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Abstract 

Optimal control simulation is applied to numerically design non-resonant laser pulses that 

maximize the degrees of three-dimensional (3D) alignment of SO2 using the lowest-order 

induced-dipole interaction.  In our trials, combinations of more than two mutually orthogonal, 

linearly polarized subpulses are always obtained as the optimal solutions.  Each subpulse in the 

optimal pulses impulsively excites the rotational wave packet.  The optimal pulses effectively 

cooperate with the rotational dynamics up to only a few partial revival timings owing to the 

rotational dephasing that determines the effective control periods.  The control mechanisms are 

interpreted in terms of the time derivatives of the expectation values of the squares of the 

direction cosines, that of the rotational energy, and the interplay between them.  We find a 

special and important role of the last subpulses as they align the molecular axes using the 

interaction through the two smallest polarizability components, while the other subpulses excite 

the rotational wave packet mainly through the largest polarizability component.  The control 

pulses composed of the specified number of subpulses are also numerically optimized by 

actively utilizing the instantaneous penalty to systematically show the superiority of the use of 

more than two subpulses over that of two subpulses, the latter of which leads to the saturation of 

the degree of 3D alignment as a function of total fluence. 
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I. Introduction 

 Molecular alignment is a fundamental technique that enables us to observe and 

manipulate molecular wave functions in a molecule-fixed frame [1, 2].  A short non-resonant 

laser pulse, the temporal width of which is much shorter than a typical rotational period, is often 

used to align molecules because the non-resonant pulse can impose a controlled strong electric 

field, i.e., a torque on the molecules at the right timing through induced-dipole interaction [3].  

The rotational wave packet reaches highly aligned states (revivals [4]) after the excitation, i.e., 

in the field-free condition [5-7]. 

Some studies have proposed control schemes to three-dimensionally align asymmetric 

top molecules in the field-free condition [10-16].  For example, a combination of two mutually 

orthogonal, linearly polarized laser pulses was numerically studied [8], the effectiveness of 

which was experimentally demonstrated by using SO2 at the rotational temperature of ~10 K [9].  

In the so-called hold-and-spin scheme [10, 11], a combination of linearly polarized laser pulses 

is also used in which the first laser with a long temporal width holds the most polarizable 

molecular axis instead of impulsively exciting it.  The modified version, called a truncated 

hold-and-spin scheme, turns off the first pulse rapidly, realizing field-free 3D alignment [11].  

A numerical study that used a pair of orthogonal Gaussian pulses with six optimized pulse 

parameters indicated that the pulse has a general form consisting of overlapping pulses with 

slightly displaced temporal positions [12].  The numerical study would confirm the 

effectiveness of the hold-and-spin scheme.  A long elliptically polarized laser pulse with rapid 

truncation [13] and a single short elliptically polarized laser pulse with “optimal” ellipticity [14] 

were also studied.  In another numerical study [15] that used multiple elliptically polarized 

laser pulses with the same ellipticity, significant improvement of the degree of 3D alignment of 

SO2 was not observed.  On the other hand, a recent study reported the effectiveness of multiple 
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elliptically polarized laser pulses with different ellipticities as well as a linearly polarized laser 

pulse in combination with a sequence of elliptically polarized laser pulses [16]. 

 As explained above, uncertainty remains regarding how to best align asymmetric 

molecules three-dimensionally.  In particular, the superiority of using the control pulse that is 

composed of more than two subpulses [16] has not been fully understood.  This situation 

justifies the present optimal control study in which we fully optimize a laser pulse including its 

time-dependent polarization vectors to best achieve the 3D alignment [7, 17, 18].  Here, we 

consider a rigid body model of SO2 as it is often used to evaluate the effectiveness of control 

schemes [9, 15].  The present simulation will demonstrate the advantage of the combination of 

more than two linearly polarized subpulses.  We briefly summarize the numerical procedures 

in Sec. II.  The results and the optimal control mechanisms are discussed in Sec. III.  In Sec. 

IV, we summarize the present study. 

 

II. Theory: Optimal control simulation 

 We consider an asymmetric top molecule that interacts with a non-resonant laser pulse, 

( )tE , through the lowest-order induced dipole, i.e., the polarizability, α .  As shown in Fig. 1, 

we introduce a space-fixed frame and a molecule-fixed frame, which are defined by sets of unit 

vectors, { , ,X Y Ze e e } and { , ,a b ce e e }, respectively.  The Hamiltonian is given by 

 

2 2 2
0

1( ) ( ) ( ) ( )
2a b cH t H V t AJ BJ CJ t tα= + = + + − E E ,   (1) 
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Figure 1 

Molecule-fixed a-, b-, and c-axes of SO2 and space-fixed X-, Y-, and Z-axes.  Three of the 

angles between the molecule-fixed axes and the space-fixed axes are shown. 

 

where A ( aJ ), B  ( bJ ), and C  ( cJ ) are rotational constants (components of the angular 

momentum operator, J ) associated with the molecule-fixed frame.  The eigenstate of 0H  is 

expressed as the linear combination of the eigenstates of a symmetric top, { JKM }, such that  

J
KKJ M a JKMττ = ∑ , where J , K , and M  are the quantum numbers of 2J , cJ , 

and ZJ  (the space-fixed Z component of J ), respectively [1].  Because of the 2C v  

symmetry of SO2 and the nuclear spin statistics, only even-numbered K ’s are allowed.  We 

assume that the laser pulse is expressed as the sum of the X and Y components  

 

 ( ) ( ) ( )X X Y Yt E t E t= +e eE .      (2) 

 

The optimized X and Y components, ( )XE t  and ( )YE t , automatically lead to the optimized 

time-dependent polarization condition.  The time evolution of the density operator, ( )tρ , is 

described by the Liouville equation: 
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( ) [ ( ), ( )]i t H t t
t

ρ ρ∂ =
∂

,       (3) 

 

where the initial condition is given by the Boltzmann distribution.  Here, we neglect 

decoherence effects by assuming low gas pressure. 

 In optimal control simulation, we specify our control objective by using the target 

Hermitian operator, W [19].  Here, we summarize the procedure without explicitly specifying 

W .  We numerically design an optimal pulse that maximizes the objective functional, 

{ }f=Tr ( )F W tρ , i.e., the target expectation value at the specified final time, ft  [20].  

Although a pulse with quite high intensity may lead to a large target expectation value, it may 

also induce undesirable side effects.  To avoid this, we replace α  with [1 ( )]i tγα α γ≡ + , 

where the positive function, ( )tγ , will be referred to as an instantaneous penalty function [21, 

22].  Because the ( )tγ -dependent non-Hermitian part, which is proportional to the pulse 

intensity, introduces the penalty due to the reduction in the norm, a suitable choice of the 

function, ( )tγ , can lead to an optimal pulse with reasonably high intensity.  Note that after 

obtaining the optimal pulses, we recalculate all the physical properties using the original 

equation of motion without ( )tγ , i.e., Eq. (3). 

By applying calculus of variations to the objective functional, we derive the coupled 

pulse-design equations, which are composed of 

 

{ }Im Tr ( ) ( ) ( ) 0t t tγ γ γξ α ρ =E ,      (4) 
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( ) [ ( ), ( )]i t H t t
t γ γ γρ ρ∂ =

∂
,      (5) 

 

and 

 

†( ) [ ( ), ( )]i t H t t
t γ γξ ξ∂ =

∂
,      (6) 

 

where ( )tγξ  is the Lagrange multiplier that represents the constraint due to Eq. (5).  In Eqs. 

(4)–(6), the suffix, γ , is introduced to explicitly indicate that we have introduced the 

instantaneous penalty function.  As shown above, the density operator formalism is convenient 

to formally derive the pulse-design equations.  In numerical simulation, however, we expand 

the density operator and the Lagrange multiplier in terms of a set of wave functions and 

iteratively solve the pulse-design equations in the wave-function form to reduce computational 

costs. 

 Finally, we summarize the parameters used in the simulation in Sec. III.  We adopt 

the rotational constants, -12.03 cmA = , -10.344 cmB = , and -10.294 cmC = , and the 

polarizability components, 331.3 Åaaα = , 320.8 Åbbα = , and 318.7 Åccα = , which are taken 

from Refs. [23] and [24], respectively.  Temperature is set to 1.0 K.  All times are measured 

in units of “rotational period”, rot 1 2( ) 26.2 psT B C= + = .  We numerically integrate the 

equations by using the 5th-order Runge-Kutta method with the temporal grid, 10-5 (units of rotT ), 

and iteratively solve the coupled pulse-design equations by using the monotonically convergent 
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algorithm [17, 18, 21].  We assume a circularly polarized laser pulse as the initial guess field, 

that is, 

 

(0) (0)( ) ( ) cosXE t t tε ω=  and (0) (0)( ) ( )sinYE t t tε ω= ,    (7) 

 

where the wavelength of the optical frequency is set to 1600 nm for convenience.  We use the 

initial envelope function with a rather flat structure, (0) ( )tε , given by 

 

0

(0)
0 f

f
0 f f

sin( ) 0
2

( )

sin( )
2

L
L

L L

L
L

t t

t t t
t t t t t

ε π τ
τ

ε ε τ τ

ε π τ
τ

⎧ ≤ <⎪
⎪⎪= ≤ ≤ −⎨
⎪ −⎪ − < ≤
⎪⎩

     (8) 

 

with rot0.1L Tτ = .  The value of 0ε , which is empirically determined, is in the order of 0.1 

GV/m. 

 

III. Results and Discussion 

 We first optimize the laser pulses by assuming a slightly long final time, f 4.0t = .  

This is because we do not know how much the optimized laser pulses can cooperate with the 

imperfect alignment revivals in the presence of strong rotational dephasing due to the lack of a 

regular energy-level structure.  To specify the target operator, we choose two of the three 

molecular axes to be aligned along the polarization vectors of the laser pulse.  For example, 

when the a and b molecular axes are chosen as the target axes, we adopt the target operator, 
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Figure 2 

Results of optimization control simulation with the final time, f 4.0t = , in units of rotT  when 

the a- and b-axes are chosen as the target axes.  Optimized (a) X and (b) Y components of the 

laser field.  Dot-dashed lines indicate fluence as a function of time.  (c) Expectation value of 

the free rotational Hamiltonian, 0H .  (d) Red solid, black solid, and blue dashed lines 

represent the time evolution of the degrees of alignment, 2cos ( )aX tθ , 2cos ( )bY tθ , and 
2cos ( )cZ tθ , respectively. 

 

( )2 2 2 2 2 21 1( ) ( ) ( ) cos cos cos
3 3a X b Y c Z aX bY cZW θ θ θ⎡ ⎤= ⋅ + ⋅ + ⋅ = + +⎣ ⎦e e e e e e . (9) 

 

This is the sum of the square of the direction cosines, the expectation value of which will be 

referred to as the averaged degree of alignment.  The results of the optimal control simulation 

are shown in Fig. 2.  We see from Figs. 2(a) and (b) that the optimal laser pulse is composed of 

mutually orthogonal, linearly polarized subpulses.  The pulse fluence as a function of time 

indicates that the subpulses appearing in the second half could dominate the control.  This  
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suggests that a shorter control time, e.g., f 2.0t = , would be sufficient for the optimal pulse to 

achieve a high degree of 3D alignment (see Fig. 3).  Figure 2(c) shows that each subpulse in 

the optimal pulse monotonically increases the rotational energy although the last Y subpulse 

introduces a small dip.  This monotonic increase in rotational energy is quite reasonable 

because higher rotational excitation is necessary to achieve a higher degree of 3D alignment.  

In fact, this point will provide one of the bases to discuss the control mechanisms later.  Figure 

2(d) shows the time-dependent expectation values of the direction cosines in Eq. (9).  Their 

oscillation amplitudes gradually increase and reach maximum values immediately after the 

significant enhancement by the last X and Y subpulses. 

 

Table I: Optimized degrees of alignment for three sets of the target molecular axes.  The target 

axes, (a, b), for example, mean that the a and b molecular axes should be aligned along the 
polarization vectors of the laser pulse.  The angle, aθ , denotes the angle between the a-axis 

and one of the space-fixed axes along which the a-axis mostly aligns.  The space-fixed axes 
are denoted in the parentheses.  The angles, bθ  and cθ , are defined similarly.  

 

target axes (a, b) (b, c) (c, a) (a, b, c)1) 

averaged degree of 
alignment 

0.75 0.71 0.73 0.77 

2cos aθ  0.78 (X) 0.72 (Z) 0.79 (X) 0.79 (X) 

2cos bθ  0.75 (Y) 0.71 (X) 0.71 (Z) 0.77 (Y) 

2cos cθ  0.73 (Z) 0.72 (Y) 0.70 (Y) 0.77 (Z) 

pulse fluence (J cm-2) 1.3 1.5 1.0 1.4 

 
1) For reference, we show the optimized degrees of alignment when the non-resonant laser 
pulse is assumed to be composed of linearly polarized, X-, Y- and Z-components. 
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 The degrees of alignment realized by the optimal pulses are summarized in Table I, in 

which all the three cases of the target molecular axes are considered.  We see from Table I that 

reasonably high degrees of alignment are achieved independent of the choice of the target axes.  

Although we do not show the numerical results except for those in Fig. 2, the optimal pulses are 

always composed of mutually orthogonal, linearly polarized subpulses.  We have not found 

elliptically polarized subpulses in the optimal pulses in our trials.  For reference, we also 

optimize the elliptically polarized laser pulse with a fixed ellipticity of 0.55, and that with 0.78 

(not shown).  They lead to the averaged degrees of alignment of 0.62 and 0.63, respectively, 

when the a-axis (c-axis) is aligned along the X-axis (Y-axis).  As these values are considerably 

smaller than those given in Table I, the combination of elliptically polarized subpulses with a 

fixed ellipticity cannot be an optimal control approach, consistent with the conclusion in Ref. 

[15].  In addition, we also optimize a combination of linearly polarized X-, Y- and Z-pulses 

simultaneously.  As expected, the excitation from the three mutually orthogonal directions 

leads to the largest degree of alignment, as shown in Table I.  However, we will not further 

discuss this control scheme because it would require much more complex experimental 

arrangements than the combination of X- and Y-pulses.   

In Fig. 3, we optimize the laser pulse by assuming a control time that is half that in Fig. 

2, i.e., f 2.0t = .  We choose the a- and b-axes as the target axes because this combination led 

to the optimal pulse with the simplest temporal structure.  The optimized X- and Y-pulses in 

Figs. 3(a) and (b) have quite similar structures to those in the second half in Figs. 2(a) and (b), 

respectively.  The averaged degree of alignment, 0.75, in Fig. 3 is the same as that in Fig. 2 to 

two significant figures although the value of each component is slightly different.  We see a 

total of five subpulses in Fig. 3, which almost monotonically increase the rotational energy, as 

shown in Fig. 3(c).  Figure 3(d) shows the expectation values of the squares of the direction  
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Figure 3 

Results of optimization control simulation with the final time, f 2.0t = , in units of rotT  when 

the a- and b-axes are chosen as the target axes.  Optimized (a) X and (b) Y components of the 

laser field.  Dot-dashed lines indicate fluence as a function of time.  (b) Expectation value of 

the free rotational Hamiltonian, 0H .  (c) Red solid, black solid, and blue dashed lines 

represent the time evolution of the degrees of alignment, 2cos ( )aX tθ , 2cos ( )bY tθ , and 
2cos ( )cZ tθ , respectively.  Inset shows a magnified view of the degrees of alignment around 

the final time indicated by a solid vertical line.    The red (gray) color-coded bar shows the 

temporal region in which the absolute value of the amplitude of the X (Y) subpulse is greater 

than 1 GV/m. 

 

cosines as a function of time, from which we see that their amplitudes are significantly 

enhanced around the final time.  The inset offers a magnified view of the region framed by a 

rectangle in Fig. 3(d). 

As our control objective is specified by the expectation value of the target operator [Eq. 

(9)] at the final time, f( )W t , we rewrite it as 
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f

f
0

( ) ( ) (0)
t dW t dt W t W

dt
= +∫ .      (10) 

 

We thus focus on the time-dependent behavior of the time derivatives of the expectation values 

of the squares of the direction cosines to examine the role of each subpulse during the control 

period.  We first discuss the role of the last Y subpulse, which contributes to 64% of the total 

fluence.  We see from the inset in Fig. 3 that the last Y subpulse significantly increases 

2cos ( )bY tθ  and 2cos ( )cZ tθ  almost by the same amount.  This behavior predicted by the 

optimal control simulation means that their time derivatives should be almost the same at that 

timing, i.e., 

 

2 2cos ( ) cos ( )bY cZ
d dt t
dt dt

θ θ .     (11) 

 

We now try to find the conditions for deriving Eq. (11).  If we assume that the last Y subpulse 

appears when 2cos ( )aY tθ  and 2cos ( )cX tθ  take extreme values, i.e., 

2cos ( ) 0aYd t dtθ =  and 2cos ( ) 0cXd t dtθ = , it will be easy to see that Eq. (11) can be 

derived by using the normalization conditions, 1Y Y c c⋅ = ⋅ =e e e e .  From the inset in Fig. 3, we 

also see only a slight decrease in 2cos ( )aX tθ , indicating 2cos ( ) 0aXd t dtθ  at the timing 

of the last Y subpulse.  In the end, the last Y subpulse can be characterized by the three extreme 

conditions,  

 

2 0cos ( )aX
d

t
d t

θ = , 2cos ( ) 0aY
d

t
d t

θ = , and 2cos ( ) 0cX
d

t
d t

θ = .  (12) 
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The first two extreme conditions mean that the undesirable torque imposed on the a-axis by the 

last Y subpulse should be minimized because the a-axis should be aligned along the X-axis at 

the final time, i.e., immediately after the last Y subpulse.  The minimization of the undesirable 

torque is realized not only by maximizing 2cos ( )aX tθ  but also by actively minimizing 

2cos ( )aY tθ .  The latter condition is quite reasonable because the actual maximum value of 

2cos ( )aX tθ  is usually much smaller than the ideal value of 1.  We would like to emphasize 

that the minimization of 2cos ( )aY tθ  can be realized only when the alignment control pulse is 

composed of more than two subpulses [8].  The remaining extreme condition,

2cos ( ) 0cXd t dtθ = , which means the minimization of 2cos ( )cX tθ , requires that the c-axis 

be on the YZ-plane as much as possible.  All the three extreme conditions in Eq. (12) cooperate 

to simultaneously align the b- and c-axes, as shown in Eq. (11). 

To directly connect the above-mentioned alignment control to the rotational excitation, 

we consider the time derivative of the expectation value of 0H  and obtain the relation [25] 

 

{ }
{ }

2
2 2

0

2
2 2

[ ( )]
( ) ( ) cos ( ) ( ) cos ( )

2

[ ( )]
( ) cos ( ) ( ) cos ( ) .

2

X
aa cc aX bb cc bX

Y
aa cc aY bb cc bY

E td d d
H t t t

dt dt dt

E t d d
t t

dt dt

α α θ α α θ

α α θ α α θ

= − + −

+ − + −

  (13) 

 

If we substitute one of the extreme conditions in Eq. (12) into Eq. (13), we have 
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2
2

0
[ ( )]

( ) ( ) cos ( )
2

Y
bb cc bY

E td d
H t t

d t d t
α α θ− .    (14) 

 

In fact, we see from the inset in Fig. 3 that the time derivative, 2cos ( )bYd t dtθ , has a large 

positive value during the excitation by the last Y subpulse.  Because of the rather small value 

of bb ccα α−  in Eq. (14), the last Y subpulse must supply a large amount of energy to induce the 

large rotational excitation to highly align the b- and c-axes along the Y- and Z-axes, respectively.  

This explains the large fluence of the last Y subpulse. 

 We next discuss the role of the last X subpulse, which appears immediately before the 

last Y subpulse.  During the period of X subpulse irradiation, Eq. (13) is reduced to 

 

2
2 2

0
[ ( )]( ) ( ) cos ( ) ( ) cos ( )

2
X

aa cc aX bb cc bX
E td d dH t t t

dt dt dt
α α θ α α θ⎧ ⎫= − + −⎨ ⎬

⎩ ⎭
.  (15) 

 

Because aa cc bb ccα α α α− >> −  and 2cos ( )aXd t dtθ  has a large positive value during this 

period (see the inset in Fig. 3), we may say from Eq. (15) that the last X subpulse appears when 

it can efficiently excite the rotational states.  Similarly, we can attribute the timings of the other 

X and Y subpulses to the favorable timings for the rotational excitation. 

We may thus summarize the control mechanism in Fig. 3 as follows.  Starting from 

the initial excitation by the Y subpulse, the timing of which would be inversely determined by 

the specified final time, the rotational wave packet is gradually and effectively excited by the X 

and Y subpulses.  They cooperate with the motion of the rotational wave packet through the 

large polarizability differences, aa bbα α−  and aa ccα α−  [Eq. (13)].  The excitation and the 
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free propagation adjust the shape of the rotational wave packet to approximately satisfy the 

three extreme conditions in Eq. (12) immediately before the final time.  At this timing, because 

of these extreme conditions [Eq. (12)], the last Y subpulse with a large fluence effectively aligns 

the b- and c-axes along the Y- and Z-axes, respectively, while leaving the a-axis almost 

unchanged so that the a-axis keeps aligning along the X-axis. 

 In the above discussion, we have not assumed a specific temporal structure for each 

subpulse.  As confirmed later in Fig. 5, we can replace the subpulses in the optimal pulse with 

simple Gaussian subpulses without reducing the degree of 3D alignment, provided that the 

Gaussian subpulses induce impulsive excitation.  In addition, we have emphasized the 

important and special role of the last Y subpulse.  All the other subpulses are expected to 

efficiently excite the rotational wave packet by utilizing the largest polarizability component, 

aaα , to help the last Y subpulse align the two minor b- and c-axes.  It would, thus, be natural to 

ask how many subpulses we can remove while keeping high degrees of alignment.  The 

answer to this question will illustrate the effectiveness of the use of more than two subpulses in 

the 3D alignment control. 

 We consider a minimal control pulse to achieve the 3D alignment, which consists of a 

pair of linearly polarized X and Y subpulses.  The control scheme that utilizes the minimal 

control pulse will be referred to as a double-pulse control scheme [8].  We assume a pair of 

Gaussian X and Y subpulses with specified total pulse fluence and calculate the degrees of 

alignment as a function of delay time and fluence ratio.  Here, we consider the delay time 

between the two subpulses in the range of [0, 2.0] , and the fluence ratio, in the range of 

[0, 1.0] .  The values of the ratio, 0 and 1, correspond to the single-pulse excitation.   All the 

Gaussian subpulses considered in the following are assumed to have a fixed temporal width 

(FWHM), 100 fsσ = , which is estimated from the last Y subpulse in Fig. 3(b).  Note that we  
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(a) Contour plot of the largest averaged degrees of alignment achieved by mutually orthogonal, 

linearly polarized Gaussian subpulses (see text) as a function of delay time (horizontal axis) and 

fluence ratio (vertical axis).  As we consider all possible combinations of the target molecular 

axes with respect to the space-fixed axes, the X subpulse is assumed to appear before the Y 

subpulse.  Fluence ratio is defined by the X-subpulse fluence divided by the total fluence.  (b) 

Maximum averaged degree of alignment as a function of total fluence.  The values when the 

total fluence is 1.1 J/cm2 and 1.3 J/cm2 are specified by black and red open squares, respectively.  

Red solid and black dashed lines in the inset, respectively, show a magnified view of the time 

evolution of the averaged degrees of alignment when the total fluence is 1.1 J/cm2 and 1.3 J/cm2.  

Each time when each averaged degree of alignment becomes a maximum is set to zero for 

illustrative purposes. 

 

have numerically checked that the results are robust to the value of σ  as long as the so-called 

impulsive-excitation condition is satisfied.  As we consider all possible combinations of the 

target molecular axes with respect to the space-fixed axes, we assume that the X subpulse 

appears before the Y subpulse.  For a given set of delay time and fluence ratio, we search the 

largest value of the averaged degree of alignment until 4.0 after the second (Y) subpulse. 

Figure 4(a) shows a contour plot that summarizes the results when the total pulse 

fluence is set to 1.3 J/cm2.  When the largest averaged degree of alignment has a reasonably 

large value for the given set of the time delay and fluence ratio, we always see that the a- and 
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b-axes are aligned along the polarization vectors.  The optimal point, i.e., the point associated 

with the maximum value in Fig. 4(a) is localized at the delay time of 0.98 and the fluence ratio 

of 0.20, the latter of which means that the second subpulse has a much larger fluence than the 

first subpulse.  This trend is the same as what we saw in the optimal control simulations (Figs. 

2 and 3).  However, the maximum value of 0.67 in Fig. 4(a) is considerably smaller than 0.75 

given in Fig. 3 even though the total fluence of 1.3 J/cm2 in Fig. 4(a) is slightly larger than 1.1 

J/cm2 in Fig. 3.  We obtain the same figures as those in Fig. 4(a) but with the other total fluence 

to find the maximum averaged degrees of alignment under the given total fluence (not shown 

here).  Figure 4(b) shows the maximum averaged degrees of alignment as a function of total 

fluence.  We see from Fig. 4(b) that saturation starts around 1.0 J/cm2.  This clearly 

demonstrates the limitation of the double-pulse control scheme [8] and therefore, justifies the 

introduction of more than two subpulses to better achieve the 3D alignment. 

 We now consider an excitation scheme that utilizes more than two subpulses.  Figure 

5(a) shows five Gaussian subpulses that mimic the subpulses in the optimal pulse in Fig. 3.  

Each Gaussian subpulse has the same fluence as its counterpart.  The inset in Fig. 5(a) is a 

magnified view of the averaged degree of alignment around the final time.  The inset shows 

that the set of five Gaussian subpulses, which will be referred to as the quintuple-pulse control 

scheme, reproduces the optimal value of 0.75 in Fig. 3.  This confirms that each subpulse in 

the optimal pulse can be replaced with a simple subpulse, which impulsively excites the 

rotational wave packet. 

 Here, we briefly discuss the temperature effects on the effectiveness of the multi-pulse 

control scheme through a case study.  We consider the optimal pulses in Fig. 4(b) (the 

double-pulse control, 1.3 J/cm2) and Fig. 5(a) (the quintuple-pulse control, 1.1 J/cm2).  For the 

sake of semi-quantitative evaluation, we introduce the degree of superiority at temperature, T, 
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which is defined by (5) (2)
max max( ) [ ( ) 1/ 3] [ ( ) 1/ 3]s T W T W T= < > − < > − .  Here, (5)

max( )W T< >  

( (2)
max( )W T< > ) is the maximum averaged degree of alignment achieved by the quintuple-pulse 

control (double-pulse control) at T within the duration of 4.0 after the last subpulse as with Fig. 

4(a).  For example, we obtain (5)
max( ) 0.64W T< > = , 0.58, 0.53, 0.50 and 0.47 at 2 KT = , 3 K, 

5 K, 7 K and 10 K, respectively, which lead to ( 2, 3, 5, 7 K) 1.20s T = =  and 

( 10 K) 1.19s T = = .  These values of ( )s T  suggest the advantage of the use of the control 

pulse composed of more than two subpulses over that of the double pulse at least in the 

low-temperature region. 

To reduce the number of subpulses, we first evaluate the contribution of each subpulse 

in Fig. 3.  We find that the first Y subpulse makes the least contribution to the 3D alignment.  

We thus remove the subpulse and impose a large penalty on that temporal region through the 

function, ( )tγ , which prevents the optimization algorithm from reproducing the removed Y 

subpulse.  We then re-optimize the remaining X, Y, X, and Y subpulses to adjust their fluence 

and temporal peak positions.  Note that the re-optimization does not generate any extra 

subpulses.  After the re-optimization, we replace the four subpulses in the new optimal pulse 

with the four Gaussian subpulses in the same manner as that in Fig. 5(a).  The result is shown 

in Fig. 5(b) and will be referred to as a quadruple-pulse control scheme.  We see from the inset 

in Fig. 5(b) that the quadruple-pulse control scheme leads to the averaged degree of alignment 

of 0.72, which is near the value achieved by the quintuple-pulse control scheme.  Similarly, we 

can derive the triple-pulse control scheme as shown in Fig. 5(c), in which the new control pulse 

consists of the X, X, and Y subpulses.  Note that the control pulses in Figs. 3 and 5(a)–(c) have 

the same total fluence of 1.1 J/cm2 within two significant digits, which is smaller than that used 

in the double-pulse control (1.3 J/cm2) in Fig. 4(a). 
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Figure 5 

Optimally designed Gaussian subpulses in the (a) quintuple-pulse control, (b) quadruple-pulse 

control, and (c) triple-pulse control schemes.  Each inset shows a magnified view of the time 

evolution of the averaged degree of alignment in which the maximum value is given.  The 

horizontal dashed lines specify 0.67, which is the maximum averaged degree of alignment 

achieved by a pair of optimal double Gaussian subpulses with the total fluence of 1.3 J/cm2.  

The period (units of rotT ) during which the averaged degree of alignment is larger than 0.67 is 

also shown in each inset.   

 

We see from the insets in Fig. 5 that the maximum values of the averaged degrees of 

alignment monotonically increase as the number of subpulses is increased.  Even the 

triple-pulse control with the total fluence of 1.1 J/cm2 leads to better 3D alignment than the 

double-pulse control with the total fluence of 1.3 J/cm2.  Although the extent of the increase is 

not significant, the triple-pulse control can keep the highly aligned state for 236 fs, as indicated 

by the horizontal dashed line in the inset.  (The dashed line shows 0.67, i.e., the maximum 

averaged degree of alignment achieved by the double-pulse control.)  That period will be 
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sufficiently long to induce, e.g., electronic dynamics in the molecule-fixed frame.  The 

introduction of more subpulses leads to a longer period, such as 707 fs [Fig. 5(a)] and 419 fs 

[Fig. 5(b)], during which the highly aligned state is maintained.  As the control pulse is 

composed of simple subpulses, which is experimentally feasible, we confirm the superiority of 

the control pulse composed of more than two linearly polarized subpulses to achieve high 

degrees of 3D alignment. 

 

IV. Summary 

 We have applied nonlinear optimal control simulation to the 3D alignment of SO2, in 

which the time-dependent polarization vectors of a non-resonant laser pulse are also fully 

optimized.  In Fig. 2, we optimized non-resonant laser pulses to find the optimal polarization 

conditions, the suitable set of target axes, the suitable final time, ft , etc.  The optimized pulses 

are always composed of combinations of mutually orthogonal, linearly polarized subpulses.  

We also found that the target axes associated with the two largest polarizability components, i.e., 

the a- and b-axes, lead to the largest averaged degree of alignment and the optimal pulse with 

the simplest structure although the differences in value among the optimized degrees of 

alignment are small.  In Fig. 3, choosing the a- and b-axes as the target, we optimized the 

non-resonant laser pulse with final time f 2.0t =  (in units of rotational period) to discuss the 

control mechanisms in detail.  Our discussion is based on the time derivatives of the 

expectation values of the squares of the direction cosines and that of the free rotation 

Hamiltonian, 0H , which are connected to each other through Eq. (13).  We have emphasized 

the important and special role of the last subpulse that accounts for more than 60% of the total 

fluence.  The last subpulse simultaneously aligns the b- and c-axes, which are associated with 
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the two smallest polarizability components, while minimizing undesirable torque on the a-axis.  

The other subpulses appear at the right timings predicted by Eq. (13) to effectively induce the 

rotational excitation through the largest polarizability component.  We have also shown that all 

the subpulses in the optimal pulse can be replaced with simple subpulses, such as Gaussian 

subpulses, provided that they impulsively excite the rotational wave packet.  Because the 

double-pulse control leads to the saturation of the degrees of alignment as a function of total 

fluence [Fig. 4(b)], we conclude the superiority of the use of more than two linearly polarized 

subpulses to achieve high degrees of 3D alignment (Fig. 5). 
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