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Abstract

We studied the excitation dynamics of a finite quantum system with an intense optical near field

(ONF) from a perspective of light-dressed states. A simple model consisting of a single electron and

a nano-sized short dipole source were employed. By calculating the time-dependent wave function

subjected to the ONF, we demonstrated that the optical responses involved not only the first-

and third-order but also the second-, fourth-order harmonic generations that were not obtained

from conventional spatially homogeneous laser fields. In order to elucidate the origins of the exotic

even-order harmonic generations, the dressed states altered by the ONF were explored. The result

showed that the spatial distribution of the dressed states were significantly influenced by the ONF,

making forbidden optical transitions allowed by parity breaking. This was caused by the spatial

inhomogeneousness of the ONF, specifically its asymmetry, that was inherited to the dressed states.
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I. INTRODUCTION

A finite quantum system, such as an atom or a molecule, exposed to an intense laser

field more than 1012 W/cm2 reforms itself as new quantum states, called light-dressed states

or simply dressed states [1–3]. In dressed states electrons in the matter and the incident

laser light are strongly coupled, which allows them to have new quasi-eigen energy levels

and probability-density distributions distinct possibly from those of the original uncoupled

states through repetitive photon absorptions and emissions.

Theoretical studies on dressed states initiated in the late 1970s [4], where resonance

fluorescence and absorption spectra of a multi-level atom was investigated. The approach

determines the quasi-eigen energy levels of the system of coupled light and electrons as

eigenvalues of the Floquet Hamiltonian [5]. Since then, the dressed-state approach has

been applied in analyzing a wide variety of novel physical phenomena in laser physics and

chemistry or in quantum optics, such as dynamical Stark effect [6–8], electromagnetically

induced transparency [9–11], cavity QED [12–14], and so on. Furthermore, recent advances

in strong- and/or ultrashort-pulsed laser light technology have opened new sophisticated

ways of manipulating atoms and molecules relying on dressed states, demonstrated such

as in softening or hardening of chemical bonds in photochemical reactions [15–18] or in

laser-assisted elastic electron scattering [19].

In most of these pioneering previous studies dealing with dressed states spatial homo-

geneousness in the external laser field has been assumed. This assumption together with

a commonly used condition in atomic and molecular physics, asserting that the size of the

target electron system is by far much smaller than the typical wavelength of the laser lights,

leads us to use the dipole approximation safely. Meanwhile, spatially inhomogeneous electro-

magnetic fields have attracted increasing attention in the last few decades. A most notable

example of such an inhomogeneous field playing an important physical role may be an optical

near-field (ONF) [20–22] that is a localized electromagnetic field generated by the induced

surface charge of the nanostructured material interacting with the incident laser light. Since

the spatial locality of the ONF depends on the size of the nano material, it can break the

diffraction limit of light and can reach as small as even the atomic scale [23]. This locality

has been widely utilized in the area of nanophotonics, such as in highly integrated optical

signal-processing circuits [24–26] or in near-field scanning optical microscopy [27–29].
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From a theoretical point of view, since the ONF is spatially inhomogeneous due to its

high locality, we could no longer rely on the dipole approximation. This implies that the

optical responses of the target electron system interacting with the ONF can be significantly

different from predictions based on conventional theoretical models assuming homogeneous

electromagnetic fields. Indeed, recent studies, both experimentally and theoretically, have

shown that the inhomogeneousness of the ONF inherently induces electric-quadrupole tran-

sitions [30–33] and second harmonic generation (SHG) [34–36] for symmetric materials, the

latter of which is forbidden under standard homogeneous electromagnetic fields. In weak-

field cases a recent theoretical study based on a perturbation theory has demonstrated that

the inhomogeneousness in the ONF, specifically its electric field gradient, is responsible for

the aforementioned exotic optical responses [35]. Considering the current situation of grow-

ing interests in strong laser fields [37–42], a general theoretical model for the ONF that is

applicable to both inhomogeneous and strong fields beyond the perturbative regime needs

to be developed.

In the present study we have investigated the excitation dynamics of a finite electron

system with an intense ONF from a perspective of the dressed states. This paper is organized

as follows. The next section describes our theoretical model and computational details. The

first subsection starts with the definition of the studied system. The system shows to

be modeled by a single electron confined in a quasi-one-dimensional potential well, that

mimics a quantum wire [43, 44], while the ONF is described by a short dipole source. To

obtain the temporal evolution of the system we have chosen to solve the time-dependent

Schrödinger equation directly relying on the finite-difference time-domain (FDTD) scheme

[45]. The next subsection in Sec. II describes a brief introduction of the computational

aspects of dressed states. We show here the relation between the time-dependent solution

of the Schrödinger equation and the time-independent solution of the Floquet matrix. The

computational results and their interpretation are given in Sec. III. The optical responses

to the ONF are shown here as the dynamic induced dipole moment obtained from the

time-dependent wave function. Fourier transformation of the induced dipole moment for

the results obtained by exciting the system with a spatially asymmetric ONF shows several

frequency components distinct from those corresponding to the dipole-allowed transitions.

To rationalize the appearance of these exotic spectral lines we construct a theoretical model

of dressed states for a system subjected to an inhomogeneous ONF. The quasi-eigenenergies
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obtained by solving the eigenvalue equation for the Floquet Hamiltonian [5] are shown to

assign each spectral line including these exotic ones. The probability density distributions of

the eigenstates of the Floquet Hamiltonian for the asymmetric ONF also show appreciable

asymmetry, confirming that this broken parity makes a number of forbidden transitions

active and thus allows the new optical responses of the SHG, fourth harmonic generation

(FHG), and difference-frequency generation (DFG) spectra. The main results of the present

study is summarized in Sec. IV.

II. THEORETICAL MODEL AND COMPUTATIONAL DETAILS

A. Time-dependent Schrödinger equation

We consider a model system of an electron interacting with an ONF source, which is

schematically illustrated in Fig. 1 (a). The single electron is assumed to be confined in

a quasi-one-dimensional potential well extending along the y axis. The time-dependent

Schrödinger equation subject to an external electromagnetic field used in the present study

is described by

i~
∂ψ(y, t)

∂t
=

[

−
~
2

2m

∂2

∂y2
+ Vsta(y) + Vext(y, t)

]

ψ(y, t), (1)

where Vsta and Vext are the electrostatic confinement potential and the external electromag-

netic potential, respectively. This Schrödinger equation is described in SI units with the elec-

tron mass m and the reduced Planck constant ~ being 9.10938×10−31 kg and 1.05457×10−34

J · s, respectively. In cases where electrons are confined in nanostructures built in semicon-

ductor intersurfaces the electron mass and the vacuum permittivity ǫ0 may be replaced,

respectively, by the effective electron mass m∗ and the permittivity ǫ of the material.

We employ the following soft coulomb potential for Vsta,

Vsta(y) = α

(

1

β
−

1
√

y2 + β2

)

, (2)

where α and β are chosen to be 32.5 eV · nm and 1.75/3 nm, respectively. These parameters

lead the energies of the ground and first-excited states to 1.71 and 5.00 eV, respectively,

allowing us to set the excitation energy of the system at the far blue edge in the visible

light range. The ground state ψ0 of this potential is chosen as the initial state for the time-

dependent analysis. The probability density distribution of ψ0 is displayed in Fig. 1(b).
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For the external electromagnetic potential Vext, we have the following separable form for

its spatial and time dependences as

Vext(y, t) = Vs(y)Vt(t). (3)

For the temporal dependence we employ a simple sinusoidal form for Vt(t) with a step

function u(t) described by

Vt(t) = sin(ωit)u(t), (4)

where the angular frequency ωi of the incident laser light is chosen as ~ωi = 3.62 eV so

that it corresponds to 1.1 times the excitation energy ~ω01 between the ground ψ0 state

and the first-excited ψ1 states. This factor of 1.1 is introduced to avoid strong resonance

between these two original eigenstates, that allows us to identify each dressed state easily

from the computational results. We have employed this sinusoidal temporal dependence in

the incident laser field so that the results of the simulation can be compared most directly

with those by the dressed state analysis explained in detail in the next section. We can

choose a pulsed laser field in our simulation since the dressed-state picture has shown to

hold even for ultrashort laser pulses of a femtosecond timescale as far as the pulse involves

more than a dozen of cycles of oscillations [46].

For the spatial dependence in Vext of Eq. (3) we have examined the following three types

of excitation schemes by changing the function form of Vs: First, we have considered a

conventional laser field as a reference to homogeneous-field cases, which is described in the

length gauge [47] as

V hf
s (y) = qE0y, (5)

with q and E0 denoting the charge of the particle and the amplitude of the electric field,

respectively. The gradient of this potential along the y axis provides a homogeneous electric

field. The amplitude E0 has been set to 2 GV/m that corresponds to about 1012 W/cm2 in

the laser intensity. Second, we have introduced a short dipole source to produce an ONF as

represented in Fig. 1(a). This dipole source has the length b and is situated away from the

confined electron whose location is specified by the distance parameters a and c. When the

dipole length b is sufficiently shorter than the wavelength of the incident laser light (that

is 342 nm for ωi), the electromagnetic field reaches a state of quasi-static [48]. The scalar
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potential is then dominant and the function Vs is described with a charge Q induced at the

ends of the dipole as

V onf
s (y) =

Q

4πǫ0





1
√

a2 +
{

y −
(

c+ b
2

)}2
−

1
√

a2 +
{

y −
(

c− b
2

)}2



 , (6)

where we assume the Coulomb gauge for the ONF excitation. To make a fair comparison

with the result by the conventional excitation scheme with V hf
s the charge Q has been

determined by the following equation so as to keep the same electromagnetic energy:

∫

|ψ0(y)|
2

∣

∣

∣

∣

∂V onf
s (y)

∂y

∣

∣

∣

∣

2

dv =

∫

|ψ0(y)|
2

∣

∣

∣

∣

∂V hf
s (y)

∂y

∣

∣

∣

∣

2

dv. (7)

By introducing this condition the intensity of the ONF maintains 1012 W/cm2. In this ONF

excitation we can introduce a symmetric and asymmetric field to the confined electron by

choosing zero or nonzero value of the c parameter as seen from Eq. (6) or Fig. 1(a). In

Fig. 1(b) we have plotted the electric field along the y-axis for the conventional field with

V hf
s (denoted hereafter by HF), the symmetric and asymmetric ONFs, denoted respectively

by ONF(s) and ONF(a), where we have employed a=b=1 nm and c=0 nm for ONF(s)

while a=b=1 nm and c=0.5 nm for ONF(a). As shown in this figure HF is constant and

thus a spatially homogeneous field as its name indicates, while both ONF(s) and ONF(a)

have nonzero y dependences and are thus inhomogeneous-symmetric and inhomogeneous-

asymmetric fields, respectively.

Under the above three excitation schemes, namely, HF, ONF(s), and ONF(a), we have

calculated the time evolution of the electronic wave function by using the FDTD method.

The FDTD method is originally developed for solving Maxwell’s equations and requires us

to spatiotemporally discretize the electric and magnetic fields [49, 50]. For the Schrödinger

equation, by dividing the wave function into the real and imaginary parts, we can obtain

recursive equations and stably update the electron wavepacket discretized on spatial grids.

The detailed numerical implementation has been described in our previous studies [45, 51].
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B. Dressed state under optical near field

According to Floquet’s theorem [5], when Vext has perfect time-periodicity with the period

Ti = 2π/ωi, such as,

Vext(y, t) = Vs(y)

{

exp(iωit) + exp(−iωit)

2

}

, (8)

the time-dependent wave function Ψ can be factorized into a product of a time-dependent

phase factor with a quasi-eigenenergy ǫ and a time-periodic part Π as

Ψ(y, t) = exp
(

−i
ǫ

~
t
)

Π(y, t), (9)

where Π satisfies the condition, Π(y, t + Ti) = Π(y, t). Then, Π can be represented by a

Fourier series as

Π(y, t) =
N
∑

n=−N

ζn(y) exp(iωint). (10)

In Eq. (4) the time-dependence of Vext has been defined by a sine function multiplied by

a step function. We have however assumed in Eq. (8) a cosine function. In the time-

dependent calculation the choice of the functions, sine or cosine, would certainly affect the

result owing to their difference in the initial value at t = 0. In the case of the following

Floquet analysis, on the other hand, the result wouldn’t change by this choice since it is a

stationary time-independent calculation. We have therefore chosen a simpler cosine function

rather than sine, that can give a real-symmetric representation of the Floquet matrix that

would otherwise become Hermitian complex.

Mathematically the summation in this Fourier expansion of Eq. (10) extends from −∞

to ∞, but we have limited n between −N to N so as to perform practical calculation. The

index n can be interpreted as the number of photons coupled to the electron system. For

the spatial part for each n, namely ζn, it is expanded by the eigenfunctions ψk bound in the

electrostatic potential Vsta as

ζn(y) =

K
∑

k=0

ζnkψk(y), (11)

where the integer K denotes the index for the highest eigenstate.
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By substituting Eqs. (9) - (11) into Eq. (1), multiplying ψl from the left and integrating

it with respect to y, we obtain the following equation:

K
∑

k=0

ζn+1
k Vl,k + ζnl (el + ~ωin) +

K
∑

k=0

ζn−1
k Vl,k = ǫζnl , (12)

where Vl,k and el are defined, respectively, by

Vl,k =
1

2
〈ψl |Vs(y) |ψk〉 , (13)

and

el =

〈

ψl

∣

∣

∣

∣

[

−
~
2

2m

∂2

∂y2
+ Vsta(y)

]
∣

∣

∣

∣

ψl

〉

. (14)

Eq. (12) can be written in the following form of a matrix eigenvalue problem as
































H̄−N V̄ 0 0 0 0 0
. . .

0 V̄ H̄n−1 V̄ 0 0 0

0 0 V̄ H̄n V̄ 0 0

0 0 0 V̄ H̄n+1 V̄ 0
. . .

0 0 0 0 0 V̄ H̄+N

































































ζ̄−N

...

ζ̄n−1

ζ̄n

ζ̄n+1

...

ζ̄+N

































= ǫ

































ζ̄−N

...

ζ̄n−1

ζ̄n

ζ̄n+1

...

ζ̄+N

































, (15)

where V̄ and H̄n are (K + 1)×(K + 1) square matrices with ζ̄ denoting a vector of length

K + 1 defined, respectively, by

V̄ =











V0,0 · · · V0,K
...

. . .
...

VK,0 · · · VK,K











, (16)

H̄n =











e0 + ~ωin 0 0

0
. . . 0

0 0 eK + ~ωin











, (17)

and

ζ̄n =











ζn0
...

ζnK











. (18)
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By solving the eigenvalue equation (15) the dressed-state wave function Ψ and its quasi-

eigenenergy ǫ are obtained [5, 46]. Dressed states in their zeroth-order are a direct product

of an electronic state ψk and a photon number state with its energy ~ωin. Fig. 2 shows

schematically how these zeroth-order dressed states are formed from the original electronic

states. In the middle of this figure the energy levels of the original electronic states ψk bound

to the confinement potential Vsta are displayed while on its both sides the energy levels of

the zeroth-order dressed states Ψn
k generated from ψk are plotted for the ground and the

first-excited states, ψ0 and ψ1, respectively. Since nearby energy levels Ψn
k and Ψn+1

k have

the energy difference ~ωi, Ψ
n
k is interpreted as an n-photon coupled state with respect to

Ψ0
k. These zeroth-order states are coupled through the interaction term Vs. When the light

intensity is not too high, the dressed-state wave functions can keep their original character

of uncoupled states, allowing us to identify the original electronic state ψk and the number of

coupled photons. Since in our present case of 1012 W/cm2 each dressed-state wave function

is dominated by its zeroth-order state Ψn
k , we have used the same notation Ψn

k to indicate

the dressed eigenstates.

The Floquet matrix of Eq. (15) is of size (2N + 1)(K + 1), which gives a total of (2N +

1)(K + 1) eigenvalues and eigenvectors. However, since the Floquet matrix should be of

an infinite dimension in a rigorous sense, eigenvalues of its truncated matrix like that in

Eq. (15) might suffer from incomplete convergence, particularly those eigenvalues located

close to the top or bottom on the energy axis. On the other hand, eigenvalues located close

to the center, that have a small number of coupled photons, are in general fast in convergence

for increasing N and we have focused on them in our present analysis.

III. RESULTS AND DISCUSSION

First, we have calculated the time-evolution of the electron wave packet subjected to an

external electromagnetic field in three different excitation schemes, namely, HF, ONF(s),

and ONF(a), respectively, as shown in Fig. 1 (b). The spacing of the space and time grids

has been chosen as ∆x = ∆y = 17.5 pm and ∆t = 0.24 as. From the time-dependent wave

packets we have calculated power spectra of the induced dipole moment Py defined by

Py(ω) = F

[

f(t)

∫

qy(|ψ(y, t)|2 − |ψ0(y)|
2)dv

]

, (19)
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where F and f(t) denote, respectively, the time-frequency Fourier transformation and a

window function of the form,

f(t) = 1− 3

(

t

Tmax

)2

+ 2

(

t

Tmax

)3

, (20)

with Tmax being set to 115 fs. This window function is introduced to avoid spurious peaks

in the transformation. By subtracting the initial ground-state density |ψ0(y)|
2 as in Eq. (19)

in the calculation of the induced dipole moment, we have implicitly assumed that there is

a positive charge background that neutralizes the system such that there is no permanent

dipole moment at t = 0. This treatment allows us to remove a DC component in the induced

dipole moment.

The power spectrum of Eq. (19) is normalized in the sense that the intensity of its

maximum peak is equal to 1. The results have been displayed in Fig. 3 by the solid blue

(black), broken pink (light gray), and broken green (black) lines obtained, respectively, by

the HF, ONF(s), and ONF(a) excitation schemes. As shown in this figure the results for

HF and ONF(s) look similar: They both have characteristic peaks at around 3.6 eV and

11 eV, which correspond, respectively, to the first- and third-harmonic generations of ωi.

These harmonic generations follow the selection rules based on the dipole approximation. In

other words, the spatial inhomogeneousness of ONF(s) has hardly contributed to the optical

response. In contrast, the result for ONF(a), plotted by the broken green (dark gray)

line, shows additional peaks at around 0.3, 7.2, and 14 eV. Those emerging peaks coincide,

respectively, with the frequencies by DFG between ωi and ω01 (the energy gap between ψ0

and ψ1), i.e. 0.1ω01, SHG, and by FHG. This result indicates that the inhomogeneousness

of ONF(a), in particular its asymmetry, breaks down the dipole approximation, causing the

exotic optical responses.

In order to elucidate the origin of the DFG, SHG, and FHG by ONF(a) we have calculated

and analyzed the dressed states for the studied system. The upper panel of Fig. 4 represents

normalized power spectra Φ(ω) of the time-dependent wave function ψ(t) defined by

Φ(ω) =

∫

F [f(t)ψ(y, t)]dv. (21)

In this panel, as has been done in Fig. 3, the solid blue (black), broken pink (light gray), and

broken green (dark gray) lines represent, respectively, the results obtained by HF, ONF(s),

and ONF(a). In contrast to the results of the induced dipole moment shown in Fig. 3,
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the power spectra of the time-dependent wave functions by the three distinct excitation

schemes yield almost the same spectra. Each peak in the spectra has its origin in the

dressedstate eigenenergies ǫnk , represented by the red (black) solid vertical lines at the lower

four panels of the figure. Since ǫnk is basically determined by the sum or difference between

the original eigenenergies of Vsta and the photon energies ~ωn, which is irrespective of the

way of excitations, we have plotted in the lower panels only the results obtained by HF.

The eigenenergies ǫnk in this figure have been obtained by diagonalizing a truncated Floquet

matrix in Eq. (15) constructed with the condition (K,N) = (20, 10). We have selected

those eigenstates originating from k = 0 ∼ 3 by analyzing the eigenvectors. The cross

marks in the figure indicate the eigenenergy ǫ0k of the ‘zero-photon coupled state’ for each k.

Consequently, energy levels on the right-hand side from the marks indicate states that have

absorbed photon(s) with a positive n number with respect to the reference state Ψ0
k, while

those on the left-hand side are states that have emitted photon(s) with a negative n value.

The correspondence between each peak in the spectra and the dressed-state eigenenergy ǫnk

has been made and indicated by the gray broken vertical lines drawn from the upper to lower

panels. All spectral lines in Φ have shown to be able to find a corresponding counterpart in

the eigenenergies ǫnk . In particular, ǫ0∼2
0 and ǫ−1∼1

1 have shown to dominate the spectra.

The probability density distributions of the dressed states Ψn
k , that have contributed

significantly to the spectra of Fig. 4, have been displayed in Fig. 5 for k = 0 with n = 0 ∼ 2

and k = 1 with n = −1 ∼ 1. As for Figs. 3 and 4, each line corresponds to the result

by HF, ONF(s), and ONF(a), respectively. The amplitude of Ψn
k here is normalized by Ψ0

0

obtained by HF. Although the eigenenergy ǫnk does hardly depends on the different excitation

schemes, as has been mentioned, the wave function Ψn
k does, that is significantly affected by

the spatial dependence of the fields defined by Vs.

The probability density distributions displayed in Figs. 5(a) - (c) represent the dressed

states Ψ0∼2
0 that originate from the ground state ψ0. The results for the one-photon and

two-photon coupled state, Ψ1
0 and Ψ2

0, respectively, are significantly different from the zero-

photon coupled state Ψ0
0: The distributions for Ψ1

0 and Ψ2
0 have one and two nodes, respec-

tively, indicating that they are influenced by the first- and second-excited state, ψ1 and ψ2,

respectively, of the original electronic states owing to the near-resonance excitations. Fur-

ther, the results by HF and ONF(s) are almost the same with each other while they show

appreciable differences from those by ONF(a). In particular, in the cases of Ψ1,2
0 (Figs. 5
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(b) and (c)) the distributions by ONF(a) is asymmetric and is slanted to the left while those

by HF and ONF(s) are symmetric with respect to the origin.

A similar observation can be made to the probability density distributions for Ψ−1∼1
1

shown in the lower panels of Figs. 5: First, the distributions of (d) and (f), representing

the results for Ψ−1
1 and Ψ1

1, respectively, show different nodal structures than that of the

zero-photon coupled states Ψ0
1, that are apparently influenced significantly by the ground

and second-excited states, ψ0 and ψ2, respectively, owing to the near-resonance excitations.

Second, the distributions obtained by HF and ONF(s) are almost the same and symmetric

with respect to the origin, while those obtained by ONF(s) are distinct than others and

asymmetric. Another interesting observation can be made in Fig. 5(d) for Ψ−1
1 where the

distribution for ONF(a) has a node with an additional small peak at around y = 0.25 nm

while those for HF and ONF(s) are singly-peaked without any node. These asymmetric

distributions obtained by ONF(a) can be rationalized by that ONF(a) placed at 0.5 nm

from the y axis produces an asymmetric local potential, that has deformed the wave function

significantly. In other words the asymmetry of the ONF source has been inherited to the

dressed states. Such inheritance of the asymmetry changes the parity of the probability

density distribution of the dressed states, resulting in the change in their transition dipole

moments. Consequently, the optical properties of the confined electron system under ONF(a)

has been drastically modified.

Correspondence between the peaks in the spectra of the induced dipole moment Py dis-

played in Fig. 3 and the eigenenergies of the dressed states has been made in Fig. 6. The

eigenenergies displayed in this figure have been subtracted by the energy of the reference

state ǫ00, the zero-photon coupled ground state. Therefore, each peak in the spectra and the

corresponding dressed state represent an optical transition from the electronic ground ψ0

state.

For example, there are five peaks at around 3.6 eV with the highest double peaks assigned

as Ψ0
1 and Ψ1

0, respectively. Four peaks out of them represent an one-photon excitation from

ψ0 to ψ1, while the other one is a sequential two-photon excitation from ψ0 to ψ2 via ψ1

in the weak-field limit. This situation is schematically illustrated in Fig. 7: The energy

levels of the original electronic states, ψ0, ψ1, and ψ2 are displayed on the left-hand side

of the figure. These energy levels generate zeroth-order dressed states, Ψ−1
1 , Ψ0

0, Ψ
−1
2 , Ψ0

1,

and Ψ1
0, displayed in the middle of the figure, by adding or subtracting multiples of the
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photon energy n~ω. When the interaction Vs is introduced, these zeroth-order dressed

energy levels of the near-lying pairs of states, (Ψ−1
1 ,Ψ0

0) and (Ψ0
1,Ψ

1
0) repel each other,

making their energy gap larger as displayed on the right-hand side of the figure (Note that

the level repulsion is illustrated in this figure rather exaggeratedly so as to explain the effect

of the Vs interaction. Indeed, with the current light intensity of ∼1012 W/cm2 the energies

of the dressed eigenstates are almost the same as those of the corresponding zeroth-order

states). Therefore, these four levels produce a total of four transition lines in the spectra

with different energies as indicated by arrows in Fig. 7. There is also another energy level

corresponding to Ψ−1
2 , that lies closely. Since the second-excited ψ2 state is dipole-allowed

from ψ1 but not from ψ0, the optical transition from the ground ψ0 state to this ψ2 state

occurs by a sequential two-photon excitation via ψ1. This rationalizes the small amplitude

of the spectral line corresponding to Ψ−1
2 as can be seen in Fig. 6.

In Fig. 6 a set of dressed states lying closely together and sharing the same parity within

the framework of the symmetry-preserved excitation schemes of HF and ONF(s) have been

grouped and indicated by dotted circles: the purple (dark gray) dotted circles indicate

dressed states having odd parity while the watery dotted circles (light grey) indicate those

having even parity. Since the Ψ0
0 state is of parity even, this state can be optically coupled

with states of odd parity by the HF and ONF(s) excitations, that are located in the spec-

tra at around 3.6 eV and 11 eV corresponding, respectively, the first- and third-harmonic

generations.

Meanwhile, even parity states located at around 7.2, and 14 eV, corresponding, respec-

tively, to SHG and FHG, would not be accessible by the HF and ONF(s) excitations. These

optically-allowed and forbidden transitions can be known by calculating the transition dipole

moment d defined by

dkn,k′n′ =

∫

Ψn
kqyΨ

n′

k′dv. (22)

This definition makes it easy for us to know if the transition is allowed or not by considering

simply their parity of the involved states in the case of the HF and ONF(s) excitations.

In contrast, the ONF(a) excitation causes transitions from Ψ0
0 to almost all dressed states

including transitions corresponding to SHG and FHG. As has been represented in Fig. 5,

the dressed states excited by ONF(a) have broken symmetry which give nonzero values of

the transition dipole moment for much more combinations of states than do the cases by
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HF and ONF(s). Furthermore, although we focused on the transitions from Ψ0
0 in the above

analysis, other dressed states also could be the origin of the spectra. In particular, as shown

in Fig. 4, Ψ−1∼1
1 have made significant contributions in the time-dependent wave function.

These states have given rise to, in addition to SHG and FHG, the DFG spectrum located

at around 0.3 eV in Fig. 6. This is because the transition from Ψn
0 to Ψn−1

1 always involves

the following energy difference:

ǫn0 − ǫn−1
1 = (ǫ00 + n~ωi)− {ǫ01 + (n− 1)~ωi} = ~ωi − (ǫ01 − ǫ00) ≈ 0.1~ω01 ≈ 0.3 eV, (23)

where we used the zeroth-order relation ǫ01 − ǫ00 ≈ ~ω01 and the factor 1.1 between ω01 and

ωi introduced in Eq. (4). This DFG is not allowed for the HF and ONF(s) excitations due

to the parity restriction, but allowed for the ONF(a) excitation.

IV. SUMMARY

In the present study we have investigated the excitation dynamics of a finite electron

system with an intense optical near-field (ONF) from a perspective of the dressed states.

The system has been modeled by a single electron confined in a quasi-one-dimensional po-

tential well, that mimics a quantum wire, while the ONF has been described by a short

dipole source. The temporal evolution of the system has been calculated by solving the

time-dependent Schrödinger equation directly relying on the finite-difference time-domain

method. We have examined three different light fields for exciting the system, namely, a

spatially homogeneous field (HF) corresponding to a conventional plane-wave laser field,

an inhomogeneous but symmetric ONF (ONF(s)), and an inhomogeneous and asymmetric

ONF (ONF(a)). Optical responses of the system to these incident fields have been obtained

by calculating its induced dipole moment from the time-dependent wave function. Fourier

transformation of the resultant induced dipole moment has shown spectra of the radiation

generated from the electron system through nonlinear interaction with the incident light

fields. The spectra for HF and ONF(s) have indicated the first- and third-harmonic gen-

erations while the spectrum for ONF(a) has indicated not only these standard harmonic

generations but also the second- and fourth-generations (SHG and FHG), and further, dif-

ference frequency generation (DFG).

To rationalize the resultant spectra, particularly, the appearance of the ‘forbidden’ spec-
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tral lines excited by the inhomogeneous optical near field, we have constructed a theoretical

model of dressed states that is applicable to systems subjected to an inhomogeneous ONF.

The quasi-eigenstates obtained by solving the Floquet matrix have shown that the dressed

states under HF and ONF(s) are almost the same with each other in which they rigorously

keep the parity of the original uncoupled electronic states. On other hand, in the case of

ONF(a) the dressed states have shown probability density distributions that are asymmetric

and thus breaking the symmetry of the original electronic states. This asymmetry of the

probability density distributions of the dressed states inherited from ONF(a) has activated

a number of otherwise forbidden transitions and thus allowed the new optical responses

of SHG, FHG, and DFG. The present results have suggested that by creating and apply-

ing an asymmetric optical near-field to the target electron system we can access to ‘dark’

states that are unreachable by conventional homogeneous light fields, enriching significantly

information obtained by spectroscopic measurements. Results of such experiments can be

predicted and thus designed by the present theoretical model of dressed states under an

inhomogeneous optical near field. Additionally, when the light intensity becomes further

stronger beyond the studied intensity regime, it may give rise to new quantum states of

coupled photons and electrons called light induced states [52]. Such states are not just a

simple linear combination of a few original electronic states, but can be distinct significantly

from the inherent electronic nature of isolated atoms and molecules. Since the dressed state

picture still holds in this intensity regime, the present model can be applied to a system of

electrons subjected to an ONF in the strong field regime and explore further new physics.
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17
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FIG. 1. (Color online) (a) A schematic illustration of the studied system consisting of a confined

electron and an ONF source with the definition of the distance parameters a, b and c (in nm)

specifying relative positions of the electron and the ONF source. The single electron is confined in

a quasi-one-dimensional potential well extending along the y-axis (see Eq. (2)). (b) The probability

density distribution of the ground electronic state ψ0 and three different electric fields along the

y-axis, displayed, respectively, by the curved solid black, flat solid blue (black), broken pink (light

gray), and broken green (dark gray) lines. The ordinate on the right-hand side represents the

probability density of the electron (in nm−1) while that on the left-hand side represents the electric-

field strength (in GV/m). HF, ONF(s), and ONF(a) represent, respectively, a homogeneous field

corresponding to a conventional laser light, a symmetric ONF, and an asymmetric ONF (See text).

The parameters for ONF(s) and ONF(a) are (a, b, c) = (1, 1, 0) and (1, 1, 0.5), respectively.

19



FIG. 2. (Color online) A schematic illustration of the formation of the zeroth-order dressed states

Ψn
k from the original electronic states ψk (See Eq. (11)). The solid curve and the solid bars

attached to it displayed at the center represent, respectively, the electrostatic potential Vsta and

its eigenenergy levels corresponding ψk. On the left- and right-hand sides of the figure the energy

levels of the dressed states Ψn
k with the photon number n (n = · · · ,−1, 0, 1, · · · ) (the broken bars)

originating from the ground ψ0 state and the first-excited ψ1 state are displayed.
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FIG. 3. (Color online) Normalized power spectra of the induced dipole moment |Py(ω)|
2 (See

Eq. (19)) calculated from the time-dependent electron wave packets. Results obtained by HF,

ONF(s), and ONF(a) (see text for their definition) are shown by the solid blue (black), broken

pink (light gray), and broken green (dark gray) lines, respectively. The top of the figure indicates

the order of the harmonic generation.
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FIG. 4. (Color online) Normalized power spectra of the time-dependent wave function |Φ(ω)|2 (the

upper panel, see Eq. (21)) and dressed energy levels ǫnk represented by the red (black) solid vertical

lines (the lower panels). The cross marks indicate the zero-photon-coupled reference state ǫ0k for

each electronic state k. The spectra obtained by HF, ONF(s), and ONF(a) (see text) are shown by

the solid blue (black), broken pink (light gray), and broken green (dark gray) lines, respectively.
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FIG. 5. (Color online) Probability density distributions of the dressed states Ψn
k for different values

of k and n [(k = 0; 0 ≤ n ≤ 2) and (k = 1; −1 ≤ n ≤ 1)]. The probability density has been

normalized by the highest value in Ψ0
0 obtained by HF. The results obtained by HF, ONF(s), and

ONF(a) (see text) are shown by the solid blue (black), broken pink (light gray), and broken green

(dark gray) lines, respectively.
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FIG. 6. (Color online) Normalized power spectrum of the induced dipole moment |Py(ω)|
2 (the

upper panel) and dressed energy ǫnk measured from the energy of the reference state ǫ00, i.e., ǫ
n
k − ǫ

0
0

(the lower panels). For HF and ONF(s) excitations, the energy levels grouped by the purple (dark

gray) dotted circles represent dressed states with odd parity, while those by the blue (light grey)

circles represent states with even parity. See the captions to Figs. 3 and 4 for further details.
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FIG. 7. (Color online) A schematic illustration of the formation of dressed states, Ψ−1
1 , Ψ0

0, Ψ
−1
2 ,

Ψ0
1, and Ψ1

0, from the original electronic states ψ0, ψ1, and ψ2. A set of one-photon transitions

involving the Ψ0
0 state are indicated by arrows on the right-hand side of the figure.
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