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The quantum variance of an observable is a fundamental quantity in quantum mechanics and provides addi-
tional information other than the average itself. By examining the relation between the particle-current variance
(δJ)2 and the average current J in both closed and open interacting fermionic systems, we show the emergence
of a multi-valued parametric curve between δJ and J due to interactions. As a closed system we considered the
persistent current in a benzene-like lattice enclosing an effective magnetic flux and solved it by exact diagonal-
ization. For the open system, the steady-state current flowing through a few lattice sites coupled to two particle
reservoirs was investigated using a Lindblad equation. In both cases, interactions open a loop and change the
topology of the corresponding δJ-J curve, showing that this effect is model-independent. We finally discuss
how the predicted phenomenon can be observed in ultracold atoms, thus offering an alternative way of probing
the dynamics of many-body systems.

I. INTRODUCTION

Quantum fluctuations of the current flowing in a system
provide more information than the average current itself [1–
3]. This fact has been demonstrated in several experimen-
tal and theoretical studies ranging from quantum dots [4] to
nanoscale systems [5, 6], to name a few. In all those studies,
two-time correlations of current are measured (or calculated)
away from the average current, and from their spectrum one
can infer the type of physical processes at play [2]. On the
other hand, equal-time density fluctuations at different spatial
locations have been measured in ultracold atoms [7], revealing
spatial correlations in quantum gases.

However, one could also study the quantum variance of
the current, a property of fundamental importance in quan-
tum mechanics because of the uncertainty principle [8]. This
equal-time, equal-space quantity has been less explored, pre-
sumably because of experimental difficulty in measuring it in
a current-carrying system. Emergence of cold atoms [9–11]
as new model systems to study a host of phenomena other-
wise difficult to probe using traditional solid-state materials,
makes this transport property readily accessible experimen-
tally [12, 13]. It is then natural to ask what information the
variance would reveal, and how that information might be use-
ful in characterizing the many-body dynamics.

In this paper, having in mind cold-atom systems as possi-
ble experimental verification of our predictions, we study the
quantum variance, (δJ)2, of current flowing in a fermionic
many-body system. The variance determines the size of the
error bar when plotting the average current J , and here we
present interesting relations between δJ and J . We consider
two experimentally realizable situations: the persistent current
of a periodic system and the steady-state limit of the current in
an open system. The latter case is more amenable to an easier
experimental realization in ultracold atoms [14, 15].

In order to solve the many-body problem exactly (hence

∗ cchien5@ucmerced.edu

beyond mean field), we have considered, as a closed system,
a benzene-like ring lattice with a static magnetic flux to sus-
tain a persistent current. The open system is a triple-site lat-
tice connected to two particle reservoirs with tunable system-
reservoir couplings. Exact diagonalization [16, 17] is used to
find the closed system many-body ground state, and a Lind-
blad equation [18–20] is implemented to simulate the time-
evolved density matrix for the open system.

In both cases we plot the square root of the quantum vari-
ance, or the standard deviation δJ , versus the average cur-
rent J as the interaction strength varies. We find two distinct
classes of the δJ-J parametric curve: (1) A one-to-one cor-
respondence between δJ and J in the absence of interactions
except possible isolated points due to energy degeneracy and
(2) a loop or more complicated patterns in the presence of in-
teractions. The loop in the parametric curve, reminiscent of
the Lissajous curve [21–23], thus establishes a multi-valued
relation between δJ and J for interacting many-body sys-
tems. Similarities in both closed and open systems suggest
our results are model-independent with one apparent differ-
ence. Quantum degeneracy of noninteracting fermions in the
closed case causes the parametric curve to collapse abruptly
with vanishing interaction. In contrast, the parametric curve
in the open-system smoothly closes since degeneracies are ab-
sent in the spectrum. Irrespectively, these results show that
the presence of interactions between the particles can lead to
multi-valuedness of the corresponding δJ-J curve. We finally
discuss how to verify this many-body effect in cold-atom ex-
periments.

The paper is organized as follows. Sec. II introduces the
setup of the closed systems considered here, their current and
variance, and presents the results as a function of long-range
hopping, filling, and system size. In Sec. III, we consider the
case of open quantum systems and use the Lindblad equation
to model their dynamics. We discuss in Sec. IV possible ex-
perimental verifications of our predictions. Finally, we close
with a summary in Sec. V.
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FIG. 1. A benzene-like lattice with N↑=N↓= 3 fermions threaded
by a magnetic field perpendicular to the plane (illustrated in the in-
set). The hopping coefficient from site i to site j is hij . The onsite
coupling constant is U and the tunneling coefficient is t̄. Ground-
state persistent current (top row) and its standard deviation (bottom
row) as functions of the Peierls phase φ for (a) noninteracting and (b)
U/t̄=1. The time unit T0 = ~/t̄ where ~ = 1.

II. CLOSED SYSTEM

As a model closed system amenable to exact diagonal-
ization, we consider a benzene-like ring lattice with two-
component fermions (labeled by the spin σ =↑, ↓). The lat-
tice is half-filled with same number of up-spin and down-spin
fermions, N↑ = N↓. When a perpendicular, static magnetic
field threads the ring, as illustrated in Fig. 1(b), a persistent
current in the ring emerges [24–29]. The effect of the mag-
netic flux is included by the Peierls substitution [30, 31] in the
tight-binding approximation, resulting in a Fermi-Hubbard
model with the Hamiltonian

Ĥ =
∑
i 6=j,σ

hij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓. (1)

Here ĉ†i (ĉi) denotes the fermion creation (annihilation) oper-
ator at site i, and n̂i = ĉ†i ĉi. The hopping coefficient between
site i and site j is hij and hji = h∗ij . Onsite contact inter-
actions between fermions of opposite spins has the coupling
constant U .

We first focus on a system with only nearest-neighbor (NN)
hopping, hi,i+1 = t̄eiφ. Here, t̄ is the tunneling coefficient
and φ is the Peierls phase proportional to the magnetic field
strength [26, 30]. The energy unit is t̄ and the time unit is
T0 = ~/t̄. We consider the zero-temperature case, where the
persistent current is a mesoscopic property of the many-body
ground state and it vanishes in the thermodynamic limit [26–
28]. For a moderate lattice size, we use the exact diagonaliza-
tion technique [16, 17] to obtain the ground state and excited
states along with their energies.

The current operator of the fermions with spin σ from site

i to site j is

Ĵij,σ = i(hij ĉ
†
iσ ĉjσ − h∗ij ĉ†jσ ĉiσ). (2)

At zero temperature, the persistent current is the expectation
value with respect to the many-body ground state, 〈Ĵij,σ〉. The
current variance of a single spin component is

δJ2
ij,σ = 〈Ĵ2

ij,σ〉 − 〈Ĵij,σ〉2. (3)

By using Eq. (2) and the density operator of the fermions
with spin σ on site i, n̂iσ = ĉ†iσ ĉiσ , we obtain 〈Ĵ2

ij,σ〉 =∣∣hij∣∣2[〈n̂iσ〉 + 〈n̂jσ〉 − 2〈n̂iσn̂jσ〉
]
. Therefore, the current

variance reflects the density-density correlations between the
sites across which the current flows. Since the system is trans-
lationally invariant on a lattice, we will drop the subscript ij.

The total current is the sum over the spin components

〈Ĵ〉 = 〈Ĵ↑〉+ 〈Ĵ↓〉, (4)

and since we work at half-filling, 〈Ĵ↑〉=〈Ĵ↓〉 and 〈Ĵ2
↑ 〉=〈Ĵ2

↓ 〉.
The total current variance is then

δJ2 = 2〈Ĵ2
↑ 〉+ 2〈Ĵ↑Ĵ↓〉 − 4〈Ĵ↑〉2. (5)

The cross-component current correlation is

〈Ĵ↑Ĵ↓〉 = −(〈h2ij ĉ†i↑ĉj↑ĉ
†
i↓ĉj↓〉−〈|hij |2ĉ

†
i↑ĉj↑ĉ

†
j↓ĉi↓〉

−〈|hij |2ĉ†j↑ĉi↑ĉ
†
i↓ĉj↓〉+〈h∗ij

2ĉ†j↑ĉi↑ĉ
†
j↓ĉi↓〉). (6)

As expected, in the presence of interactions, the total current
variance is not generally a simple sum of the current variance
from each spin component, i.e., δJ2 6=∑σ δJ

2
ij,σ . The equal-

ity only holds in the noninteracting case with an equal popu-
lation of both species, where the mean-field Wick decomposi-
tion works.

The persistent current J and its standard deviation δJ of
non-interacting fermions in the benzene-like lattice are shown
in Fig. 1(a). They exhibit periodic structure as the Peierls
phase φ increases. We remark that each value of φ corre-
sponds to a static magnetic flux and the persistent current is
an equilibrium property [26, 27]. Interestingly, there are dis-
continuities in both J and δJ , as shown by the isolated points
in Fig. 1(a). These discontinuities are due to level crossings
in the energy spectrum, which are known in the study of per-
sistent currents in a ring [25–28]. (See Appendix A for de-
tails of the level crossing.) At a level-crossing point, the val-
ues of J and δJ are determined by assigning each degenerate
state equal statistical weight, so the result is consistent with
the zero-temperature limit [26]. Similar discontinuities have
also been observed in the superfluid velocity and its square
for clean superconductors in the Little-Parks experiment (see,
e.g., Refs. [32, 33]).

In the presence of the onsite interaction, the persistent cur-
rent and its standard deviation become continuous curves as
shown in Fig. 1(b). This is because the interaction turns the
level crossings into avoided crossings. (See Appendix A for
details.) The current can then be viewed as a continuous, pe-
riodic function of φ. The same features can also be observed
in δJ . Importantly, the skewed dome-shape curve of J vs.
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FIG. 2. Ground-state parametric curve of δJ vs. J in the range
π/2 ≤ φ ≤ 5π/6 for (a) U/t̄= 0, (b) U/t̄= 0.1 (red) and U/t̄= 2
(green). The gray arrows indicate the direction of increasing mag-
netic flux. The red rhombus in (a) is an isolated point due to the
degeneracy point, and the dashed arrows indicate the discontinu-
ous jumps. The interaction turns the degeneracy point into avoided
crossing, and the isolated point in (a) becomes the continuous upper
part of the parametric curves shown in (b), similar to the Lissajous
curves. (d) Area of the loop over one period. The area is ill-defined
at U/t̄= 0 and is denoted by an open circle at zero. The area jumps
to a non-zero value abruptly when the interaction is present.

φ allows one to find two different values of φ giving rise to
the same value of J within the same period. Importantly, this
feature is absent in the noninteracting case.

To elucidate the relation between δJ and J , we use the fact
that given two continuous, periodic functions α(φ) and β(φ),
one can form a parametric curve by plotting β(φ) against
α(φ). The Lissajous curve [21–23] showing interesting loop
structures is an example. Figure 2 shows the parametric plots
of δJ vs. J for the noninteracting and interacting cases. It
is clear that parametric curves for the interacting system pos-
sess a loop structure, similar to the hysteresis loop in magne-
tization [21, 34, 35]. On the other hand, the noninteracting
system exhibits only a single curve from the continuous part
and an isolated point from the discontinuous jumps of both the
current and its variance at the degenerate point, as shown in
Fig. 2(a). This implies that the standard deviation of current
changes continuously along the curves shown in Fig. 2(b) for
the interacting case but abruptly jumps to the isolated point in
the noninteracting case shown in Fig. 2(a). Thus, there is a
topological distinction [36] between the parametric curves of
the non-interacting and interacting systems because the set of
points on the δJ vs. J plot is simply-connected in the inter-
acting case and multiply-connected, due to the isolated point,
in the noninteracting case. To be specific, one can smoothly
traverse from one point on the interacting curve to another, but
there is no path connecting the two end points of the arc and
the central disconnected point on the noninteracting curve.

To further quantify the topological difference between the

parametric curves of the noninteracting and interacting cases,
we calculate the area enclosed by the loop of the δJ vs. J
curve and show its dependence on U in Fig. 2(c). As U→ 0,
the area of the loop approaches asymptotically to a constant
value. A discontinuity in the area is observed at U = 0 where
degeneracies are present in the spectrum. The transition from
a finite-area loop to a curve plus an isolated point is there-
fore very sharp. We have indeed verified that a finite loop can
still be observed down to U/t̄ = 0.01. Since noninteracting
fermionic atoms have been implemented in transport experi-
ments [37], observing the discontinuity may be possible. In-
cidentally, the half-filled lattice approaches the Mott insulat-
ing phase as the repulsive interactions increases [38, 39]. As a
consequence, both J and δJ are suppressed and the area of the
J-δJ loop decreases with increasing interactions, as shown in
Fig. 2(c).

A. Effects of next-nearest-neighbor hopping

We remark that the interaction-induced change of the topol-
ogy of the δJ vs. J parametric curve is still observable in the
presence of weak next nearest neighbor (NNN) hopping. In
Appendix A we show how to assign the Peierls phase to the
NN and NNN hopping coefficients in a gauge-invariant way.
In the presence of weak NNN hopping, the results resemble
the case with only NN hopping. This applies to the nonin-
teracting as well as the interacting cases. Figure 3 shows the
current and its standard deviation for a system with both NN
and NNN hopping and t̄′ = t̄/5. The resulting parametric
curves of δJ vs. J still exhibit the same structures as the case
without the NNN hopping.

FIG. 3. (a) and (b) The current J and its standard deviation δJ as
functions of the Peierls phase φ. (c) and (d) δJ vs. J curve in the
range π/2 ≤ φ ≤ 5π/6 for (a) and (c) U/t̄ = 0 and (b) and (d)
U/t̄ = 1. The benzene-like lattice has both nearest-neighbor and
next-nearest neighbor hopping with t̄′ = t̄/5. The red rhombus in
(c) indicates the discontinuity at the degeneracy point. The arrows
show how the parametric curves evolve as φ increases.
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FIG. 4. (a-c) Ground-state persistent currents and (d-f) correspond-
ing current fluctuations as a functions of the Peierls phase φ for
U/t̄ = 0, U/t̄ = 1, and U/t̄ = 2 with both the NN and NNN
hopping. Here t̄′ = t̄/2.

However, adding a strong NNN hopping term can change
the energy spectrum and the periodicity of the φ dependence.
Interestingly, additional level crossings appear even in the
presence of weak interactions. The new level crossings lead
to discontinuities in the current and its variance as shown in
Fig. 4 for the case with t̄′ = t̄/2. Level crossings induced
by interactions have been calculated using the Bethe Ansatz
solution for the persistent current in a one-dimensional Hub-
bard model with strong interactions [25, 28]. Appearance of
interaction-induced level crossings, in violation of the non-
crossing rule, results from non-trivial symmetries and under-
lying conservation laws (see Ref. [40, 41] for a detailed math-
ematical discussion). The parametric curves break at the level
crossing as shown in Fig. 5. If the range of the Peierls phase
is restricted to 5π/6 ≤ φ ≤ 7π/6, there are no degeneracies
and the parametric curve without the breaks can be observed
and resembles those with weak NNN hopping coefficients.

B. Lattice Size and Particle Filling

Parametric curves showing features similar to Lissajous
curves are not only present for a hexagonal ring, but are
present in rings with a larger number of sites. We tested a
closed system with L = 8 sites and found the interaction-
induced loops are still present, as shown in Fig. 6. However,
as the system approaches the thermodynamic limit the contin-
uous energy band will replace the discrete energy levels. The
origin of the loop in the parametric curve stems from the de-
generate point in the non-interacting system and the avoided
crossings in the interacting case. We also expect the same
results are obtainable in a continuous, mesoscopic ring be-
cause degeneracies with increasing flux are present in the en-
ergy spectrum. We caution though that the persistent current
is a mesoscopic phenomenon, which vanishes in the thermo-

FIG. 5. δJ vs. J plot of a benzene-like lattice with both NN and
NNN hopping. Here t̄′ = t̄/2 and we focus on the range where
π/2 ≤ φ ≤ 3π/2. The interaction strengths are (a) U/t̄ = 0, (b)
U/t̄ = 1, and (c) U/t̄ = 2. The red rhombus in (a) indicates the
discontinuity at the degeneracy point.

dynamic limit [26].
One-to-one correspondence of current and its variance is

not special to systems with half-filling. To demonstrate the
feature of parametric curves away from half-filling, we tested
even particle number, a partially polarized system, and a fully
polarized system in the benzene-like lattice configuration in
the absence of interactions as shown in Fig. 7. Single-valued
parametric curves with a disconnected point due to degenera-
cies are observable for all the selected cases, meaning the ob-
served results are independent of particle configurations.

We remark that the degenerate points of the noninteracting
system are non-analytic in the sense that the zero-temperature
limit (T → 0) and the non-interacting limit U → 0 are not
compatible. To see this, we assume the Peierls phase is tuned
to the degenerate point (say, φ=π/2). If U=0 and T →0, all
the degenerate states will have the same statistical weight be-
cause the weight only depends on the energy of a state. There-
fore, all the degenerate states contribute to any physical quan-
tity in the U = 0, T → 0 limit. In contrast, we consider the
other limit with T = 0 and U → 0. No matter how small U
is, it serves as a perturbation to the hopping Hamiltonian and
resolves the degeneracy. As a consequence, all physical quan-
tities are from expectation values with respect to the genuine
many-body ground state. Therefore, the two limits introduce
different ways of obtaining physical quantities. Since cooling
a system to T = 0 is prohibited by the third law of thermody-
namics [42], here we have followed the U =0, T →0 limit to
investigate the noninteracting system at the degeneracy point.
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U/t̄ = 0.1

U/t̄ = 1

U/t̄ = 0.1

a.

b.

c.

FIG. 6. δJ vs. J plot of an octagonal, half-filled lattice and we focus
on the range where π/2 ≤ φ ≤ 3π/4. The interaction strengths are
(a) U/t̄= 0, (b) U/t̄= 0.1, and (c) U/t̄= 1. The red rhombus in (a)
indicates the discontinuity at the degeneracy point.

Before presenting the open-system study, we make a few
more remarks on the closed, benzene-like system. In the pres-
ence of moderate, attractive interactions (U < 0), the para-
metric curves are multivalued but do not form closed loops
due to degeneracy points in the energy spectrum (see Ap-
pendix A). This observation again shows that the degeneracy
points are not critical in producing multi-valuedness between
J and δJ . The interaction is the reason. Tuning interactions
in a benzene-like lattice encircling a magnetic flux is certainly
not the only way to induce avoided level crossing, but it is re-
markable such a simple system unambiguously demonstrates
the interesting relation between the current and its quantum
variance. Investigations of the steady-state current in an open-
system, shown in the next section, also reveal level crossing is
not essential for the interaction-induced topological change of
the J-δJ curve.

As shown in Ref. [43], finite-temperature effects can en-
hance hysteresis in certain systems. One may also consider
finite-temperature or disorder effects to change the topology
of the J-δJ curve. While disorder may change the energy
spectrum, finite temperatures only change the distribution but
not the spectrum. The topology change of the J-δJ paramet-
ric curve could be a general phenomenon which may be in-
duced by different mechanisms.

FIG. 7. δJ vs. J plot of the benzene-like lattice with U/t̄ = 0 for
(a) N↑ =N↓ = 2, (b)N↑ = 2, N↓ = 4 in the range 2π/3 ≤ φ ≤ π,
and (c) N↑ = 3, N↓ = 0 in the range π/2 ≤ φ ≤ 5π/6. The red
rhombuses show the discontinuities due to level crossings.

III. OPEN SYSTEMS

In order to show that the phenomenon we have just de-
scribed is model-independent and accessible by available
cold-atom technology, we demonstrate its emergence in a
triple-site lattice system coupled to two external particle reser-
voirs via the first and last sites, as illustrated in Fig. 8(a). This
type of system is more easily realizable in cold-atom experi-
ments [14, 15]. The Hamiltonian HS of the triple-site lattice
is given by Eq. (1) with i = 1, 2, 3, hij = t̄. To model the
system coupled to reservoirs, we follow an open-system ap-
proach [18, 19] and monitor the dynamics by a quantum mas-
ter equation describing the time evolution of the density ma-
trix. The left (right) reservoir acts as a particle source (drain)
which pumps (takes) particles into (out of) the systems with
coupling γL (γR).

The dynamics in the open-system approach is described by
the Lindblad equation [2, 18, 19, 44, 45]:

d

dT
ρ̂ = i

[
ρ̂, ĤS

]
+ γL

∑
σ

(
ĉ†1σρ̂ĉ1σ −

1

2
{ĉ1σ ĉ†1σ, ρ̂}

)
+γR

∑
σ

(
ĉlσρ̂ĉ

†
lσ −

1

2
{ĉ†lσ ĉlσ, ρ̂}

)
, (7)

where ρ̂ is the density matrix of the three sites and l is the
rightmost site. The Lindblad equation is validated under sev-
eral assumptions. First, the coupling between the system and
environments should be weak so that in the Born approxi-
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FIG. 8. (a) Schematic plot of a triple-site lattice connected to a source
(left) and drain (right). The hopping coefficient is t̄, the system-
reservoir couplings are γL,R, and the onsite coupling constant is U .
The open system is described by the quantum master equation (7).
(b) Current J and (c) standard deviation of the current δJ versus
γ = γL = γR for selected values of U/t̄ in the triple-site open sys-
tem. When U =0, J and δJ are symmetric about the yellow dashed
line (γ = 2t̄). When U/t̄ > 0, only the current remains symmetric
while the standard deviation becomes asymmetric. (d) δJ versus J
from (b) and (c). When U = 0 (dashed line), there is a one-to-one
correspondence between the current and its standard deviation. In
contrast, loop structures and multi-valuedness are observed for all
U > 0. The arrows indicate the direction of increasing γ. The inset
shows a detailed comparison of δJ vs. J for U/t̄ = 0 and U/t̄=0.1.

mation the frequency scale of the system-reservoir coupling
is small compared to the dynamical frequency scales of the
system and reservoirs themselves. Second, the Markovian
approximation requires the system-reservoir coupling to be
time-independent over a short time scale, and the environment
can rapidly return to equilibrium without being altered by the
coupling. Moreover, there should be no memory in the reser-
voirs [18, 44]. The density matrix in terms of Fock basis and
simulate the dynamics by the fourth order Runge-Kutta algo-
rithm [46]. The time evolution is simulated with adaptive time
step as small as δt= 10−3T0 and terminated when the steady
state is reached. As the reservoir-system coupling, γ, becomes
very large the simulation becomes unstable and smaller time
steps are required. Once the time-evolved density matrix is
found, the current and current variance can be determined by
(Ô is replaced by the corresponding operator)

〈Ô〉 = Tr(ρ̂Ô) =
∑
mn

〈m|Ô|n〉ρ̂nm, (8)

where Tr denotes the trace and {|m〉} is the set of the Fock-
space basis kets from all possible particle-number sectors. In
the following, we choose γL = γR = γ. Moreover, we focus
on the steady state, dρ̂/dT =0 in the long-time limit T→∞,
where a steady-state current can be identified.

Unlike the closed system where the current and current

variance exhibit periodic behavior when the system is driven
by an enclosed magnetic flux, the steady-state current of the
open system is driven by the two reservoirs and does not have
any periodic property. Nevertheless, as shown in Fig. 8(b),
the steady-state current through the triple-site lattice exhibits
a maximum as γ varies. Hence, there can be two different
values of γ giving rise to the same value of current J . Fur-
thermore, it has been shown [47] that the current exhibits γ-
and 1/γ- dependence in the small and large γ regimes. Thus,
the current is symmetric on the log-log plot about γ=2t, and
we found the currents remain symmetric when the interactions
are finite. In contrast, the standard deviation of current, δJ ,
shown in Fig. 8(c) is symmetric about γ= 2t on the semi-log
plot only for the non-interacting fermions. When U >0, δJ is
asymmetric as γ varies.

Therefore, by plotting the current vs. its standard deviation
as shown in Fig. 8(d), one can check if there are multi-values
of δJ for the same value of J . For the noninteracting case,
we found a one-to-one correspondence between J and δJ fol-
lowing their symmetric curves in Figs. 8(b) and (c). However,
when U/t̄ > 0, one can observe loop structures as shown in
Fig. 8(d). The loops indicate again multi-valuedness of δJ
vs. J . When the interaction decreases in the open system, the
loop in the δJ vs J plot shrinks accordingly, see Fig. 8(d).

In contrast to the closed-system case, there is no level cross-
ing in the open system and the transition to the zero-area curve
is smooth as the interaction vanishes. Therefore, degeneracy
points are not essential in the change of the topology of the
parametric curve as the interactions are turned on. We em-
phasize the introduction of interactions to the open system
changes the topology of its J-δJ parametric curve [36]: Any
path on the single-valued parametric curve from the nonin-
teracting case can deform to a point continuously, but a path
traversing the whole loop of the parametric curve from the
interacting case cannot do so.

Note though, in the strongly-interacting regime the open
system can exhibit more complicated loop structures as shown
in Fig. 8(d), and there can be multiple nodes in the loops
signaling another topology change of the parametric curve.
In the closed system, only simple loops appear with nearest-
neighbor hopping. Interestingly, the open system with only
two sites also exhibits multi-valuedness of δJ vs. J for both
noninteracting and interacting fermions, but there is no loop
structure in the δJ vs. J plot. The difference comes from the
fact that both sites in the double-site systems are coupled to
the reservoirs, so the system is fully controlled by the reser-
voirs and does not exhibit intrinsic behavior from the sites.
(See Appendix B for more details.)

IV. EXPERIMENTAL IMPLICATIONS

As anticipated, the phenomena discussed here may be ob-
served experimentally using ultracold atoms in engineered op-
tical potentials. For example, the benzene-like lattice may
be realized by using atom-by-atom assembly with optical
tweezers [48–50] or painting potentials [51]. The magnetic
field may be simulated by artificial gauge fields from light-
atom interactions, and the Peierls phase has been demon-
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strated [31, 52, 53]. Open systems with a few lattice sites
coupled to two reservoirs have recently been realized by con-
necting an optical lattice to atom reservoirs [15]. Importantly,
the quantum coherence in ultracold atoms is robust because
the system is virtually decoupled from the outside environ-
ment. Direct measurements of the current may be achieved by
utilizing auxiliary light-atom coupling [54], and the current
standard deviation may be obtained from the variance of the
current from an ensemble measurement. Cooling the system is
important because thermal fluctuations could complicate the
interpretation of the results.

V. CONCLUSIONS

We have shown that the parametric curve of the particle-
current and its standard deviation exhibits a loop structure
in the presence of interactions for both closed and open
fermionic systems. The loop area is finite only when inter-
actions are present, and the loop structures are robust against
the size of the system, particle filling, and weak next-nearest-
neighbor hopping. Degeneracy points of noninteracting or at-
tractive interacting systems, instead, lead to discontinuities of
the current and its variance. The effects we report here are
within experimental reach for ultracold atoms in engineered
optical potentials, and the δJ vs. J parametric curve demon-
strates interesting relations between quantum expectation val-
ues and their variance. The multi-valuedness of the average
current vs. its quantum variance can then be used as an al-
ternative way to discern interactions in many-body systems.
We note that, due to the different spin-statistics, the quan-
tum variance of bosons may also exhibit interesting behavior.
However, their larger Fock space requires more demanding
computations and we defer the study for future investigations.
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Appendix A: Additional information for closed systems

1. Level crossing and avoided crossing

A benzene-like lattice with noninteracting fermions and
(next-)nearest neighbor hopping has degenerate points peri-
odic in the magnetic flux, as shown in Fig. 9. Four states
are degenerate at those degenerate points. In the presence of
interactions, the degeneracy is lifted. Thus, the level cross-
ing becomes avoided crossing. Figure 9(b) shows the avoided
crossing when U/t̄ = 0.1. Since the energy curves are smooth

FIG. 9. Energies of the lowest four states as a function of the Peierls
phase φ of a half-filled 6-site lattice loaded with (a) non-interacting
and (b) weakly interacting (U/t̄ = 0.1) fermions. The inset of (a)
show magnified views around the degeneracy point of the noninter-
acting case. The inset of (b) shows the level crossings of the nonin-
teracting case are turned into avoided level crossing in the presence
of interactions.

around the avoided crossing, the current and current variance
become continuous functions of the Peierls phase.

2. From magnetic field flux to Peierls phase

To find the gauge-invariant expression of the Peierls phase,
we associate the magnetic flux with the vector potential on
each link of the lattice. We set e ≡ 1 and c ≡ 1 because
the effective potentials for cold atoms are artificial [52]. The
magnetic flux is

Φ =

∮
B · dS =

∮
A · dl. (A1)

Here B is the magnetic field perpendicular to the ring lattice,
dS is the surface element, A is the vector potential, and dl is
the line element connecting the sites.

For cold-atoms, the vector potential is from an effective
gauge field induced by light-atom interactions [52]. The
Peierls phase φ =

∮
Adl of one link is φ = Φ/N if we assume

the vector potential is uniform. Here N is the number of links
enclosing the flux. If we assume a uniform B field, a straight-
forward analysis shows that we should choose hij = t̄eiφ for
the nearest-neighbor (NN) link and hij = t̄′eiφ for the next-
nearest-neighbor (NNN) link. Here t̄ and t̄′ are the tunneling
coefficients in the absence of the field. Analyzing ring geom-
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U/t̄ = �0.1 U/t̄ = �1

FIG. 10. (Upper panels) Ground-state persistent currents J and (Bot-
tom panels) the standard deviation of current δJ as functions of the
Peierls phase φ for the benzene-like lattice at half filling with (left
column ) U/t̄ = −0.1 and (right column) U/t̄ = −1.

etry and total flux through the enclosed area, the Peierls phase
is the same for NN and NNN links.

3. Attractive interactions

We have also considered the effects of attractive interac-
tions, U < 0, between fermions of opposite spin in the weakly
and strongly interacting regimes. Adding weak attractive in-
teractions induces a level crossing which is further accentu-
ated as the interaction strength increases as shown in Fig. 10.
The level crossing causes a double peak in the ground state
current fluctuations. Plotting δJ vs. J the parametric curve
remains multivalued, but has a discontinuity corresponding to
the level crossing as shown in Fig. 11 (a,b). This behavior
is similar to the addition of significant next-nearest neighbor
hopping to the repulsive interaction case (like the t̄′ = t̄/2
case shown previously), where an interaction induced level
crossing results in discontinuities in J and δJ .

Appendix B: Double-site open quantum systems

Here, we consider a double-site lattice open system con-
nected to two reservoirs as illustrated in Fig. 12(a). The
Hamiltonian is given as Eq. (1) with i = 1, 2, hij = t̄. and
the dynamics in the open-system approach is solved by the
Lindblad equation as Eq. (7). As mentioned, we are interest-
ing in the steady state where dρ/dT =0 in the long time limit

U/t̄ = 0.1

U/t̄ = 1

a.

b.

FIG. 11. δJ vs. J plot of a half-filled benzene-like lattice with
nearest-neighbor hopping and attractive interaction. Here (a) U/t̄ =
−0.1 and (b) U/t̄ = −1. The arrows show how the system evolves
as the Peierls phase φ increases.

T→∞, and a steady state current can be identified.
In the absence of interaction, U=0, the open-system Lind-

blad equation can be rewritten in terms of the single-particle
correlation matrix which is demonstrated in Ref. [19] and the
equation of motion can be solved exactly. The steady-state
current on the link between the adjacent sites is associated
with the off-diagonal element of the single-particle correlated
matrix. Explicitly, the current through the double-site lattice
is

J =
4γt

4t
2

+ γ2
≈
{
γ/t γ � t

4t/γ γ � t.
(B1)

Here, the current shows γ (1/γ) dependence in small (large)
γ regime and is symmetric around γ = 2t. Therefore, the
current can be tuned through the coupling to the source/drain
and the same current can be found corresponding to two dif-
ferent γ’s. The standard deviation of the current of nonin-
teracting fermions can also be determined from Wick’s theo-
rem [55, 56], and we arrive at

δJ =

√√√√2t
2
(8t

4
+ 2t

2
γ2 + γ4)

(4t
2

+ γ2)2
≈
{
t γ � t√

2t γ � t.
(B2)

Both the current and its standard deviation with different γ
are shown in Fig. 12(b). More importantly, this immediately
indicates that the current variance can be quantitatively dif-
ferent even if one operates in different γ’s and having the
same current between the two sites. Figure 12(c) shows that
multivalues of δJ can be found for the same value of J , es-
tablishing the multi-valuedness between those two quantities.
Therefore, the two-site system behaves differently from sys-
tems with three or more sites because both of the sites are
directly connected to the reservoirs.
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FIG. 12. (a) A double-site lattice is connected to the source (left) and
drain (right) as an open quantum system where the hopping coeffi-
cient between the sites is t and the on-site interaction has strength
U . (b) The current J (red) and standard deviation of the current δJ
(blue) through the double-site lattice as functions of γ in the non-
interacting case. The asymptotic values match Eqs. (B1) and (B2).
The yellow dashed line shows that there are two values of γ giving
rise to the same current JT0 = 0.1 but with different values of stan-
dard deviation (empty diamonds). (c) The averaged current vs. its
standard deviation in the double-site open quantum systems with se-
lected values of U . The arrow indicates the direction of increasing
γ.

In the presence of interactions, the current and current vari-
ance can be obtained by using the time-evolved density ma-
trix described by the Lindblad equation. Figure 12(c) shows
the results for interacting fermions flowing through a two-site
lattice. Although the on-site repulsion suppresses the current
flowing through the lattice, the current and its standard devia-
tion still show multi-valued behavior. It is worth mentioning
that one may complete the loop in the δJ vs. J plot by adding
the curve from a similar setup with the source and drain re-
versed, i.e., by considering the current flowing in the reversed
direction.
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