactions, i.e.

Ĥ =
∑
p

p2

2m
n̂p − g

∑
x

n̂↑(x)n̂↓(x), (6)

where the total density operator in momentum space is
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n̂p = n̂↑,p + n̂↓,p, and n̂s(x) is the density for spin s at
position x. We will use units such that ~ = kB = m = 1.

For the above Hamiltonian, we obtain the first six virial
coefficients of the one-dimensional (1D) case, i.e. the
Gaudin-Yang model [19], and the first four virial coeffi-
cients of the two-dimensional (2D) case. While the for-
mer is a classic problem that has been extensively studied
(see e.g. [20] for a recent review of 1D Fermi gases), to
our knowledge its virial coefficients beyond b2 have not
been calculated (except for a perturbative estimate in
Ref. [36]) The 2D case, in contrast, has been under in-
tense scrutiny in recent years, as it has been realized ex-
perimentally with ultracold atoms by several groups [21–
27]. Moreover, its thermal properties have been explored
theoretically as well by various authors (see Ref. [28] for
a review) and its virial coefficients b2 and b3 have been
known for a few years.

To determine bn, we developed two stochastic methods
which bypass the direct solution of the n-body problem.
One of our objectives is to show that it is possible to
design methods that allow to calculate high-order virial
coefficients without solving the n-body problem, at the
price of reduced precision. The first method is based
on the idea of Fourier particle-number projection of nu-
clear physics [29], as applied to the auxiliary field path-
integral representation of Z. That approach naturally
yields a complex measure, and for that reason we im-
plement the complex Langevin algorithm to sample the
field [30]. The resulting method is able to compute high-
order virial coefficients at weak couplings and can also
estimate the radius of convergence α0 of the VE as a
function of the coupling strength. The second method
consists in the stochastic evaluation of the change in the
virial coefficients due to interaction effects, ∆bn. This
second method uses the definition of the bn in their path-
integral form derived from Z, but it does not use Z di-
rectly. Thus, it is able to evaluate bn at stronger cou-
plings than the projection method, but gives no informa-
tion about the radius of convergence. Besides those two
stochastic methods, we implement a semiclassical lattice
approximation (SCLA) at leading order (LO). In all cases
we use the known results for ∆b2 as the renormalization
condition that connects the bare lattice coupling to the
physical coupling.

The generalization of our approaches to higher dimen-
sions is straightforward. In fact, the generic system stud-
ied here (a nonrelativistic gas with zero-range interac-
tions) has been under intense investigation both theoret-
ically and experimentally in the last decade in 1D, 2D,
and 3D, and analytic results exist for b2 in all dimen-
sions based on the Beth-Uhlenbeck formula mentioned
above [8, 13, 31–33].

FORMALISM

Stochastic methods

Using Eq. (2), the bn can be obtained by Fourier pro-
jection. Following that route, we define the function

bn(α) ≡ 1

Q1

∫ 2π

0

dφ

2π
eiφn lnZ[z → αe−iφ] = bnα

n. (7)

To proceed, we write Z as a path integral over a
Hubbard-Stratonovich (HS) field σ (see e.g. [34, 35]),
Z =

∫
Dσ det2M [σ, z], where we focus on unpolarized

systems, thus the power of 2. The matrix M [σ, z] en-
codes the dynamics and parameters of the system of
interest; in particular, the z dependence appears as
M [σ, z] = 11 + zU [σ], where U [σ] contains the kinetic en-
ergy and interaction information (see [34] for details on
the specific form of M [σ, z] and U [σ]). Setting z → αe−iφ

and differentiating both sides with respect to α yields

bn =
1

nαn−1
1

Q1

∫ 2π

0

dφ

2π
eiφn〈tr

[
2M−1∂M/∂α

]
〉φ,α, (8)

where P [σ, z] ≡ det2M [σ, z]/Z[z], and we have used an-
gle brackets as a shorthand notation for the expectation
value with P [σ, αeiφ] as a weight. In practice, we use a
discrete Fourier transform such that

∂bn(α)

∂α
=

1

Q1

1

Nk

Nk−1∑
k=0

eiφkn〈tr
[
2M−1∂M/∂α

]
〉φk,α.

(9)
where φk = 2πk/Nk, k = 0, . . . , Nk − 1, and Nk is the
number of discretization points. This is the fundamen-
tal equation of the proposed approach. Calculating the
expectation values inside the sum in Eq. (9) for Nk val-
ues of φk, and carrying out the Fourier sum for different
values of n, one obtains the desired bn. As long as Nk
is large enough, the same stochastic calculation of said
expectation values over Nk points is used for obtaining
the bn for all the desired values of n, up to statistical
effects. In such a calculation, the results for bn must be
independent of α, such that that variable can be used as
a measure of the reliability of the method. In practice
we plot

bn =
1

nαn−1
∂bn(α)

∂α
, (10)

as a function of α and fit a constant. The αn dependence
of the n-th order term is the main limiting factor in ex-
tracting high-order virial coefficients. To overcome that
limitation, it is desirable to make α as large as possible
but less than unity to remain in the virial region. Thus,
deviations in Eq. (10) from constant behavior as α is de-
creased are indicative of uncertainties due to statistical
noise or insufficient Fourier points. On the other hand,



3

non-constant behavior as α is increased indicates the ap-
pearance of roots of Z in the complex-z plane, which
yield branch-cut singularities in lnZ and point to the
radius of convergence of the VE (see below).

Evaluating the expectation values in Eq. (9) in-
volves calculations that suffer from a phase problem, as
P [σ, αe−iφ] will generally be a complex weight. To ad-
dress that issue, we turn to complex stochastic quantiza-
tion via the complex Langevin (CL) method, which has
recently been applied to the characterization of other as-
pects of non-relativistic fermions [36–39]. We employ the
CL method in the same way described in Ref. [36] (where
it was applied to address repulsive interactions), setting
the fugacity to z → αe−iφk . The quantity in the expecta-
tion value appearing in Eq. (9), namely tr

[
M−1∂M/∂α

]
,

corresponds to the density of the system. Thus, the pro-
posed approach effectively consists in the Fourier projec-
tion of the virial coefficients from the density equation of
state, which is reminiscent of other approaches such as
those of Refs. [15, 16, 18, 33].

Our second method calculates the interaction effects
on bn using their definition in terms of path integrals,
derived analytically from the path integral form of Z. In
that formalism, the change in bn due to interactions is

∆b2 =
∆Q1,1

Q1
, ∆b3 =

2∆Q2,1

Q1
−Q1∆b2,

∆b4 =
2∆Q3,1 + ∆Q2,2

Q1
− Q2

1

2
∆b2 −

Q1

2
(∆b22 + 2∆b3),

where Qm,n is the partition function for m particles of
one species and n of the other, and ∆Qm,0 = 0 because
we only have contact interactions. The VE of the fermion
determinant yields

Q1,1 =

∫
Dσ tr2 U [σ], (11)

2Q2,1 =

∫
Dσ tr3 U [σ]

(
1− trU2[σ]

tr2 U [σ]

)
,

2Q3,1 =
1

3

∫
Dσ tr4 U [σ]

(
1− 3 trU2[σ]

tr2 U [σ]
+

2 trU3[σ]

tr3 U [σ]

)
,

Q2,2 =
1

4

∫
Dσ tr4 U [σ]

(
1− trU2[σ]

tr2 U [σ]

)2

,

and so on at higher orders. Inserting these expressions
in Eq. (11) (and their noninteracting versions) yields
stochastic formulas for ∆bn. To evaluate those, we use
the usual two-species action S[σ, z] = −2 ln detM [σ, z] to
sample σ, and extrapolate the results to the z = 0 limit.
This method is similar in spirit to that of Ref. [11], but
employs a field integral representation instead of an in-
tegral over particle paths.
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FIG. 1. Virial coefficients bn for n = 1 − 6 for the 1D Fermi
gas, as a function of the dimensionless coupling λ, as obtained
with our projection method. Crosses on the y axis denote the
non-interacting values bn = (−1)n+1n−3/2. The leading or-
der of the semiclassical lattice approximation (LO-SCLA) is
shown with a dashed-dotted line for ∆b3 and with a dashed
line for ∆b4. Green and blue diamonds show the results ob-
tained with our second stochastic method, for comparison.

Semiclassical lattice approximation

Using the formulas of Eq. (11), it is possible to imple-
ment what we call the semiclassical lattice approxima-
tion, in which we neglect the commutator of the kinetic
energy matrix T and the potential energy matrix V at
leading order. Thus, the matrix U [σ] becomes simply
U [σ] = e−βTV[σ], where V[σ] encodes the specific form of
the HS transformation. Such an approximation amounts
to a coarse discretization of the imaginary-time direction,
which nevertheless becomes exact in two different limits:
V → 0 and T → 0. In between those limits, higher or-
ders in the SCLA can be reached by using finer temporal
meshes; we leave calculations beyond LO to future work.
At LO, the path integrals can be carried out analytically:

∆b3 = −21−d/2∆b2, (12)

∆b4 = 2(3−d/2 + 2−d−1)∆b2

+21−d/2
(
2−d−1 − 1

)
(∆b2)2, (13)

where we present our results in terms of ∆b2 because we
will use the exact ∆b2 as a renormalization condition.

RESULTS

Virial coefficients in 1D

To analyze the 1D case, our calculations used a lattice
of spatial size Nx = 30 and temporal size Nτ = 120 −
200. We otherwise used the same lattice parameters as
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those of Ref. [36]. The number of Fourier points was
set to Nk = 30 for the main results, with explorations
covering Nk = 20− 100 showing no significant variation.
By definition, b1 = 1 and, for the 1D contact interaction
studied here (see Ref. [31]),

b
(1D)
2 = − 1√

2
+
eλ

2/4

2
√

2
[1 + erf(λ/2)], (14)

where erf is the error function and λ is the dimension-
less coupling. The noninteracting limit is b

(1D)
2 → − 1

2
√
2
.

We will use the analytic form of Eq. (14) as a renormal-
ization condition, i.e. to define the coupling λ from our
lattice determination of b2. As a consequence, our plots
of b2 below will be exact by definition. Our first result
appears in Fig. 1, where we map out the λ dependence
of the first six bn. The smoothness of the results gives
confidence that the method works as expected. Perhaps
the most prominent feature in Fig. 1 is the monotonicity
of the stochastic data for each bn: besides the constant
b1 = 1, the even n coefficients increase as a function of λ,
whereas the odd ones decrease. More specifically, toward
the repulsive side (λ < 0), the bn grow in magnitude and
maintain their sign: the even ones which start out neg-
ative at λ = 0 become more negative and the odd ones
which start positive grow as well. Toward the attractive
side, the monotonic behavior implies that in a wide region
0 < λ < 1 many of the coefficients cross the bn = 0 line,
which suggests the VE may be useful up to z ' 0.5 (see
however our results below for the radius of convergence).
Beyond that point, the coefficients grow in magnitude
and eventually change sign relative to their noninteract-
ing values. Using the second stochastic method (applied
below in 2D), we checked the above results of Fig. 1 for
b2 and b3.

Radius of convergence via projection method

In the inset of Fig. 2 we show bn as a function of α.
As anticipated, for each virial order n there is a region
around α = 0 for which bn does not vary, which allows us
to extract the value of bn itself. Beyond a λ-dependent
value of α, however, the calculation runs into the roots
of lnZ in the complex plane and the constant behavior
is lost. We stress that this is not due to systematic or
statistical effects, but rather a feature of the calculation
that represents the radius of convergence α0 of the virial
expansion. The main plot of Fig. 2 shows our results
for α0 as a function of λ, obtained by locating the point
where the constant behavior as a function of α is lost.
Our results are consistent with the expected value α0 = 1
for the noninteracting case, which is easily derived by
noting that the noninteracting partition function has a
root at z = −1. The dashed line in the main plot of Fig. 2
shows a fit α0(λ) = 1/(1 + C|λ|), where C ' 3.05(5) on

repulsive side (λ < 0) and C ' 4.15(5) on attractive
side (λ > 0). While the fit is merely descriptive, it does
point to a nontrivial feature, namely the non-analyticity
of α0 around the maximum at λ = 0: the data appears
to display a cusp.

Virial coefficients in 2D

Besides the 1D case above, we applied the second
method to the 2D analogue, which was studied up to sec-
ond order in the VE in Refs. [32, 33, 40] and up to third
order in Refs. [9, 10]. The Hamiltonian is essentially iden-
tical to that of Eq. (6), generalized to 2D. In that case,
the coupling g becomes simply a bare parameter and the
physical coupling is given by λ2 =

√
βεB , where εB is

the binding energy of the two-body system. The second-
order virial coefficient in 2D is known [32, 33, 41] and
given by

b
(2D)
2 = −1

4
+ eλ

2
2 −

∫ ∞
0

dy

y

2e−λ
2
2y

2

π2 + 4 ln2 y
. (15)

The noninteracting limit yields b
(2D)
2 → − 1

4 . As in our 1D
calculations, we used Eq. (15) to define λ2 by calculating
b2 on the lattice. In Fig. 3 we show our results for b2, b3,
and b4. By definition, b2 is reproduced exactly, and the
output of the calculation is b3 and b4.
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FIG. 2. Estimate of the radius of convergence α0 of the
virial expansion as a function of the coupling λ. Inset: bn
for n = 1, 3, 5 for λ = −1. Constant behavior as a function
of α is expected when the coefficient of the n-th power of
z is extracted successfully. Deviation from such a constant
as α is increased shows the appearance of roots of Z in the
complex-z plane, which yields the estimate α0 for the radius
of convergence shown in the main plot.
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FIG. 3. Interaction change of the virial coefficients ∆bn for
n = 2−4 for the 2D Fermi gas, as a function of the dimension-
less coupling λ2. The solid red line connects the data for ∆b2,
the green shows ∆b3, and the blue shows ∆b4. The leading
order of the semiclassical lattice approximation (LO-SCLA)
is shown with a dashed-dotted line for ∆b3 and with a dashed
line for ∆b4. The solid black line shows the result for ∆b3 of
Ref. [10]. Note that the data for ∆b2 reproduces the exact
result of Eq. (15) by virtue of the renormalization condition
(see text).

Semiclassical lattice approximation

The predictions of the LO-SCLA are compared with
those of our stochastic methods in Figs. 1 and 3. The
LO-SCLA predicts in 1D: ∆b3 = −

√
2∆b2 and ∆b4 =

(4
√

3+3)/6 ∆b2−3
√

2/4 (∆b2)2; and in 2D: ∆b3 = −∆b2
and ∆b4 = 11/12 ∆b2− 7/8 (∆b2)2. As is clear in Figs. 1
and 3, there are differences between those predictions and
the stochastic results. However, it is remarkable that
at LO the SCLA predicts not only the correct sign of
∆b3 but also a deviation smaller than 10% in 1D and
close to 20% in 2D, at least for the regime of couplings
that studied here. Such results encourage higher orders
studies of the SCLA, which will be carried out elsewhere.

A few comments are in order regarding the observed
behavior of the bn, some of which can be understood ana-
lytically. For instance, b2 is dominated at strong coupling
by an anti-Gaussian term [see Eqs. (14) and (15)]. That
term is due to the appearance of a bound state, which
happens in 1D and 2D as soon as the attractive coupling
is turned on. Thus, b2 diverges very strongly as the cou-
pling is increased on the attractive side. As to b3, within
the LO-SCLA, it will inherit the behavior of b2, which is
supported by our data.

As far as b4, the LO-SCLA involves a ∆b2 term with
a positive coefficient and a (∆b2)2 term with a negative
coefficient; that is the reason for the non-monotonic be-
havior: the (∆b2)2 term eventually takes over. The origin

of these linear and quadratic terms is similar to those in
perturbation theory: The linear term comes from a sin-
gle diagram, whereas the quadratic term comes from two
diagrams, one with odd and one with even number of
fermion loops, such that their prefactors have different
signs (and the negative one dominates).

While we focus here on 1D and 2D, it is also interest-
ing to test the predictions of the LO-SCLA for the 3D
Fermi gas at unitarity. There, known results (see e.g. [14–
18]) give ∆b2 = 1/

√
2 and ∆b3 = −0.35505 . . . , such

that ∆b3/∆b2 ' −0.50 . . . , while the LO-SCLA yields
∆b3/∆b2 = −1/

√
2 ' −0.707, thus matching the cor-

rect sign of ∆b3 but overshooting its magnitude by about
40%. Similarly, the most accurate result at unitarity [11]
is b4 = 0.078(18), which yields ∆b4 = 0.109(18), while
the LO-SCLA yields ∆b4 = 0.029 . . . , which matches the
sign of the expected result but undershoots its magni-
tude by roughly a factor of 3. Nevertheless, these results
are encouraging when considering that they come from a
mere leading-order approximation.

SUMMARY AND CONCLUSIONS

We have calculated the first few virial coefficients bn
of two systems: fermions in 1D and 2D, both with a con-
tact interaction. In 1D, we evaluated the first six bn as
a function of the coupling strength λ in both attractive
and repulsive regimes. In the 2D case, we calculated ∆b3,
and ∆b4 for attractive interactions. To carry out our cal-
culations, we implemented two different stochastic lattice
methods. The first method relied on projecting the bn out
of the path integral form of the density equation of state.
The second approach used a path-integral representation
of the virial coefficients, as derived from the path integral
form of Z. The latter method enables calculations in a
way that requires neither matrix inversion nor determi-
nants, but which is sensitive to statistical noise as n is
increased, due to the various volume-scaling cancelations
required to resolve each bn from the canonical partition
functions. However, that noise can at least partially be
addressed by obtaining more samples, a task that can be
carried out in a perfectly scalable fashion. The stochastic
approaches proposed here are not as precise as exact di-
agonalization, but provide a systematic way to high-order
coefficients without solving the n-body problem. Finally,
we used a semiclassical approximation which at leading
order compares remarkably well with our stochastic re-
sults for the coupling strengths studied.
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Appendix A: Semiclassical approximation

From the equations in main text it is easy to see that

∆b2 =
∆Q1,1

Q1
=

1

Q1

∫
Dσ
(
tr2 U [σ]− tr2 U0

)
, (16)

where U0 = e−βT is the noninteracting transfer matrix (T
being the kinetic energy matrix), and U [σ] = e−βTV[σ]
(V being the chosen HS representation of the interaction).
Carrying out the path integrals, it is straightforward to
find

∆b2 = (eβg − 1)
V

Q1

(
trU0

V

)2

(17)

where Q1/V → 2/λdT in the continuum limit in d spa-
tial dimensions and all lengths are in units of the lattice
spacing ` = 1. Moreover, trU0 = Q1/2, such that, in the
continuum limit,

∆b2 =
1

λdT

eβg − 1

2
. (18)

The calculation of ∆b3 is only slightly more tedious and
yields

∆b3 =
2∆Q2,1

Q1
−Q1∆b2 = − 1

λdT

eβg − 1

2d/2
. (19)

We thus obtain the result advertised in the main text,
namely

∆b3 = −21−d/2∆b2. (20)

The calculation of ∆b4 follows the same steps but yields
a contribution that is quadratic in ∆b2:

∆b4 = 2(3−d/2 + 2−d−1)∆b2 (21)

+21−d/2
(
2−d−1 − 1

)
(∆b2)2. (22)

Appendix B: Systematic effects

Because we chose a lattice regularization to carry out
our calculations, there are a few systematic effects that
need to be taken into account. First of all, we have put
the system on a lattice and must describe how to take the
continuum limit. That amounts to enlarging the window

` � λT � L, where ` = 1, L = Nx`, and λT =
√

2πβ is
the thermal wavelength.

Our main results correspond to Nx = 30 and λT ' 7,
such that the above window is well satisfied. As an
illustration of the size of the finite-Nx effects, we show
results for varying Nx in Fig. 4 (top). The variation is
appreciable but small on the scale of the corresponding
plot in the main text.
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FIG. 4. Top: Illustration of the size of the finite-Nx effects
on b3 and b4 in 1D at λ = 1. The errorbars show statistical
effects. Bottom: Illustration of the size of the finite-τ effects
on ∆b3 in 2D for varying λ.

The second systematic effect to account for is the num-
ber of Fourier points Nk used for the projection. Relying
on Nyquist’s theorem, taking Nk at least twice as large as
the highest desired virial coefficient nmax should be suf-
ficient. However, that lower bound turns out to be much
too optimistic in practice. As a conservative choice, we
set Nk = 30 and find that it enables projections up to
n = 6 with up to two decimal places. Note that the com-
putation time scales linearly with Nk and is perfectly
parallelizable in that variable.
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The third systematic effect is the dependence on the
temporal lattice spacing τ . We have tested τ = 0.05,
0.25, and 0.5, as shown in Fig. 4 (bottom). Remarkably,
the variation is small on the scale of the plot in the main
figure (somewhat zoomed-in here).
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[32] C. Chaffin and T. Schäfer, Scale breaking and fluid dy-
namics in a dilute two-dimensional Fermi gas, Phys. Rev.
A 88, 043636 (2013).

[33] W. S. Daza, J. E. Drut, C. L. Lin, and C. R. Ordóñez,
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