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Abstract

Molecules with deep vibrational potential wells provide optical intervals sensitive to variation

in the proton-electron mass ratio (µ). On one hand, polar molecules are of interest since optical

state preparation techniques have been demonstrated for such species. On the other hand, it

might be assumed that polar species are unfavorable candidates, because typical molecule-frame

dipole moments reduce vibrational state lifetimes and cause large polarizabilities and associated

Stark shifts. Here, we consider single-photon spectroscopy on a vibrational overtone transition of

the polar species TeH+, which is of practical interest because its diagonal Franck-Condon factors

should allow rapid state preparation by optical pumping. We point out that all but the ground

rotational state obtains a vanishing low-frequency scalar polarizability from coupling with adjacent

rotational states, because of a fortuitous relationship between rigid rotor spacings and dipole matrix

elements. We project that for good choices of spectroscopy states, demonstrated levels of field

control should make possible uncertainties of order 1 × 10−18, similar to those of leading atomic

ion clocks. If fast state preparation can be achieved, the moderately long lived vibrational states

of TeH+ make possible a frequency uncertainty approaching 1 × 10−17 with one day of averaging

for a single trapped ion. Observation over one year could probe for variation of µ with a sensitivity

approaching the 1 × 10−18/yr level.
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Searches for variation of fundamental constants are motivated by their ability to probe

physics beyond the Standard Model [1]. Modern laboratory searches for variation use precise

frequency measurements with sensitivity to the fine structure constant (α) and the proton-

electron mass ratio (µ) [2]. Improved searches for variation of µ are especially intriguing

as it is predicted to drift faster than α in generic models [3]. If astronomical observations

of methanol lines are cast in terms of a linear temporal drift in µ, they set a limit of

2.4 × 10−17/yr [4]. The tightest laboratory constraint on the fractional variation of µ,

∼1 × 10−16/yr, was obtained from a comparison of hyperfine and electronic transitions in

atomic clocks [5, 6], using a shell model calculation to describe the dependence of the nuclear

magnetic moment on µ [7]. Since the sensitivity to µ arises from the relatively low frequency

(∼ 10 GHz) hyperfine transition, it will be challenging to significantly improve the precision

of µ variation searches by this approach. Vibrational transitions in molecules provide model-

independent sensitivity to varying µ, with the current best constraint (< 5.6 × 10−14/yr)

obtained in a molecular beam [8].

Spectroscopy on single trapped atomic ions has achieved statistical and systematic un-

certainties at the low 10−18 level [9, 10]. Recent demonstrations of molecular ion quantum

state preparation [11–15] and non-destructive readout [15, 16] suggest that spectroscopy

on a single trapped molecular ion could obtain a high duty cycle in an environment also

favorable for control of systematic uncertainties. In order to evaluate whether this approach

to molecular spectroscopy could improve µ variation sensitivity beyond the 10−16 level of

atoms, the intrinsic details of the molecular states and practical aspects of state preparation

must be carefully considered. Demonstration of fast optical state preparation for molecular

ions with diagonal Franck-Condon factors (FCFs) raises the possibility of small statistical

uncertainty for single-molecule spectroscopy [17]. Since other proposed species without diag-

onal FCFs [18–20] cannot be state prepared by this technique, an investigation of statistical

and systematic uncertainties obtainable for a diagonal species like TeH+ is of interest.

Compared with hyperfine transitions in atoms, high vibrational overtone intervals (10-

1000 THz) of molecules have orders of magnitude larger absolute sensitivity to varying

µ [21, 22]. Optical-frequency single-photon overtone transitions have been observed in

trapped molecular ions [23, 24]. When the state lifetimes are sufficiently long, such over-

tone transitions offer a means to surpass the statistical sensitivity of previous searches. One

proposed technique is to drive a low-frequency transition from a vibrationally excited state
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to a nearly degenerate level with different µ sensitivity [21, 22, 25–27]. A challenge of this

approach is to find suitable transitions where the dissimilar character of the states does

not cause large differential shifts and systematic uncertainties. An alternative approach

is to measure the vibrational overtone frequency directly by one-photon [19, 28] or two-

photon [20, 28–32] transitions.

Systematic frequency shifts in polar molecules will generally arise from coupling of nearby

rotational and vibrational levels, a serious concern absent in atoms. One response is to

use nonpolar (homonuclear) diatomic molecules, whose vanishing dipole moment eliminates

Stark shifts from rotational and vibrational coupling [19, 28, 31]. However, it is also of great

interest to consider polar molecules, particularly since demonstrated optical pumping state

preparation techniques require a dipole moment [11, 12] or a structure not yet identified in

a homonuclear species [14]. Polar molecules have closely spaced levels of opposite parity,

which for example allow for molecular orientation in moderate electric fields. One might

naively expect that the associated Stark shifts would pose possibly catastrophic challenges

for clock-level spectroscopy on polar species. It has previously been pointed out for HD+ that

the DC scalar polarizability of rotationally excited states is in fact dominated by electronic

couplings [33]. Other systematic uncertainties were considered in detail [19, 28, 34], and it

was proposed that a weighted average over a carefully chosen set of disparate transitions

could create a composite frequency with a low inaccuracy [19, 34]. Here, we point out

that the remarkable feature of small DC scalar polarizability actually arises from a nearly

precise cancellation of adjacent-level interactions, and that there is a related cancellation of

the differential polarizability in the high frequency limit. Recognizing that the only large

polarizabilities unavoidable in polar molecules are tensorial in character, it becomes clear

that simple state averaging techniques, known from atomic clocks and previously recognized

as being useful for homonuclear spectroscopy [20], can be used to simultaneously suppress

this shift as well as linear Zeeman and quadrupole shifts.

I. MOLECULAR STRUCTURE

We consider the prospects of spectroscopy on a single TeH+ ion for an improved search

for varying µ. Several favorable properties of TeH+ stem from its electronic structure,

which has been recently computed using multireference configuration interaction with single
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FIG. 1: Relevant low-lying electronic states of TeH+. Dashed lines indicate the initial and final states of

the spectroscopy transition, v = 0 → v′ = 8 in the X10+ manifold. Figure adapted from [35].

and double excitations and Davidson correction for higher excitations (MRCISD+Q/aV5Z)

calculations [35].

No experimental data are currently available for TeH+, but some confidence in the cal-

culations can be gained by considering the isolectronic molecule antimony hydride (SbH).

Compared with the TeH+ calculation, the MRCISD+Q calculation for SbH [36] uses a

smaller basis set (of quadruple zeta quality) and fewer configuration state functions and is

expected to be less accurate. The experimental data on SbH confirm the predictions of the

two lowest state symmetries, the cooling transition linewidth to within a factor of 2, and the

predictions of low-lying state bond lengths to within 3 pm, which is important for predicting

Franck-Condon Factors (FCFs). [37–39]. Further discussion of the reliability of the TeH+

calculations can be found elsewhere [17, 35]. What would be the implications for this work

if theoretical errors are larger than expected? The most significant concerns would be about

statistical uncertainties; non-diagonal FCFs could complicate state preparation, and shorter

vibrational state lifetimes would broaden the spectroscopy transition linewidth. Systematic

uncertainties are expected to be fairly robust against theoretical errors, and many of the

results of this work would still be quite relevant to this molecule and qualitatively so to

other molecules as well.
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TeH+ is polar with a predicted ground-state body-frame dipole moment of 0.91 De-

bye [35]. The lowest few electronic states of TeH+ are predicted to have diagonal FCFs [35]

(Fig. 1). These diagonal FCFs arise because the states correspond to different orbital and

spin configurations of two electrons in non-bonding p orbitals localized on the tellurium

ion, so transitions leave the bond length and strength relatively unperturbed. A diagonal

transition from the ground state can make possible rapid spectroscopy state preparation

by optical pumping [14], and elsewhere we analyze in detail the prospects for optical state

preparation of TeH+ [17]. Furthermore, diagonal FCFs reduce shifts arising from the upper

spectroscopy state coupling to levels in other electronic manifolds which are close in energy

but have poor vibrational overlap.

In the absence of spin-orbit coupling, the TeH+ ground state is 3Σ−, and the two lowest

excited states correspond to 1∆ and 1Σ+ states [35]. However, strong spin-orbit coupling

originating from the heavy tellurium atom makes the Hund’s case (c) basis a good approxi-

mation to the eigenstates [35, 40]. Selection rules that would otherwise prevent transitions

between the three lowest lying Λ + S states are relaxed. The resultant relatively short

excited state lifetimes of the b0+ and a2 states (15 µs and 2.4 ms, respectively, calculated

from data from [35] using LEVEL 16 [41]), are important for optical pumping schemes. The

ground 3Σ− state is split into different Ω components separated by 1049 cm−1 [35], and we

consider spectroscopy transitions within the (Ω = 0) X10
+ state. We focus on the 130TeH+

ion, whose lack of Te nuclear spin reduces the complexity of optical pumping. Optical pump-

ing is further simplified because of the relatively large rotational and vibrational constants

predicted to be 6.2 and 2100 cm−1, respectively, arising from the small reduced mass [35].

Larger level spacings are beneficial for practical optical pumping because fewer states are

initially thermally populated, and fewer states are spanned by the spectroscopy transition,

after which repumping will be required. 130TeH+ has I = 1/2, and we use the Hund’s case

(cβ) basis such that Ja = L+ S, J = Ja +R, and F = J + I.

II. STATISTICAL SENSITIVITY

The sensitivity to varying µ of vibrational intervals in homonuclear molecules has pre-

viously been considered [21, 22, 29]. For homonuclear molecules the transition natural

linewidth Γ is extremely narrow, and the maximum single-shot probe times are limited by
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other technical issues such as laser coherence time. Thus, choosing an optimal homonuclear

spectroscopy interval is free of any intrinsic statistical consideration. In contrast, vibra-

tional state lifetimes of polar hydrides are sufficiently short (typically < 1 s) to limit probe

times in realistic experiments. Harmonic oscillator physics provides an estimate for the

natural lifetime τn of the nth vibrational state, valid for low n. From 〈n− 1|x|n〉 ∝ √
n,

we obtain τn ≈ τ1/n in the harmonic region. Thus, statistical penalties associated with

the n-dependent lifetimes of polar molecule states must be considered. We find below that

searches for changing µ using polar molecules can benefit from using vibrational overtones

rather than the fundamental, but that the relative payoff is weaker than for homonuclears.

In response to a change in µ, the fractional change of a vibrational transition from v = 0

to v′ = n at frequency Ωn is given by

∆Ωn

Ωn

= Kn
∆µ

µ
, (1)

where we assume here that Ωn is measured by comparing against some clock oscillator with

minimal µ sensitivity, such as an optical-frequency atomic transition. The relative sensitivity

coefficient Kn = ∂(lnΩn)/∂(lnµ) describes the fractional response of the transition frequency

to varying µ. For vibrational fundamental or overtone transitions within the approximately

harmonic region, Kn ≈ −1
2
, independent of n [2]. The measured frequency shift itself can

be expressed as

∆Ωn = Sn
∆µ

µ
, (2)

where Sn = Ωn Kµ is the absolute sensitivity coefficient of the transition [21, 22, 29]. For

a harmonic oscillator with frequency ω, Sn = −nω/2. Since the strength of the chemical

bond does not have leading-order dependence on nuclear masses, the sensitivity must vanish

toward dissociation; for a Morse potential the maximum of |Sn| occurs at roughly 3/4 the

dissociation energy [21].

The relative and absolute sensitivity coefficients discussed above do not include any sta-

tistical penalty for finite lifetimes of upper states. To take this into account, we define a

statistical sensitivity ζ given by

ζn(T ) ≡
|Kn|
σy(T )

=
|Sn|

δΩn(T )
, (3)

where σy(T ) = δΩn(T )/Ωn is the Allan deviation for some overall measurement time T , and

δΩn(T ) is the associated frequency uncertainty. There are two physical interpretations for
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ζn(T ). First, it gives the ratio of frequency shift to frequency uncertainty, for some fractional

change in µ:
∆Ωn

δΩn(T )
= ζn(T )

∆µ

µ
. (4)

Alternatively, the frequency measurements provide a measurement of the quantity µ it-

self (albeit with very large theoretical uncertainty), and the square root of the two-sample

variance is given by σ
(µ)
y (T ) = ζ−1

n (T ).

For a projection-noise limited Ramsey-style measurement on a single ion, the RMS error

is given by:

δΩn(T ) =
1

TRC

√

Tc

2T
, (5)

where TR is the Ramsey time, Tc is the cycle time, T is the total measurement time and C

is the fringe visibility (e.g. C = 0.6 for TR = τn) [42, 43]. We can then express how the

statistical uncertainty scales with choice of vibrational overtone:

δΩn(T ) =

(

τ1
τn

)k

δΩ1(T ), (6)

with 0 ≤ k ≤ 1. The particular value of k depends on the relationship between TR, Tc, and

τ in the measurement protocol. We consider three limiting cases: (1) k = 0 for TR, Tc ≪ τ ,

most relevant to homonuclear spectroscopy, (2) k = 1 for TR = τ and TR ≪ Tc, representing

dead time limited cycling relevant to polar molecule spectroscopy, and (3) k = 1
2
for TR =

τ and TC = 2TR, representing optimal cycling for any molecule. Although it would be

statistically preferable to have the longer upper state lifetimes of homonuclears, a sort of

consolation for polar hydride spectroscopy is that their moderate lifetimes can in some cases

allow k = 1
2
to be approached using optical pumping techniques [14, 17].

The statistical sensitivities ζn(T ) and ζ1(T ) are then related by:

ζn(T ) =
|Sn|
|S1|

(

τn
τ1

)k

ζ1(T ). (7)

For a harmonic oscillator, the sensitivity and lifetime scalings discussed above yield (1)

ζn(T )/ζ1(T ) = n for k = 0, (2) ζn(T )/ζ1(T ) = 1 for k = 1, and (3) ζn(T )/ζ1(T ) = n1/2 for

k = 1
2
. The strongest benefit of increasing n occurs for the k = 0 case, most relevant to

homonuclear spectroscopy.

Ref. [35] predicts TeH+ X10
+ vibrational state spontaneous emission lifetimes spanning

from 200 ms down to 20 ms, over the frequency range 60-600 THz. Stimulated emission
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FIG. 2: Statistical sensitivity to µ of TeH+ overtone transitions Ωn, relative to that of the vibrational

fundamental transition Ω1. Values of k correspond to different experimental timing cases, described in the

text. The dashed curves show the harmonic oscillator values.

from blackbody radiation at room temperature will be orders of magnitude slower. In Fig. 2

we plot the TeH+ statistical sensitivity for the three limiting cases of k, as a function of

excited vibrational state. Non-trivial dipole moment functions and reduced anharmonic

level spacings [35] contribute to the slight enhancement at low n of the sensitivity ratio, as

compared with the harmonic oscillator values. The statistical uncertainty for the linewidth-

limited k = 1
2
case is minimized using the overtone Ω8/(2π) = 430 THz with τ8 = 40

ms. Averaging yields δΩ8(T )/Ω8(T ) = 3.1 × 10−15 /
√

T/sec, or 1.0 × 10−17 at one day,

corresponding to δΩ8/(2π) = 4.3 mHz. The corresponding sensitivity coefficients are: K8 =

−0.40, S8 = 2π × 170 THz, and ζ8(1 day) = 4.0 × 1016, with σ
(µ)
y (1 day) = 2.5 × 10−17. It

is important to note that approaching this best-case statistical uncertainty requires state

preparation significantly faster than the upper spectroscopy state lifetime. In Ref. [17] we

find that the 15 µs lifetime of the b0+ state should allow for rapid optical state preparation,

such that k = 1
2
can be approached.

III. POLARIZABILITY CALCULATIONS

We compute TeH+ Stark shifts directly from the Hamiltonian, without actually using

expressions for polarizabilities. However, since we find that some shifts vanish when av-

eraged over MF , a description in terms of scalar and tensor polarizabilities is suggested,
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and this description is also helpful for comparing behavior of different species. We take the

quantization axis ẑ to be defined along the direction of an applied magnetic field, and all

electric fields we consider are relatively small such that Stark shifts are much smaller than

the Zeeman intervals. In this case, the Stark shift can be expressed as

∆W = −1

2
E2

rms

[

αS(ω) +DαT(ω)
3M2

J − J(J + 1)

(2J − 1)(2J + 3)

]

(8)

where Erms is the rms value of the oscillating field polarized along û, D = (3|û · ẑ|2 − 1),

and αS and αT are the dynamic scalar and tensor polarizabilities [44, 45]. (Note that we

have defined αT using the molecular convention, which causes the MJ -dependent factor to

be (2J)/(2J+3) times that of the atomic convention.) This expression has the correct form

in the DC limit where EDC = Erms. Since the second term in Eq. 8 vanishes when summed

over polarizations, as occurs naturally for an isotropic blackbody radiation (BBR) field, or

when measured spectra are averaged over Zeeman states, effects of the tensor polarizability

can be strongly suppressed [46, 47]. The scalar polarizabilities are of greater concern.

If the rotational energy spacing is relatively small, then expressions of the same form

as Eq. 8 can be written for polarizabilities arising from coupling to adjacent rotational

levels (αr), adjacent vibrational manifolds (αv), the spin-orbit split X21 manifold (αSO),

and electronically excited manifolds (αe), such that

∆W = ∆W r +∆W SO +∆W v +∆W e. (9)

A. Polarizability Formalism for J-States

We first consider the case of zero nuclear spin. In the approximation that (1) the rota-

tional spacing is small compared with other intervals and that (2) electronic and vibrational

transition dipole moments do not change significantly when the rovibrational wavefunction

v(J) is replaced with v(J ′) for J ′ = J±1, then the (orientation-dependent) individual terms

for Ω = 0 states can be written as

∆W x(γ, J,MJ) = −1

2
E2

rms

[

αx
S(γ, J ;ω) +Dαx

T(γ, J ;ω)
3M2

J − J(J + 1)

(2J − 1)(2J + 3)

]

, (10)

with D = (3|u · z|2 − 1) and x ∈ {r, SO, v, e} [44]. We have again used the standard

convention for defining the molecular αT, in which the MJ -dependent multiplier in Eq. 10 is
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(2J)/(2J + 3) times that of the atomic convention. With these definitions, Ref. [44] shows

that for I = 0 the electronic polarizabilities have the following relations:

αe
S =

1

3

[

α‖ + 2α⊥

]

,

αe
T =

2

3

[

α‖ − α⊥

]

.
(11)

Here, α‖ and α⊥ are the electronic polarizabilities associated with ∆Ω = 0 and ∆Ω ± 1

transitions, and (α‖ − α⊥) is known as the polarizability anisotropy.

The second-order perturbation expression for the Stark shifts of a state |γ, J,MJ〉 coupled
to a manifold γ′ by an oscillating electric field E(t) = E cosωt ẑ is given by

∆W x(γ, J,MJ) =
∑

J ′

E2
rms|〈γ, J,MJ |dz|γ′, J ′,MJ〉|2

~

−∆

∆2 − ω2
, (12)

where dz is the lab-frame z-component of the dipole operator, ~∆ is the signed energy

splitting of the states, and Erms is the rms field magnitude. In this work, we find the

polarizabilities by diagonalizing the Hamiltonian. Combining Eqs. 8 and 12, and recognizing

that the tensorial term vanishes when summed over all MJ , we obtain

αx
S(γ, J ;ω) =

∑

MJ

∑

J ′

2|〈γ, J,MJ |dz|γ′, J ′,MJ〉|2
~(2J + 1)

∆

∆2 − ω2
. (13)

The tensor polarizability αx
T for the manifold can then be found from Eq. 8. For instance,

choosing MJ = 0 and u = z we obtain

αx
T (γ, J ;ω) =

(2J − 1)(2J + 3)

2J(J + 1)

[

−αx
S(γ, J ;ω) +

∑

J ′

2|〈γ, J, 0|dz|γ′, J ′, 0〉|2
~

∆

∆2 − ω2

]

.

(14)

1. Polarizability from Adjacent Rotational Levels

The level spacing for a rigid rotor is EJ = BvJ(J + 1), yielding an upper energy interval

∆J→J+1 = 2(J + 1)Bv/~, (15)

and a signed downward interval

∆J→J−1 = −2JBv/~. (16)
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For a Hund’s case (c) molecule with body-frame dipole moment µ0 in a z-polarized field,

the polarizability due to coupling to adjacent rotational levels, from Eq. 8 and e.g. Ref. [40],

becomes

αr
S(ω) =

∑

MJ

∑

J ′

2|〈γ, J,MJ | − µz|γ, J ′,MJ〉|2
~(2J + 1)

∆JJ ′

∆2
JJ ′ − ω2

(17)

= 2µ2
0

∑

MJ

∑

J ′

(2J ′ + 1)

∣

∣

∣

∣

∣

∣





J 1 J ′

−MJ 0 MJ









J 1 J ′

−Ω 0 Ω





∣

∣

∣

∣

∣

∣

2

∆JJ ′

∆2
JJ ′ − ω2

(18)

We use




J + 1 1 J

−MJ 0 MJ



 = (−1)J−MJ+1

[

2(J +MJ + 1)(J −MJ + 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

(19)

and for ω ≪ ∆
∆JJ ′

∆2
JJ ′ − ω2

≈ 1

∆

(

1 +
ω2

∆2

)

. (20)

As an example, taking Ω = 0, J ′ = 1 for J = 0 or J ′ = J±1 for J ≥ 1, for the low frequency

limit ω ≪ ∆ we obtain

αr
S(ω) ≈























(

µ2
0

3Bv

)

[

1 +

(

~ω

2Bv

)2
]

−−→
ω→0

µ2
0

3Bv
, J = 0

(

µ2
0

3Bv

)(

1

J(J + 1)

)2(
~ω

2Bv

)2

−−→
ω→0

0, J ≥ 1

(21)

The cancellation for J ≥ 1 states occurs because the interactions with the next-lower and

next-higher states cancel each other. This is a non-trivial result, since the level spacing and

coupling strengths are different for each interval. We find empirically that this cancellation

holds for other molecular configurations, including Ω 6= 0 in Hund’s case (cβ) and Hund’s

cases (a) and (b). (Note that for some of these cases there is Λ- or Ω-doubling, and the

polarizability arising from coupling of the doublet states is finite.)

This result is consistent with the null value obtained when one averages over MJ the well-

known expressions for rigid rotor Stark shifts in 1Σ molecules [40, 48], with the previous ob-

servation that theMJ -averaged DC polarizability vanishes for J > 0 in 1Σmolecules [49], and

with calculations showing that αS(0) for the
2Σ+ molecule HD+ is dominated by αe

S(0) [33].

Deviations from the rigid rotor energy spectrum approximation are discussed in Sec. IV.

One can also show that in the limit ω ≫ Bv/~ rotational coupling causes all levels except

for J = 1/2 to obtain a common scalar polarizability αS = −4µ2
0
Bv

3~2ω2 . This result is relevant,
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for instance for Stark shifts from BBR coupling of rotational levels. However, in practice

since these shifts are small, this cancellation is less important than the low-frequency case.

2. Polarizability from Unbound Electronic Levels

For computing the polarizability from coupling to the unbound A21 level, we use a ‘clas-

sical’ approximation which takes the classical position and momentum of the spectroscopy

state as a function of internuclear distance R and uses the requirement of conservation of

nuclear position and momentum to define a single energy in the excited potential which is

coupled. It is easily shown that the coupling interval is given by the so-called difference

potential ∆V (R), the interval between the two potential energy curves [50–53]. Then the

frequency shift in response to an off-resonant field is given by

∆f =

∫

dR∆f(µ(R),∆V (R), E(t))|Ψ(R)|2, (22)

where Ψ(R) is the nuclear wavefunction, µ(R) is the lab frame transition moment, and

∆f(µ,∆E,E(t)) describes the light shift for driving field E(t) of a level coupled by transition

moment µ to another level separated in energy ∆E. The results we obtain by integrating over

|Ψ(R)|2 are similar to what we obtain by a simple turning point approximation. Lab frame

transition moments are obtained from rotationless transition moments in the usual way, the

shifts are summed over coupled F ′,M ′
F levels, and scalar and tensorial polarizabilities are

extracted as described previously.

B. Polarizability Formalism for F -States

When comparing differential polarizabilities with those of atoms, it is important to con-

sider the F states. It can be shown for atoms that the polarizability for F states can be

written in the same form as Eq. 8, but with J → F and MJ → MF [45]. Since we are

considering Hund’s case (cβ) where F = J + I, the same arguments apply to TeH+. F -state

polarizabilities are calculated by first finding the numerical Stark shifts and then solving the

equations for αS(γ, F ;ω) and αT(γ, F ;ω).
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IV. ASSESSMENT OF TEH+ STARK SHIFTS

Stark shifts and polarizabilities are calculated according to the formalism described above,

using dipole moment functions from [35]. Low frequency polarizability results are presented

in Table I, and the BBR shifts shown in Table I encapsulate the most important consequence

of high-frequency polarizability. Comparison of these values with those of optical atomic

clock polarizabilities are given in Table II, and projected Stark shift uncertainties are in

Table IV. Light shifts are discussed in Sec. IVE.

Since understanding the general Stark shift properties of the molecule does not require

introducing nuclear spin, for simplicity we present in Table I the polarizabilities and BBR

shifts for the case of I = 0, i.e. for J-states. However, for our calculations of systematic

shifts in Table IV, we use the Stark shifts for the actual F -states.

A. Electronic Polarizability

To anticipate the magnitude of electronic polarizabilities from the potential energy curves

(Fig. 1), it is important to recognize that the vibrational wavefunctions generally cause the

upper spectroscopy state to couple to other electronic manifolds well above their minimum

energies. Polarizabilities are calculated for couplings to the X21, b0
+, A12, and A21 states.

Since transition moments to other electronic states are small [35], they are not expected

to contribute significantly to the polarizability. Polarizabilities arising from coupling to

different spin-orbit states are also small, owing to small transition moments.

B. Vibrational Polarizability

Because the rotational and vibrational spacing is much smaller than the electronic spac-

ing, αv(ω) or αr(ω) for polar molecules might be expected to dominate the differential Stark

shift at low frequencies and also to play a significant role at high frequencies. For the case of

αv(ω), this turns out to not normally be the case, for straightforward reasons. Vibrational

transition moments for polar hydrides are typically ≤ 10% of electronic transition moments,

so after squaring to obtain the Stark shift, vibrational contributions to Stark shifts are still

smaller than electronic contributions despite the closer level proximity.
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αS(ω = 0) (a.u.) αT(ω = 0) (a.u.) ∆300 (mHz)

αr
S αv

S αso
S αe

S αr
T αv

T αso
T αe

T ∆r
300 ∆v

300 ∆SO
300 ∆e

300

|0, 0〉 1500 0.02 0.04 1 0 0 0 0 12 -0.2 -0.4 -10

|0, 1〉∗ 0.08 0.02 0.04 1 1100 -0.04 0.02 0.6 11 -0.2 -0.2 -10

|0, 2〉 0.2 0.02 0.04 1 400 -0.04 0.02 0.6 11 -0.2 -0.2 -10

|8, 2〉∗ 0.3 -0.03 0.03 0.6 600 -0.09 0.01 0.3 11 0.4 -0.1 -6

TABLE I: Contributions to scalar and tensor DC polarizabilities and 300 K BBR shifts for selected

X10+ states. For simplicity, we present here J-state |v, J〉 values. The proposed spectroscopy transition is

marked∗. Tensor polarizabilities use the molecular prefactor convention described in the text.

C. Rotational Polarizability

The case of polarizability from rotational coupling is much more interesting. As discussed

in Sec. IIIA 1, we find that the relationship between the rigid rotor level spacings and cor-

responding dipole matrix elements essentially eliminates effects of αr
S. In the low frequency

limit, the shifts from the next-lower and next-higher rotational states balance, and αr
S(0) = 0

for J ≥ 1. Centrifugal distortion has a small effect on the rotational spacing (< 10−4 per

level for TeH+) and slightly spoils this cancellation, as can be seen in Table I.

D. BBR Stark Shifts

BBR shifts were calculated by numerically integrating the dynamic Stark shifts over the

BBR spectrum [54]. In Table II it is seen that the differential scalar polarizabilities and

BBR shifts of TeH+ compare favorably with those of atoms. The dominant electronic dipole

transition moments in molecules are typically a few times smaller than those in atoms, so

it is not surprising that molecular electronic polarizabilities compare favorably. Apart from

vanishing for J < 1 (or F < 1) states, the molecular αr
T(0) is generally large but can be

dealt with by averaging over Zeeman levels.

As discussed in Sec. IIIA 1, we find in the high-frequency limit that all levels obtain a

common αr
S, which can be seen in the rotational contributions to BBR shifts in Table I. In

practice, this cancellation is not significant for TeH+ since the differential electronic BBR
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shift is relatively large.

In this analysis, we have made the simplifying assumption of an isotropic BBR distribu-

tion. In fact, the trap electrodes will modify the BBR field at length scales determined by

the trap geometry. Since there is only small BBR spectral density at these length scales,

these anisotropies are not expected to significantly modify the predictions shown in Ta-

ble II. (Note that even for rotational coupling, where the rotational-transition wavelengths

are comparable to typical electrode spacings, the Stark shift is dominated by the longer

wavelength part of the BBR spectrum.) However, the effects of BBR anisotropies induced

by trap electrodes should be the subject of a future study.

E. Light Shifts

When driving a relatively weak overtone transition to an upper state where stronger

decay channels are open, the light shift from the spectroscopy laser must be considered.

The saturation intensity Isat ∝ Γ2/µ2
eg, where Γ is the total relaxation rate and µeg is the

spectroscopy interval transition moment. Contrary to the two-level case, saturating a weaker

(higher) overtone transition v = 0 → n requires increased intensity, since Γ increases with

n but µeg decreases. For the TeH+ v = 0 → 8 transition, the upper state has Γ = 25 s−1,

and the spectroscopy channel has Γ80 = 2.4 × 10−4 s−1, yielding Isat = 1.5 µW/mm2. At

this drive intensity, the estimated differential light shift is 0.5 mHz (a fractional shift of

1 × 10−18), dominated by coupling of v = 8 to the A21 state. Spectroscopy laser intensity

and pointing control can stabilize the shift to below this level.

V. ZEEMAN AND QUADRUPOLE SHIFTS

Spectroscopy states within the X10
+ manifold have intrinsically small linear Zeeman

shifts, due to a lack of electronic angular momentum. The remaining moments are of order a

nuclear magneton. However, X10
+ acquires some electronic spin via its rotational-electronic

coupling with X21. This type of mixing, also sometimes called Coriolis coupling, can some-

times significantly affect the spectrum [59–61]. Since the Ω-doubling in X21 is primarily

caused by rotational-electronic coupling to nearby electronic states of Ω = ±1, it can be

used to estimate the degree of mixing. To determine the linear and quadratic Zeeman shifts,
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∆αS(0) (a.u.) ∆α
(a)
T (0) (a.u.) ∆f300 (Hz) gg ge ∆M2 (Hz/mT2) ∆Θ (a.u.) δf/f × 1018

TeH+ (430 THz) -0.4 250 0.005 0.07 0.05 40,000 0.3 10

Al+ (1100 THz) 0.5 0 -0.004 -0.0008 -0.002 -70 0 0.3∗

Sr+ (445 THz) -30 -50 0.2 2 1 3 3 3

Yb+ E2 (688 THz) 50 -70 -0.4 - 0.8 50,000 2 6

Yb+ E3 (642 THz) 5 -1 -0.04 - 1 -2000 -0.04 0.6∗

TABLE II: Comparison of TeH+ |v = 0, J = 1, F = 1/2〉 → |v = 8, J = 2, F = 3/2〉 and atomic ion clock transition parameters [9, 55–57]. Differential

shift coefficients are given for DC polarizabilities ∆α(0), 300 K BBR Stark shift ∆f300, quadratic Zeeman shift ∆M2, and quadrupole shift ∆Θ, all

computed for the F -states of the transition. For comparison tensor polarizabilities here use the atomic convention, denoted α
(a)
T , so TeH+ values are

smaller than those of Table I by a factor of 2J/(2J + 3). ∆α and ∆Θ are the differences between the upper and lower state values. Lower and upper

state linear Zeeman shifts are given by the g-factors gg and ge, where E = gmFµB. The quadratic Zeeman coefficient ∆M2 is either for

mF = 0 → m′

F = 0 or for an average over Zeeman components effectively creating that transition. The statistical uncertainty δf/f is for 1 day of

averaging, with TR set to the upper state lifetime for TeH+ and Sr+ and TR
∗set to a laser coherence time of 6 s [58] for Al+, and Yb+.
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we diagonalize the effective Hamiltonian [40]:

A. Effective Hamiltonian

The effective Hamiltonian [40]:

H = Hrot +Hnsr +HHFS +HZI
+HZrot

+HZS
+HE +HQ (23)

where Hrot is the rotational kinetic energy, and

Hnsr = −cIT
1(J) · T 1(I),

HHFS = HHFSb +HHFSc,

HHFSb = bT 1(S) · T 1(I),

HHFSc = cT 1
q=0(S) · T 1

q=0(I),

HZI
= −gIµNT

1
0 (B) · T 1

0 (I),

HZrot
= −gJµBT

1
0 (B) · T 1

0 (J),

HZS
= gsµBT

1
0 (B) · T 1

0 (S),

HE = −T 1
0 (µe) · T 1

0 (E),

HQ = −T 2
0 (∇E) · T 2

0 (Q).

(24)

The magnetic field along the laboratory ẑ axis defines the quantization direction. The con-

stants cI , gI , gJ , gs and µe are the nuclear spin-rotation coupling constant, proton g factor,

rotational g factor, electron spin g factor and ground state body-frame electric dipole mo-

ment, respectively. The I ·L and B ·L terms are omitted since the pure-precession hypothesis

is well justified for hydrides [40], in which case L can be considered a good quantum number

with L = 0 for the TeH+ X states.

The effective Hamiltonian matrix elements for the X10
+ and X21 states are adapted

from Ref. [40]. For convenience, the diagonal and off-diagonal components of the rotational

Hamiltonian, HD
rot and HOD

rot , are separated, where Hrot = HD
rot+HOD

rot . The matrix elements

are
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TABLE III: Constants used in matrix element calculations.

Constant Value

cI ∼ 10 kHz

b -50 MHz

c 10 MHz

gI 5.58

gJ -0.001

gs 2

µN 7.62 × 10−4 MHz/G

µB 1.40 × 10−4 MHz/G
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〈v, Ja; Ω, J |HD
rot|v, Ja; Ω, J〉 = Bv

[

J(J + 1) + Ja(Ja + 1)− 2Ω2
]

,

〈v, Ja; Ω, J |HOD
rot |v, Ja; Ω

′ 6= Ω, J〉 = −2Bv(−1)Ja−Ω





Ja 1 Ja

−Ω q Ω′



 (−1)J−Ω





J 1 J

−Ω q Ω′





× [Ja(Ja + 1)(2Ja + 1)J(J + 1)(2J + 1)]1/2

where q = Ω− Ω′,

〈v, Ω, J, I, F |Hnsr|v,Ω, J, I, F 〉 = cI(−1)J+F+I







I J F

J I 1







× [J(J + 1)(2J + 1)I(I + 1)(2I + 1)]1/2,

〈v, Ja; Ω, J, I, F |HHFSb|v, Ja; Ω
′, J ′, I, F 〉

= (−1)J
′+F+I







I J ′ F

J I 1







[I(I + 1)(2I + 1)]1/2(−1)J−Ω





J 1 J ′

−Ω q Ω′





× (−1)Ja−Ω





Ja 1 Ja

−Ω q Ω′



 (−1)Ja+L+S+1







Ja S L

S Ja 1







where q = Ω− Ω′,

〈v, Ja; Ω, J, I, F |HHFSc|v, Ja; Ω, J
′, I, F 〉

= (−1)J
′+F+I







I J ′ F

J I 1







[I(I + 1)(2I + 1)]1/2(−1)J−Ω





J 1 J ′

−Ω 0 Ω





× (−1)Ja−Ω





Ja 1 Ja

−Ω 0 Ω



 (−1)Ja+L+S+1







Ja S L

S Ja 1







× [(2J ′
a + 1)(2Ja + 1)S(S + 1)(2S + 1)]1/2,

〈v, Ω, J, I, F,MF |HZrot
|v,Ω, J, I, F ′,MF 〉

= −gJµBBz(−1)F−MF





F 1 F ′

−MF 0 MF



 (−1)F
′+J+1+I [(2F ′ + 1)(2F + 1)]1/2

×







J F ′ I

F J 1







[J(J + 1)(2J + 1)]1/2,

〈v, Ω, J, I, F,MF |HZI
|v,Ω, J, I, F ′,MF 〉

(25)
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= −gIµNBz(−1)F−MF





F 1 F ′

−MF 0 MF



 (−1)F+J+1+I [(2F ′ + 1)(2F + 1)]1/2

×







F I J

I F ′ 1







[I(I + 1)(2I + 1)]1/2,

〈v, Ja; Ω, J, I, F,MF |HZS
|v, Ja; Ω

′, J ′, I, F ′,MF 〉

= gsµBBz(−1)F−MF+F ′+2J+I+1−Ω





F 1 F ′

−MF 0 MF









J 1 J ′

−Ω q Ω′



 [(2F ′ + 1)(2F + 1)]1/2

× [(2J ′ + 1)(2J + 1)]1/2







J F I

F ′ J ′ 1







(−1)Ja−Ω





Ja 1 Ja

−Ω q Ω′



 (−1)Ja+L+S+1

×







Ja S L

S Ja 1







[(2J ′
a + 1)(2Ja + 1)S(S + 1)(2S + 1)]1/2,

where q = Ω− Ω′,

〈v, Ω, J, I, F,MF |HE|v,Ω′, J ′, I, F ′,MF 〉

= −µeE0(−1)p(−1)F−MF





F 1 F ′

−MF p M ′
F



 (−1)F
′+J+1+I [(2F ′ + 1)(2F + 1)]1/2

×







J ′ F ′ I

F J 1







(−1)J−Ω





J 1 J ′

−Ω q Ω′



 [(2J ′ + 1)(2J + 1)]1/2

where p describes the field polarization, and q = Ω− Ω′,

〈v, Ω, J, I, F,MF |HQ|v,Ω, J ′, I, F ′,MF 〉

= T 2
0 (∇E)(−1)F−MF





F 2 F ′

−MF 0 MF



 (−1)F
′+J+2+I [(2F ′ + 1)(2F + 1)]1/2

×







J F I

F ′ J ′ 2







(−1)J−Ω





J 2 J ′

−Ω 0 Ω



 [(2J ′ + 1)(2J + 1)]1/2

× 〈v,Ω|T 2
0 (Q)|v,Ω〉.

(26)

Proper definite-parity eigenstates were used for Ω doublets in the X21 manifold. For instance,
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the parity eigenstate in X21 coupling to the negative parity |v = 0, Ja = 0;Ω = 0, J = 1〉
state will be

|v = 0, Ja = 1; J = 1,−〉 = 1√
2
(|v = 0, Ja = 1;Ω = 1, J = 1〉−|v = 0, Ja = 1;Ω = −1, J = 1〉).

(27)

We also verified that including Stark couplings at expected stray field levels did not affect

the Zeeman shift results.

B. Estimate of Hyperfine Constants and Rotational g Factor

Without any experimental data for TeH+, we must estimate some of the interaction

constants, with the values we use listed in Table III. In the case of hydrides, the nuclear

spin-rotation coupling cI can be somewhat reliably predicted for the heavy atom’s nuclear

spin-rotation interaction (Eq. 8-41 in [62] or [63]); however, the proton nuclear spin-rotation

interaction is both difficult to observe and difficult to predict. We instead estimate the value

based on measurements made for molecules possessing a heavy atom both one row below

and above tellurium in the periodic table. For ZnH, cI(H) was measured to be 60 kHz [64],

and for AuH it was not observed within the experimental uncertainty of 30 kHz [63]. A

measurement with similar uncertainty was made for AsH, where the value of cI(H) was

similarly determined to be smaller than the uncertainty [65]. We place a large uncertainty

on our estimate of the TeH+ cI(H), but its effect on the hyperfine splitting is small compared

with the other hyperfine parameters. The hyperfine constants b and c were estimated from

the AsH molecule [65], which has very similar electronic structure to TeH+, with As one

row above Te in the periodic table. The Fermi Contact parameter bF scales approximately

linearly with bond length [66] and that the dipolar constant c scales approximately as the

inverse cube of the bond length [67]. Using the ratio of ground state bond lengths from

TeH+ to AsH of 1.07, we then estimate b and c for TeH+ from the AsH values of -53 MHz

and 13 MHz, respectively. The rotational g-factor gJ was estimated from a measurement of

SbH [68], which has both a very similar reduced mass and electronic structure to that of

TeH+. Its small value indicates that the rotational Zeeman interaction will be the smallest

Zeeman term.
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C. Assessment of Linear and Quadratic Zeeman Shifts

Our estimated linear and quadratic Zeeman coefficients are given in Table II. Diagonal-

ization of the effective Zeeman Hamitonian yields X10
+ magnetic moments of order 0.1 µB.

From estimates of the parameters above, we expect a J = 1/2 hyperfine splitting of ∆ ≈ 600

kHz. The perturbation theory expectation that the TeH+ quadratic Zeeman shift is of order

(gFMFµB)
2/h∆ is in good agreement with the matrix diagonalization result. Compared

with Yb+, TeH+ has a significantly smaller magnetic moment but also a much smaller hy-

perfine spacing. The estimated resulting TeH+ quadratic Zeeman shift is similar to that of

the Yb+ (E2) transition and an order of magnitude larger than for the Yb+ (E3) transition.

D. Assessment of Quadrupole Shifts

The quadrupole moment tensor T2
0(Q) can be represented in Cartesian coordinates via

T 2
0 (Q) =

1√
6
(2QZZ −QXX −QY Y ). (28)

Integrating over the internuclear distance R, the quadrupole moment functions QXX(R),

QY Y (R) and QZZ(R) for v = 8 in X10
+ yield 2.24, -1.12 and -1.12 ea20, respectively.

Our proposed spectroscopy transition is discussed further below. The lower state has F =

1/2 and no quadrupole shift. For the upper spectroscopy state |X10
+, v = 8, J = 2, F = 3/2〉,

we use a calculated quadrupole moment function [69] and the matrix element shown in Eq. 26

to obtain Θ = 0.3 ea20, which is similar to typical values for atoms. The simple averaging

protocol discussed below can be used to effectively eliminate this shift.

VI. CHOICE OF SPECTROSCOPY TRANSITION

Here we consider some of the options available for spectroscopy on the v = 0 → v′ =

8 overtone transition of the 130TeH+ X10
+ electronic state. To leading order the J >

0 states obtain canceling scalar Stark shifts from coupling to the next-lower and next-

higher rotational levels, as discussed in Sec. IIIA 1. We can then perform spectroscopy on

transitions with J, J ′ ≥ 1 without being concerned with large scalar Stark shift associated

with the polar character of the molecule. (As an aside, it might appear at first glance

attractive to perform spectroscopy on F = 1/2 components of a J = 0 → J ′ = 1 transition,
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Effect σ/f × 1018

BBR Stark 0.9

DC Stark, Scalar 0.09

DC Stark, Tensor ≪ 1

Light shift < 1

Quadrupole ≪ 1

Linear Zeeman < 1

Quadratic Zeeman 0.6

Statistics (at 1 day) 10

TABLE IV: Projected uncertainty for spectroscopy on TeH+

|v = 0, J = 1, F = 1/2〉 → |v = 8, J = 2, F = 3/2〉.

since for these states there is no quadrupole or tensorial Stark shifts. However, the large

scalar polarizability of J = 0 makes this transition problematic, since it cannot be reduced

by averaging over Zeeman levels. Additionally, the differential quadratic Zeeman shift is

large for this transition.)

First order Zeeman shifts can be strongly suppressed by averaging the MF → M ′
F and

−MF → −M ′
F transitions within the manifold [70]. Alternatively, the first order Zeeman

shifts could be reduced by probingMF = 0 → M ′
F = 0 transitions in 125TeH+, which will also

have relatively small quadratic Zeeman shifts due to larger hyperfine splitting [65]. However,

since a single-photon E1 transition would not allow for driving from F = 0 → F ′ = 0, this

clock state approach would suffer from the large polar-molecule tensorial Stark shifts that

are not averaged away.

Quadratic Zeeman shifts arise from MF -preserving mixing between hyperfine states F =

J ± I. In the ground X10
+ manifold, J = 0 states will have a quadratic Zeeman shift from

mixing with J = 1. The J = 1 and J = 2 manifolds each have a pair of stretched states with

|MF | = F = J + 1/2 possessing small quadratic Zeeman shifts, which might be interesting

for precision spectroscopy. However, once again, using exclusively these stretched magnetic

sublevels states would not allow for nulling of the large tensorial Stark shift arising from the

polar nature of the molecule.
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We propose to null tensorial Stark, quadrupole, and linear Zeeman shifts in the same way

often done in optical atomic clocks [46, 47], by averaging over appropriate combinations of

MF → M ′
F with all MF ,M

′
F are spanned. We propose using J, J ′ > 0 to avoid scalar Stark

shifts associated with large rotational polarizability of the polar molecule. Specifically, we

propose averaging over four spectroscopy transitions: |v = 0, J = 1, F = 1/2,MF = 1/2〉 →
|v = 8, J = 2, F = 3/2,MF = 1/2(3/2)〉 and their negative MF partners. These transitions

have smaller differential quadratic Zeeman shifts than would transitions involving stretched

states.

VII. PROJECTED SYSTEMATIC UNCERTAINTIES

Projected limits to experimental precision are given in Table IV. Values are obtained for

a bias field of 300 nT, which is more than sufficient to resolve the Zeeman components. We

use a magnetic field instability of 10 nT, which is a few times worse than achieved in [71].

We use an electric field uncertainty of 100 V/m which is not the best achieved in single-ion

experiments [72] but is similar to the level arising in a 2-ion experiment where uncontrolled

DC fields of up to 10 V/m [73] pushes the ions off-axis into a finite rf field. Finally, for

quadrupole shifts, we use the axial gradient of our trap of 30 V/mm2 and conservatively

assume an uncertainty in this gradient of 1%.

The BBR uncertainty is from a 5 K temperature stability at 300 K. Light shifts are

discussed in Sec. IVE. The low-frequency scalar Stark shift uncertainty arises directly from

the uncontrolled rf fields described above. We rely on suppression of the tensorial Stark

shift by the MF averaging techniques discussed above, which have been used to suppress

tensorial Stark shifts by four orders of magnitude [74]. A suppression by 1000 would make

these shifts similar in magnitude to the scalar Stark shifts. Similarly, we project a quadrupole

shift uncertainty from the field gradient uncertainty discussed above and a suppression factor

of 1000 from MF averaging.

The proposed technique of suppression of linear Zeeman shifts by averaging over oppo-

site pairs of transitions within the spectroscopy manifold has achieved suppression of Bohr-

magneton sized linear Zeeman shifts at the < 10−17 level in a single-ion optical clock [74].

Note that this averaging suppresses the linear Zeeman shift at a level well below that asso-

ciated with the field uncertainty. Since our differential g-factor is much smaller (∆g = 0.02,
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discussed in Sec.V), we project an linear Zeeman uncertainty at < 10−18. The quadratic

Zeeman shift cannot be averaged away, and the value in Table IV is what comes directly

from the field uncertainty.

VIII. CONCLUSIONS

We have demonstrated the potential for single-photon vibrational overtone spectroscopy

on a single polar molecular ion to reach systematic uncertainties at the 10−18 level. If a

diagonal electronic transition in TeH+ can be exploited to obtain rapid state preparation [17],

then statistical uncertainties approaching the 10−17 level could be obtained for one day of

averaging. We conclude that taking measurements over the course of a year could probe for

varying µ with a sensitivity approaching the 1× 10−18/yr level.

The small projected systematic uncertainty comes as somewhat of a surprise, since polar

molecules have closely spaced rotational levels which are strongly mixed by low frequency

fields, resulting in large Stark shifts. In this work we point out that the associated polariz-

ability is scalar in character for J = 0 and indeed a significant issue, but that it is tensorial

in character for J > 0 and can thus be mitigated by simple averaging protocols regularly

used in atomic clocks. The vanishing of this J > 0 DC scalar polarizability arises from a

fortuitous relationship between rigid rotor oscillator strengths and level spacings.

Our results suggest that atoms, polar, and nonpolar molecules can reach similar levels

of systematic uncertainty, e.g. they all have electronic polarizabilities which ultimately

determine Stark shift uncertainties. However, statistical uncertainties are expected to be

quite different. Although homonuclear vibrational state lifetimes are much longer than

polar lifetimes, the achievable statistical uncertainty will depend heavily on details of the

experimental cycle, such as state preparation time. The spectroscopy cycling rate is a critical

issue which could favor polar molecules with diagonal transitions, despite their broader

transition linewidths.

Statistical uncertainty will ultimately limit the reach of single-ion spectroscopy on TeH+.

To improve the statistical reach of this proposal, the isotopologue TeD+ is of interest be-

cause it is predicted to have overtone linewidths twice as narrow. Alternatively, the rela-

tively short 15 µs lifetime of the TeH+ diagonal b0+-X0+ transition might allow fluorescence

state readout of multiple ions [75–77]. Performing spectroscopy on a |J = 0, F = 1/2〉 →
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|J = 1, F = 1/2〉 transition would give the ions a negative, albeit large, αS which might

allow precision spectroscopy on a 2D or 3D crystal with the rf frequency properly tuned

such that the Stark and second-order Doppler shifts cancel [75]. This transition would also

be free of tensorial Stark and quadrupole shifts. Finally, we note that the vibrational state

lifetimes of TeH+ are not particularly long compared with other polar species (e.g. a v = 1

lifetime of 4.0 s in CD+ [78] as compared with 0.2 s in TeH+), so searching for other coolable

candidates with favorable properties is well motivated.
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