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The implementation of a high-fidelity two-qubit quantum logic gate remains an outstanding chal-
lenge for isolated solid-state qubits such as Nitrogen-Vacancy (NV) centers in diamond. In this
work, we show that by driving pairs of NV centers to undergo photon scattering processes that flip
their qubit state simultaneously, we can achieve a unitary two-qubit gate conditioned upon a single
photon detection event. Further, by exploiting quantum interference between the optical transi-
tions of the NV centers electronic states, we realize the existence of two special drive frequencies: a
“magic” point where the spin-preserving elastic scattering rates are suppressed, and a “balanced”
point where the state-flipping scattering rates are equal. We analyzed four different gate operation
schemes that utilize these two special drive frequencies, and various combinations of polarization
in the drive and collection paths. Our theoretical and numerical calculations show that the gate
fidelity can be as high as 98%. The proposed unitary gate, combined with available single qubit
unitary operations, forms a universal gate set for quantum computing.

I. INTRODUCTION

Quantum computers are expected to achieve consid-
erable speedup as compared to classical computers [1–
4]. A specific set of examples of this speedup ranges
from polynomial for Grover’s search algorithm, to sub-
exponential for Shor’s factorization algorithm, to expo-
nential for Simon’s algorithm. There has been significant
progress on understanding complexity classes of quantum
computation and their relation to the complexity classes
of classical computation, see Ref. [5, 6] for a review of
this progress. The key resource that enables quantum
speedup is quantum entanglement. In order to generate
and harness this resource, it is essential to build high
fidelity multi-qubit quantum gates.

The electronic spin associated with the nitrogen-
vacancy (NV) centers in diamond is a promising qubit
candidate for solid-state quantum computing. The spin
states are well defined, have long spin relaxation and co-
herence times, and can be optically addressed for qubit
initialization and readout for quantum operations. The
qubits can be manipulated using either optical or mi-
crowave drive fields. However, a key missing ingredient
for NV center quantum computing is an experimental
demonstration of a high-fidelity 2-qubit unitary gate be-
tween NV centers at remote locations in the diamond
lattice.

There are two main directions that have been inves-
tigated for coupling pairs of NV centers. The first di-
rection, which has been proposed theoretically [7], relies
on collective dynamics of spin-chains to deterministically
generate couplings between two remote NV centers. The
second direction, which has been investigated both theo-
retically and experimentally, generates entanglement be-
tween two NV centers using a heralded method. Cabrillo

et al. showed that measurement can be used to project
two-qubit quantum state of atoms into an entangled state
in Ref. [8]. The idea of heralded probabilistic entan-
glement generation was also theoretically proposed and
studied in Refs. [9–14]. The quantum entanglement of
two NV centers using heralded method has also been ex-
plored experimentally. Bernien et al. observed quantum
entanglement of spins of two NV centers [15]. In a re-
lated work, Lee et al. demonstrated the entanglement
of vibrational modes of two macroscopic diamonds (but
not NV centers) [16]. Pfaff et al. experimentally entan-
gled spin states of two NV-centers, which they used for
quantum teleportation [17]. Hensen et al. experimen-
tally performed the Bell inequality test via entangling
two separated NV-center spin states [18]. It is impor-
tant to point out that the measurement of the photon
in Refs. [15, 17, 18] is effectively a parity projector that
projects the NV centers into a maximally entangled state.
The limitation of this approach is that while it can be
used to generate entanglement, it cannot be used to con-
struct a 2-qubit unitary gate.

Inspiration for our work comes from a previous theo-
retical proposal for constructing a heralded probabilistic
2-qubit unitary gate using generic atoms [19]. Specifi-
cally, Protsenko et al. showed that quantum interference
can be used to construct a 2-qubit unitary gate by con-
trolling the relative phase of the photons emitted by the
two atoms. This interference principle was later proposed
for building 2-qubit gates between a pair of atoms in op-
tical cavities coupled by linear optics [13].

In this paper, we propose an alternative 2-qubit uni-
tary gate for Nitrogen-Vacancy (NV) centers in diamond
heralded by a single scattered photon. Further, we pre-
dict that there exists a “magic” frequency which sup-
presses spin-state preserving scattering transitions in fa-
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vor of spin-flipping scattering transitions and a “balance”
point where two spin-state flipping scattering transitions
are equal. Utilizing these frequencies, in combination
with a single mode diamond waveguide to collect and
interfere the scattered photons, enables the proposed 2-
qubit gate to achieve high fidelity and high success proba-
bility. For success probability approaching unity, the gate
fidelity is ∼ 92%, while for fidelity approaching unity the
success rate approaches ∼ 34%.

A key advantage of our scheme is that, unlike the
schemes in Refs. [15, 17, 18] that rely on two-photon
Hong-Ou-Mandel interference, the success of our entan-
gling unitary gate is heralded by a single photon detec-
tion. For example, if our protocol were implemented with
bulk optics and microfabricated solid-immersion lenses in
diamond as has been previously demonstrated, the detec-
tion probability is p ∼ 10−4 [15], and with a conserva-
tive repetition rate ∼ 20 kHz, this would result in a suc-
cessful entangling gate operation every 0.5 seconds. By
contrast, entanglement events occur every 10 minutes in
the two-photon heralded schemes, which represents or-
ders of magnitude improvement in the clock rate. With
further improvements in collection efficiency using e.g.
the nanobeam waveguides that we propose and analyze
in this paper, and fast electronics, we can potentially
achieve kHz - MHz clock rates that would be comparable
to superconducting qubit quantum information proces-
sors.

This paper is organized as follows. In Sections II
and III we describe the main ingredients of our 2-NV
center unitary gate. In Section II, we focus on the pro-
posed experimental setup and how to use interference to
construct a unitary gate. In Section III, we argue for the
existence of a “magic” frequency at which qubit state-
preserving transitions are suppressed and a “balance” fre-
quency at which qubit state-flipping transitions are bal-
anced. We propose four gate operation schemes, three
utilizing the “magic” frequency and one the “balance”
frequency, and analyzed their fidelity, success probabil-
ity and unitarity. In Section IV, we analyze the success
probability and fidelity of the 2-qubit unitary gate with
possible experimental imperfections. We first build a
qualitative understanding of the processes involved in the
qubit dynamics and their effects on gate fidelity. Then
we perform a quantitative analysis using the quantum
trajectory method. We draw conclusions and present an
outlook in section V. Details of the proposed waveguide
geometry, photon collection efficiency, transition rate cal-
culations and further discussion of gate fidelity can be
found in the Appendix.

II. PROPOSED EXPERIMENTAL SETUP FOR
A 2-NV UNITARY GATE

In this section, we propose a realization of the scheme
of Ref. [19] adapted for NV centers. The 2-qubit uni-
tary gate that was proposed in Ref. [19] has two main

ingredients: (1) qubit state-flipping transitions that re-
sult in the emission of identical heralding photons, and
(2) optical path-lengths from the qubits to the detector
that differ by a π/2 phase difference. Ingredient (1) en-
sures that no matter the initial state of a qubit, whenever
it absorbs a drive-photon and flips, it emits the desired
heralding scattered photon. Ingredient (2) ensures that
the measurement of a scattered photon corresponds to a
unitary operation as opposed to a projection (e.g. ingre-
dient 2 ensures that disentangled initial states map onto
four distinct Bell states).

FIG. 1. (a) Schematic illustration for the proposed heralded
two NV center quantum gate. A sketch of the level diagram of
NV centers is shown in (b). The NV centers can undergo scat-
tering transitions to flip the qubit states and emit scattered
photons when they are driven by an off-resonance continuous
wave (CW) pump laser. The two NV centers with quarter
wavelength separation are in a single-mode diamond waveg-
uide. The waveguide collects and interferes the scattered pho-
tons emitted from the NV centers. The detectors monitor the
scattered photons collected by the diamond waveguide. The
unitary gate operation is heralded by the detection of a pho-
ton. (c) The coordinate system of an NV center (red spheres
– carbon; blue – vacancy; brown – nitrogen), relative to the
crystallographic axes of the diamond waveguide. The x̂, ŷ and
ẑ directions of the NV center match those of the waveguide,
e.g. the [1̄1̄1̄] direction of diamond crystal (the red vector
from the nitrogen to the vacancy) coincides with the axial
direction of the waveguide.

The experimental setup that we propose for a 2-qubit
unitary gate using spin states of two NV centers is shown
in Fig. 1(a). The two NV centers are embedded into a
single-mode diamond waveguide, and are selected so that
they are separated by (2n + 1)/4-wavelengths, where n
is an integer. The separation ensures that the emitted
photons have π/2 phase difference when they are cap-
tured by the detectors. Both NV centers are aligned so
that their x, y, and z-directions [20] (i.e. the [112̄], [11̄0],
[1̄1̄1̄], direction of the diamond crystal) match the x, y,
and z-directions of the waveguide (see Fig. 1(c)). State-
flipping transitions in both NV centers are pumped by
a continuous-wave laser applied transverse to the waveg-
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uide [in Fig. 1(a)]. The diamond waveguide collects and
interferes the state-flipping scattered photons from the
NV centers. Two detectors detect the photons collected
by the waveguide from both ends to improve the detec-
tion efficiency. We note that depending on whether the
detector on the left or on the right captures the pho-
ton we obtain slightly different unitary gates, which we
discuss below.

We begin by reviewing why the π/2 phase is critical
to achieve a unitary gate [19]. Assume that the NV cen-
ters have suitable state-flipping transitions which flip the
qubit state between |0〉 and |1〉 and emit indistinguish-
able photons [Fig. 1(b)]. Next, suppose that there is a
phase difference of χ in the optical path from the two
NV centers to the detector (on the right). Consider the
two initial states |0, 0〉 and |1, 1〉. If the detector on the
right clicks, the output states are |0, 1〉 + eiχ |1, 0〉 and
|1, 0〉+ eiχ |0, 1〉. In order for our 2-qubit gate to be uni-
tary, these two output states must be orthogonal, hence
χ = π/2 +nπ where n is an integer. Similar logic applies
to the cases in which the initial states are |1, 0〉 and |0, 1〉.

When the right detector clicks, the unitary 2-qubit gate
is described by the matrix:

Gr =
1√
2

 0 1 i 0
1 0 0 i
i 0 0 1
0 i 1 0

 , (1)

in the |0, 0〉, |0, 1〉, |1, 0〉 and |1, 1〉 basis. On the other
hand if the left detector clicks we obtain the gate de-
scribed by the matrix:

Gl =
1√
2

 0 i 1 0
i 0 0 1
1 0 0 i
0 1 i 0

 . (2)

Note that if we wanted to obtain Gr, but the left detector
clicks instead, we can apply the single-qubit operation
X1 ⊗X2 to both qubits to convert the gate operation in
Eq. (2) to the gate operation in Eq. (1). We note that
Gr can be expressed in terms of the control-Z (CZ) gate
and single-qubit gates as

Gr =
1 + i√

2
(H ⊗H)

(
S−1 ⊗ S

)
CZ(H ⊗H), (3)

where H is the Hadamard gate and S is the single-qubit
π/2 phase gate

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, (4)

and therefore, our two-qubit gate, in combination with
the available NV single-qubit gates, forms a universal
gate set.

FIG. 2. The sketch of the level diagram of NV center elec-
tronic states is shown in (a). The electronic ground state
|g〉 and excited state |e〉 splits due to the spin-orbit (SO)
and spin-spin (SS) interactions with the corresponding ir-
reducible representations (irrep) of the C3V group and ap-
proximated Sz quantum number. We choose to use state
|g2〉 = 1√

2
(|+1〉+ |−1〉) and state |g3〉 = i√

2
(|+1〉 − |−1〉)

as the qubit states. We demonstrate the state-flipping transi-
tions in (b) and state-preserving transitions in (c). The state-
flipping transitions are the transitions that flips between qubit
states |g2〉 and |g3〉. The other two transitions that does not
flip NV states are the state-preserving transitions.

III. SCATTERING TRANSITIONS OF AN NV
CENTER FOR UNITARY 2-QUBIT GATES

The main missing ingredient for constructing a 2-qubit
gate with NV centers is finding suitable state-flipping
transitions between qubit states of NV centers that emit
indistinguishable scattering photons. In this section, we
explore the electronic structure of NV centers and argue
for the existence of suitable transitions.

Detailed information on electronic structures of NV
centers can be found in Ref. [20, 21] and in Appendix
B of our paper. The electronic levels, including fine-
structure, of NV centers in diamond crystals without
strain is shown in Fig. 2(a). The electronic ground
state of NV center is a spin triplet. The spin-spin in-
teraction breaks the degeneracy of the NV electronic
ground state and splits the state |g1〉 = |g, Sz = 0〉 from
the states |g2〉 = 1√

2
(|g, Sz = +1〉+ |g, Sz = −1〉) and
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FIG. 3. The magnitudes of state-preserving and state-flipping
transition amplitudes given in the R.H.S of Eq. (7) [blue (dark
gray) lines] and Eq. (9) [yellow (light gray) lines] as we shift
the driving light frequency νd. There are two frequency points
that draw our attention: (1) the “magic” point (labeled by
red dashed arrow) at which the two state-preserving transi-
tion amplitudes are strongly suppressed, (2) the “balance”
point (labeled by blue solid arrow), where two state-flipping
transition amplitudes are balanced.

|g3〉 = 1√
2

(|g, Sz = +1〉 − |g, Sz = −1〉) by the zero field

splittingD/h = 2.87 GHz. The manifold of excited states
spans several GHz and consists of four discrete sets of
states with six states in total [see Fig. 2(a)]. These ex-
cited states can be labeled by the irreducible representa-
tion of the C3V group and the Sz quantum number. To
simplify notation, we label them |ej〉, where j = 1 to 6.
We note that in the presence of spin-spin (SS) interac-
tions Sz is not a good quantum number for the lowest
four excited states. However, as the SS interaction re-
sults in only a slight mixing between Sz = ±1 states and
Sz = 0 states we label the eigenstates |e1〉, |e2〉, |e3〉 and
|e4〉 by the dominant Sz component.

We propose to use the two-fold degenerate Sz = ±1
spin states, |g2〉 and |g3〉, as the logic 0 and 1 qubit
states. We use scattering transitions pumped by an off-
resonant laser to drive transitions between states |g2〉 and
|g3〉 and hence flip the logic state [Fig. 2(b)]. The scat-
tered photons from the two state-flipping transitions have
the same frequency because the states |g2〉 and |g3〉 are
energetically degenerate. There are two more scatter-
ing transitions that can occur in principle, i.e. Rayleigh
scatterings. These two transitions do not flip the qubit
state [Fig. 2(c)] and hence we call these transitions state-
preserving transitions. The scattered photons emitted
from these two transitions have the same frequency as the
ones from state-flipping transitions. To ensure successful
2-qubit gate operation we must ensure that the detec-
tors only click on state-flipping and not state-preserving
transitions.

The two ingredients that go into the calculation of the
optical transition rates are: (1) the dipole matrix ele-
ments between NV center ground and excited states and
(2) the interference between virtual excitations of the var-
ious excited states.

The results of the rate calculations for the state-
flipping and state-preserving transitions, as a function
of the drive frequency, are plotted in Fig. 3. We find
that as we tune the drive frequency the interference be-
tween virtual excitation paths results in the significant
variation of the transition rates. We identify two spe-
cial frequencies: first, there is a “magic” frequency for
which the state-preserving transitions are approximately
turned off. Second, there is a “balance” point frequency
for which the two state-flipping transition rates are equal.
We present the outline of the transition rate calculation
in Section III A (the details are presented in Appendix
B). Next, we discuss four different schemes for build-
ing a 2-qubit gate using the two special drive frequencies
and different configurations of polarizers in the collection
path. Specifically, we discuss how different schemes can
be used to optimize gate fidelity, success probability, and
unitarity. In Sections III B and III C we discuss gates
schemes M1, M2 and M3 that utilize “magic” frequency
drive light. The three schemes differ by drive light po-
larization and collection path configuration which let us
optimize either gate success probability or gate unitar-
ity. In Section III D, we discuss the gate scheme B1,
that utilizes driving light frequency which makes the two
state-flipping transitions balanced. We summarize the
configurations of the four gate operation schemes in Ta-
ble. I.

TABLE I. The configurations of the four gate operation
schemes. We list the driving light frequency and polariza-
tion, and the collection path polarizer orientation for each
schemes. Polarizations that appear in brackets are alterna-
tive to the ones that appear with no brackets.

Gate Drive Drive Collection path
schemes frequency polarization filter polarization
M1 “magic” point x̂ (ŷ) ŷ (x̂)
M2 “magic” point x̂+ ŷ (x̂− ŷ) x̂− ŷ (x̂+ ŷ)
M3 “magic” point x̂+ ŷ (x̂− ŷ) x̂+ ŷ (x̂− ŷ)
B1 “balanced” point x̂ (ŷ) ŷ (x̂)

A. Transition rate calculation: interference of
virtual excitation paths

The dipole moment matrix after taking spin-orbital
(SO) and spin-spin (SS) interaction into account can be
written as

p̂

p0
=

(
−F21x̂ F21ŷ F22x̂ F22ŷ −F23ŷ F23x̂
F21ŷ F21x̂ −F22ŷ F22x̂ F23x̂ F23ŷ

)
.

(5)
Here, p0 is the scale of the dipole moment; the matrix is
written in the basis p̂ij = 〈gi| p̂ |ej〉, where i = 1 for |g2〉,
i = 2 for |g3〉 and j = 1 to 6 for excited states |e1〉 to
|e6〉; and the factors F21, F22, F23 are three dimensionless
parameters from the microscopic NV center Hamiltonian,
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F21 = 0.7062, F22 = 0.0363, F23 = 1/
√

2 (see Ref. [20]
and Appendix B for details).

The scattering transition rates between the states |g2〉
and |g3〉 can be calculated using second order Fermi’s
golden rule. According to Eq. (5), if the driving light is
linearly polarized along x̂ or ŷ direction, the photons from
state-preserving transitions have the same polarization
as the incoming light, while the photons from the state-
flipping transitions have orthogonal polarization. There-
fore, the state-flipping scattering photons can be distin-
guished from state-preserving scattering photons by po-
larization. In general, the result of perturbation theory
can be expressed as

|gj〉 |σ̂1〉i
Hscatter−−−−−→ Aσ̂1

p,j |gj〉 |σ̂1〉o +Aσ̂1

f,j |gk〉 |σ̂2〉o (6)

where j, k = 1, 2 and j 6= k, A’s represent the transition
amplitudes, the incoming drive light is in the polarization
state σ̂1, and the outgoing light in the waveguide is in the
polarization state σ̂1 or σ̂2 [22].

Let us consider the case in which the driving light is
linearly polarized along either x̂ or ŷ direction, and hence
〈σ̂1|σ̂2〉 = 0. We present the generic case in Appendix
C. Assuming the driving light frequency is νd, based on
the dipole moment matrix, the state-preserving transi-
tion amplitudes can be worked out as,

Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

=
1

∆1
F 2

21 +
1

∆3
F 2

22 +
1

∆6
F 2

23

Axp,3

A
(x)
0

=
Ayp,2

A
(y)
0

=
1

∆2
F 2

21 +
1

∆4
F 2

22 +
1

∆5
F 2

23

(7)

where the ∆i = εe,i−εg−hνd is the energy mismatch, εe,i,
εg are the energy of the excited state |ei〉 and the ground
state |g2〉, |g3〉. As we shift the driving light frequency νd,
the energy detuning of each excited level (∆i) changes.

Two scale factors, A
(x)
0 and A

(y)
0 , are defined as A

(σ)
0 =

p2
0Ed,σE0u0, where Ed,σ is the driving light electric field

along σ̂ direction, E0 =
√
hνd/(2ε0) is the electric field

associated with a single photon in the waveguide, u0 is
the normalized waveguide mode profile at the location of
the NV centers (see Eq. (44) in Appendix C) We assume
that the electric fields of the two guided modes have the
same u at the location of the NV centers. In Appendix
C, we show that there is a region inside the waveguide
where the two modes have balanced coupling to the NV
centers. See Appendix C for details. In the following

discussion, we assume these two parameters, A
(x)
0 and

A
(y)
0 , are equal. We also notice that the equality relations

Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

,
Ayp,2

A
(y)
0

=
Axp,3

A
(x)
0

(8)

hold if | 〈g2| p̂ |ei〉 | = | 〈g3| p̂ |ei〉 | for all excited states.

Similarly, the state-flipping transition amplitudes are,

Axf,2

A
(x)
0

=
Ayf,3

A
(y)
0

= − 1

∆1
F 2

21 −
1

∆3
F 2

22 +
1

∆6
F 2

23

Axf,3

A
(x)
0

=
Ayf,2

A
(y)
0

=
1

∆2
F 2

21 +
1

∆4
F 2

22 −
1

∆5
F 2

23

(9)

Note that these two equality relations
Axf,2

A
(x)
0

=
Ayf,3

A
(y)
0

and

Ayf,2

A
(y)
0

=
Axf,3

A
(x)
0

do not rely on the special symmetry in dipole

moment elements. We plot the magnitudes of the R.H.S.
of the Eq. (7) and Eq. (9) in Fig. 3 as we shift the driving
light frequency νd.

B. M1 2-qubit gate scheme: “Magic” frequency,
x̂-polarized drive light

As we shift the driving light frequency νd, we notice
that there is a “magic” point where both state-preserving
transition rates are highly suppressed because of the de-
structive interference between the virtual paths through
the different excited states (see Fig. 3).

When we use an x̂ polarized driving light, the scat-
tered photons from state-preserving transitions are po-
larized along the x̂ direction, while the polarization of
the photons from state-flipping transitions are orthogo-
nal, i.e. along ŷ. We can use a polarizer to further fil-
ter the state-flipping photons from the state-preserving
photons. Heralding on the photons coming through the
polarizer, we achieve a 2-qubit gate on the NV centers.
This is our proposed gate scheme M1.

At the “magic” frequency the transition amplitudes
satisfy Axp,2 = −Axp,3 > 0, Axf,2 < 0 and Axf,3 > 0. There-
fore we define Axp,2 = −Axp,3 = Ap > 0 and define

A1 ≡ |Axf,2| = −Axf,2, A2 ≡ |Axf,3| = Axf,3. (10)

Since the state-preserving transition amplitudes satisfies
Axp,2 = −Axp,3 > 0, we can also define Ap = Axp,2 = −Axp,3.

At the “magic” frequency, however, the two state-
flipping transition amplitudes are not balanced. These
two unbalanced transition amplitudes cause the resulting
gate to be slightly non-unitary. Assuming the polarizer
is perfect and the right detector captures the heralding
photon, the 2-qubit gate is described by the matrix,

G(1),ub
r =

 0 A2 iA2 0
−A1 0 0 iA2

−iA1 0 0 A2

0 −iA1 −A1 0

 (11)

in the basis |g2; g2〉, |g2; g3〉 and |g3; g2〉 and |g3; g3〉. If
we have two balanced state-flipping transitions, i.e. A1 =
A2, after proper normalization, the gate operation is a 2-
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qubit unitary gate, and it can be written as

G(1),b
r =

1√
2

 0 1 i 0
−1 0 0 i
−i 0 0 1
0 −i −1 0

 (12)

where we write down the gate operation in the same basis
as Eq. (11). Notice that this gate operation is different
from the one shown in Eq. (1). This is because of the
negative state-flipping transition amplitude Axf,2. This
gate is also equivalent to CZ gate combining with single
qubit gates as,

G(1),b
r =

1 + i√
2

(
(S−1H)⊗ (SH)

)
CZ
(
(HS−1)⊗ (HS)

)
(13)

where S, H are single qubit phase gate and Hadamard
gate shown in Eq. (4). When the two transition ampli-
tudes are not balanced, i.e. A1 6= A2, the gate operation
shown by Eq. (11) is not unitary.

we calculate the entanglement fidelity of our 2-qubit
gate. Notice that both the entanglement fidelity and the
average fidelity, which can be relatively easily calculated,
it is proven to be related [23, 24]. Here Here, we use the
entanglement fidelity for the quantum channel to eval-
uate the quality of our gate [25]. Consider a quantum
channel E acting on quantum system Q. Suppose there
is another quantum system R and there is a maximally
entangled state |φ〉 on system QR. The entanglement
fidelity is defined as:

Fe(EQ) = 〈φ| [IR ⊗ EQ] (|φ〉 〈φ|) |φ〉 (14)

where IR is the action of the identity operation on the
system R and EQ is the action of the quantum channel
on the system Q. In our scenario we considered a 2-qubit
gate operation instead of a quantum channel to transfer
a quantum state. We adapt the above definition to the
entanglement fidelity of an imperfect quantum gate oper-
ation G as compared to the ideal quantum gate operation
U via:

Fe(UQ,GQ) = 〈φ|
[
IR ⊗ (U†Q ◦ GQ)

]
(|φ〉 〈φ|) |φ〉 (15)

where UQ is the desired unitary gate operation on sys-
tem Q and GQ is the non-ideal gate operation, notation ◦
stands for composition of gate operations. Note that the
quantum operation G should be trace preserving, though
it may be non-unitary. For example, the quantum oper-

ation G, corresponding to the gate G
(1),ub
r , on the system

density operator ρ is,

G(1),ub
r (ρ) =

G
(1),ub
r ρ

[
G

(1),ub
r

]†
Tr

[
G

(1),ub
r ρ

[
G

(1),ub
r

]†] (16)

To apply the definition above to a two-qubit system,
we need another two-qubit system in order to construct

a maximally entangled state over the four-qubits. We
choose the state |φ〉 =

∑4
j=1

1
2 |jR〉 |jQ〉, where |j〉 is

|g2; g2〉, |g2; g3〉, |g3; g2〉, |g3; g3〉 for j = 1 to 4 on cor-
responding 2-qubit systems. With the transition ampli-
tudes calculated at the “magic” frequency as A1 ∼ 0.1696
and A2 ∼ 0.2252, the entanglement fidelity of our gate
operation shown in Eq. (11) is

Fe(G(1),b
r ,G(1),ub

r ) =
(A1 +A2)2

2(A2
1 +A2

2)
∼ 0.981. (17)

C. M2 & M3 2-qubit gate schemes: “Magic”
frequency, x̂± ŷ-polarized drive light

In this subsection, we discuss two schemes, M2 and
M3, to perform the 2-qubit gate operation at the “magic”
frequency. In the M2 scheme, we choose (x̂+ŷ) polarized
driving light with a (x̂ − ŷ) polarizer (mode filter) on
the collection path. In the M3 scheme, we also choose
(x̂ + ŷ) polarized diving light, but use (x̂ + ŷ) polarizer.
Scheme M2 results in a slightly non-unitary gate with
higher success probability as compared to scheme M3.
Scheme M3, on the other hand, results in a 2-qubit gate
that is exactly unitary, but has a low success probability.
We note that similar schemes can be constructed with
the alternative choice of (x̂− ŷ) polarized drive light.

To understand the gate operation when we rotate the
driving light polarization, we need to know the scattered
photon polarization. Suppose the driving photon is in
state |σ̂d〉 = cos(θ) |x̂〉i + sin(θ)eiφ |ŷ〉i. According to
Eq. (6), if an NV center is initialized in |g2〉 state, the
final states of the NV center and the scattered photon
are

|g2〉⊗ |σ̂d〉
Hscatter−−−−−→ |Ψ2;σ̂d〉

= |g2〉
(
cos(θ)Axp,2 |x̂〉+ sin(θ)eiφAyp,2 |ŷ〉

)
+ |g3〉

(
cos(θ)Axf,2 |ŷ〉+ sin(θ)eiφAyf,2 |x̂〉

) (18)

where we use notation |Ψ2,σ̂d〉 to show the final state
of the NV center and the scattered photon when the
initial state of NV center is |g2〉 and the drive light
is |σ̂d〉. Using the σ̂d polarized driving light to pump
the transition from a single NV center in state |g2〉,
the state-preserving scattered photon is in state |σ̂p2〉 ∝
cos(θ)Axp,2 |x̂〉 + sin(θ)eiφAyp,2 |ŷ〉 up to a normalization
constant, while the state-flipping scattered photon is in

state |σ̂f3 〉 ∝ cos(θ)Axf,2 |ŷ〉+ sin(θ)eiφAyf,2 |x̂〉. Similarly,
the state of the photons from the scattering process with
initial state |g3〉 are |σ̂p3〉 ∝ Axp,3 cos(θ) |x̂〉+Ayp,3 sin(θ) |ŷ〉
for state-preserving photons, and |σ̂f3 〉 ∝ Axf,3 cos(θ) |ŷ〉+
Ayf,3 sin(θ)eiφ |x̂〉 for state-flipping photons.

As we rotate the driving light from the x̂ to ŷ direc-
tion, the scattered photons from two state-flipping transi-

tions do not have the same polarization, i.e. 〈σ̂f2 |σ̂
f
3 〉 6= 1

after the proper normalization of states |σ̂f2 〉 and |σ̂f3 〉.
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̂x

̂y
drive: ̂x + ̂y

state-preserving: ̂x − ̂y

state-flipping 
θ

FIG. 4. Polarization diagram for drive light polarized along
(x̂+ŷ). State-preserving scattered photons are polarized along
(x̂ − ŷ). State flipping scattered photons are polarized in a
direction ±θ away from (x̂− ŷ) (the sign being determined by
the initial state of the NV center).

This occurs because the transition amplitudes Axf,2 =

Ayf,3 6= Ayf,2 = Axf,3. Therefore, we need a polarizer on
the collection path to erase the quantum information car-
ried by the state-flipping photons. If the NV center in
state |gi〉 is pumped with |σ̂d〉 drive light and the po-
larizer in the collection path only allows photons in the
state |p〉 = − sin(α) |x̂〉o + cos(α)eiβ |ŷ〉o, then the final
state of the NV center heralded by a photon detection is

|ψp̂i,σ̂d〉 ∝ 〈p |Ψi;σ̂d〉.
By rotating the driving light polarization to the di-

rection (x̂ + ŷ), i.e. |σ̂d〉i = |+〉 = 1√
2
(|x̂〉i + |ŷ〉i), we

balance the state-flipping transition rates. In this case,
the state-preserving photons are polarized along (x̂− ŷ)
direction, and the state-flipping photons are polarized at
a small angle ±θ to the (x̂ − ŷ) direction, the sign be-
ing determined by the initial state of the NV center (see
Fig. 4).

In scheme M2, we erase quantum information carried
by the state-flipping photon by inserting a polarizer along
the (x̂ − ŷ) direction in the collection path. In scheme
M3 we use (x̂+ ŷ) polarizer instead.

We now analyze scheme M2 and come back to scheme
M3 below. The polarizer only allows photons in the state
|p〉 = |−〉 = −1√

2
(|x̂〉o − |ŷ〉o) to reach the detector. Using

the relation of the transition amplitudes in Eq. (10), the
transformation of a single NV center state after the de-
tector captures a heralding scattered photon is described
by:

Ts =
Ā√

A2
p + Ā2

(
Ap/Ā −1

1 −Ap/Ā

)
(19)

in the basis |g2〉 and |g3〉, where Ā is the average state-
flipping transition amplitude defined as Ā = (A1+A2)/2.

Again, assuming the right detector captures a photon,
the 2-qubit gate can be described by the matrix,

G(2)
r =

Ā

N


−(1+i)Ap

Ā
1 i 0

−1
(1−i)Ap

Ā
0 i

−i 0
(i−1)Ap

Ā
1

0 −i −1
(1+i)Ap

Ā


(20)

in the basis of |g2; g2〉, |g2; g3〉 and |g3; g2〉 and |g3; g3〉,
where the normalization constant is defined as N2 =
2(A2

p + Ā2). Note that this gate is still not unitary.
The non-unitarity is due to the existence of the resid-
ual state-preserving photons that cannot be filtered out
from the scattered light. However, since we are working
at the “magic” frequency of the driving light where the
state-preserving transitions are highly suppressed, the
gate unitarity is only slightly broken. By the same argu-
ment as in Section III B, with state-preserving transition
amplitude Ap ∼ 0.0278, the entanglement fidelity of this
gate is

Fe =
Ā2

Ā2 +A2
p

∼ 0.981. (21)

Since the polarization of the state-flipping photon is
not aligned to the (x̂− ŷ) direction exactly, the existence
of the polarizer causes the desired photons to have a loss
probability, which decreases the gate success probability.
In an ideal experimental setup, the gate operation fails
if the first state-flipping photon fails to pass the polar-
izer. Therefore, we calculate the probability that a pho-
ton emitted from the NV centers successfully passes the
polarizer to estimate the gate success probability. This
probability is given by:

P− = 〈−|TrNV(ρ) |−〉 =
Ā2 +A2

p

(A2
1 +A2

2) /2 +A2
p

(22)

where ρ is the density operator for the NV centers and the
scattered photon at the time when the scattering process
has occurred but the photon has not gone through the
polarizer, |−〉 = 1√

2
(− |x̂〉+ |ŷ〉) is the photon state that

are allowed to pass the polarizer, TrNV is the partial trace
over all degrees of freedom of NV centers. In this case,
the success probability of our gate is 98.1%.

Scheme M3 is similar to scheme M2, except that we
orient the polarizer along (x̂+ ŷ) direction to only allow
photons in state |p〉 = |+〉 = 1√

2
(x̂+ ŷ) to pass the polar-

izer. In this case, the gate is perfectly unitary (when op-
erated at the “magic” frequency). Following arguments
similar to the M2 scheme above, we find that the 2-qubit
gate, conditioned on a click in the right detector, is de-
scribed by the matrix:

G(3)
r =

1√
2

 0 1 i 0
1 0 0 i
i 0 0 1
0 i 1 0

 . (23)

Note that this gate operation exactly matches Eq. (1).
However, since the scattered photons from state-

flipping transitions are nearly polarized along (x̂ − ŷ)
direction, the component along the direction (x̂ + ŷ) is
small, which causes a low gate success probability as most
state-flipping photons are stopped by the polarizer. Sim-
ilar to the previous case, the gate success probability is
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calculated as:

P+ = 〈+|TrNV (ρ) |+〉 =
(A1 −A2)

2
/4

(A2
1 +A2

2) /2 +A2
p

∼ 1.9 %.

(24)

D. B1 2-qubit gate scheme: “Balance” frequency
drive light

Because of the orthogonality of the dipole moment ma-
trix discussed at the beginning of Section III B, the scat-
tered photons from state-preserving and state-flipping
transitions can be fully distinguished by polarization if
the driving light is along x̂ or ŷ direction. Therefore,
besides the “magic” frequency of the driving light, we
can find a frequency point for the driving light to give
us balanced state-flipping transitions and use a polarizer
to discard the state-preserving photons. This “balanced”
point is shown in Fig. 3 by the blue arrow. If the driv-
ing light is polarized along x̂ direction, at the “balance”
frequency, the state-flipping transition amplitudes satisfy
Axf,2 = Axf,3. Combining this fact with a polarizer along
ŷ direction in the collection path, if the right detector
captures the scattered photon, the 2-qubit unitary gate
is described by the matrix

G(4)
r =

1√
2

 0 1 i 0
1 0 0 i
i 0 0 1
0 i 1 0

 (25)

in the same basis as Eq. (11).
Unlike in scheme M3 that was described in the previ-

ous subsection, in scheme B1 the state-preserving tran-
sition rate is comparable to the state-flipping transi-
tion rate. We now point out that the existence of
state-preserving transitions, though the scattered pho-
tons from these transitions are completely filtered out,
decoheres the initial states of the NV centers.

To understand the decoherence mechanism associated
with the state-preserving transitions, we construct the
master equation to describe the time evolution of the
NV center. We assume the NV centers are driven by a
x̂ polarized light and the polarizer in the collection path
is along ŷ direction. For simplicity, we assume the emit-
ted photons only couple to the right propagating modes
of the waveguide and are detected by the right detec-
tor. Since the state-preserving photons are polarized
along ŷ, while the state-flipping photons are polarized
along x̂, they couple to two different waveguide modes
(see Appendix A for details). We further assume the
driving light is weak and far-detuned from the excited
states, so we can construct an effective Hamiltonian to
describe the scattering process where only ground states
|g2〉 and |g3〉 of NV centers appear (see Appendix C for
details). Therefore, we can treat each NV center as a two-
level system. We further treat the two waveguide modes
as two thermal baths at temperature zero and trace out

the photon degrees of freedom, so that the master equa-
tion for the NV centers is:

∂tρ = B
(

2L̂ρL̂† − L̂†L̂ρ− ρL̂†L̂
)

+B
(

2ĜρĜ† − Ĝ†ρĜ− ĜρĜ†
)
,

L̂ = A
(x)
f,2

(
iσ

(1)
23 + σ

(2)
23

)
+A

(x)
f,3

(
iσ

(1)
32 + σ

(2)
32

)
,

Ĝ = A
(x)
p,2

(
iσ

(1)
22 + σ

(2)
22

)
+A

(x)
p,3

(
iσ

(1)
33 + σ

(2)
33

)
,

(26)

where L̂ and Ĝ are two jump operators describing the
state-flipping transitions and state-preserving transitions

respectively, the operator σ
(i)
jk is the operator acting on

i-th NV center and flips NV state from |gj〉 to state |gk〉,
i.e. σ

(i)
jk = |gk〉 〈gj | for i-th NV center, and B = 2πneff

c~2

is a constant, where neff is the mode effective refractive
index (see Eq. (53) in Appendix C). We find that the

second term in the master equation involving Ĝ causes
the off-diagonal elements of the two-NV density matrix
to decay if the state-preserving transitions are not bal-
anced. This means that if our initial state is prepared in
an entangled state of two NV centers, the entanglement
between the two NV centers is destroyed by these unde-
tected state-preserving transitions, which will also limit
our gate operation time at this frequency point.

We can also calculate the gate success probability using
a similar method to the one illustrated by Eq. (22) and
Eq. (24), which we find to be 37.4%. Note that the suc-
cess probability is a “first-photon” success probability,
which means we know in advance the scatter has hap-
pened and a single scattered photon has already been
emitted into the waveguide mode. In the more realis-
tic case, we can only monitor the detector and we have
no information whether the state-preserving transitions
happens or not. Gate fidelity and success probability for
this case will be discussed in Section. IV using quantum
trajectory method.

IV. 2-QUBIT GATE FIDELITY AND SUCCESS
PROBABILITY

In this section, we analyze the fidelity and success
probability of our proposed 2-qubit gate for NV centers
with possible experimental imperfections. First of all,
we notice that NV centers have a phonon side bind which
causes Raman scatterings. However, these scattered pho-
tons do not have same frequencies as the driving light so
that we can filter out and also monitor these photons.
The existence of the phonon side band decreases the gate
success probability, but does not decrease the gate fi-
delity. In the following discussion, we ignore the phonon
side band and mainly focus on (1) the imperfect scattered
photon collection and detection efficiency of the experi-
mental setup, (2) the unbalanced state-flipping transition
rates, and (3) possible population loss from the |g2〉 and
|g3〉 manifold. We use quantum trajectory simulations
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FIG. 5. (a) Unitary gate fidelity, F , drops as overall scattered photon collection efficiency, η, decreases with the first gate
operation strategy (see main text). The missing scattered photon cases degrade the gate fidelity when photon detection
efficiency is imperfect. Using the second gate operation strategy (see main text), the the gate fidelity [in (b)] and success
probability [in (c)] is investigated numerically as a function of maximum collection time window (∆τ). The overall photon
detection efficiency is 85%.

with continuous measurement of the scattered photons
to estimate the output state fidelity and success proba-
bility with different gate operation schemes and photon
collection strategies. In the simulations we use the tran-
sition amplitudes calculated at the corresponding driving
light frequency and take different types of imperfections
together into consideration.

A. Imperfect scattered photon collection and
detection efficiency

Unlike the quantum entanglement proposals in Ref. [8–
12], when applying a unitary gate to two NV centers, in
general, we do not know in advance which states these
NV centers are. Therefore the NV centers cannot be reset
back to initial input state to re-apply the gate operation.
It is critical to detect the first state-flipping photon from
the two NV centers to perform the unitary gate operation
successfully. One possible error source in real experiment
for our proposed 2-qubit gate is the imperfect photon col-
lection and detection efficiency of the experimental setup,
which we now discuss.

If the detection efficiency of the setup is imperfect, any
loss of the heralding photons indicates that undetected
state-flipping transitions occurred on either of the two
qubits. After missing one or several scattered photons,
a photon detection projects the NV centers into an un-
desired 2-qubit state, which degrades the gate fidelity.
To estimate the quality of the gate operation with im-
perfect photon detection efficiency, we perform quantum
trajectory calculation with continuous measurement of
the scattered photons to numerically investigate the gate
fidelity and success probability.

In our model, because we only consider the scatter-
ing between the states |g2〉 and |g3〉, we treat NV cen-
ters as 2-level systems by using the effective Hamiltonian
for the scattering process (see Appendix C for details).
For simplicity, we ignore other imperfections, i.e. our
2-qubit gate is working at a fictitious driving frequency
at which two state-preserving transitions are perfectly

suppressed and the two state-flipping transitions are bal-
anced. Therefore, the transition amplitudes in Eq. (26)
satisfy Axp,2 = Axp,3 = 0 and Axf,2 = Axf,3 ≡ A and thus
the master equation can be written as,

∂ρ

∂t
= −Γ

2

(
L̂†L̂ρ+ ρL̂†L̂− 2L̂ρL̂†

)
L̂ = iσ

(1)
23 + σ

(2)
23 + iσ

(1)
32 + σ

(2)
32

(27)

where Γ = B|A|2 is the state-flipping transition rates,

σ
(i)
jk = |gk〉 〈gj | is the operator for i-th NV transiting from

state |gj〉 to state |gk〉 with j, k = 2, 3. Because in the
present consideration, the two state-flipping transitions
are balanced, the output state fidelity for all possible
input states should be the same and hence the output
state fidelity for a certain input state is the gate fidelity.
We choose state |ψi〉 = |g2〉⊗ |g2〉 as the input state. We
labels the 2-NV state |gi〉 ⊗ |gj〉 as |gi; gj〉.

To calculate the output state fidelity of input state
|ψi〉 = |g2; g2〉, at the beginning of each trajectory, we
initialize both NV centers in |g2〉 state and stochastically
evolve the two NV centers according to the master equa-
tion in Eq. (27) conditioned on the measurement result
from the detector. When a photon is emitted from NV
center, it has probability η to be detected by the de-
tector, otherwise the photon is lost into the bath. The
photon detection is a projection measurement, with the
jump operator L̂ in Eq. (27) as the measurement projec-
tor. When a scattered photon is detected by the detector,
the density matrix collapses to ρ′ ∝ L̂ρL̂† up to a nor-
malization constant. It is obvious that if the detection
efficiency η = 1, the gate operation is a 2-qubit unitary
gate described by Gr in Eq. (1).

The first strategy to perform the 2-qubit unitary gate
is to run the trajectory until we receive a photon by the
detector. In real experiment, it is equivalent to running
the experiments until a photon is detected without lim-
iting the collection time window. When a photon is de-
tected, we stop the time evolution of the trajectory and
calculate the output state fidelity using the target state
|ψt〉 = Gr |ψi〉 = 1√

2
(|g2; g3〉+ i |g3; g2〉). Since we do
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not limit the total time to end the protocol, we always
have a positive detection result and thus the gate is al-
ways considered as success. However, the gate fidelity
suffers from the missing photon cases. We ran 1000 in-
dependent trajectories in total to build up statistics for
the gate fidelity. The gate fidelity as a function of over-
all photon detection efficiency (η) is shown in Fig. 5(a).
The numerical simulation matches our expectation that
as the collection efficiency drops, it becomes more and
more likely that the first scattered photon is missed, and
hence the overall output state fidelity drops. When the
collection efficiency η = 1, the fidelity is 1. The fidelity
drops to 0.5 when the overall photon detection efficiency
drops to η ∼ 0.45. Based on the proposed geometry of
the diamond waveguide, we calculate the overall collec-
tion efficiency of the diamond waveguide to be 85% (see
Appendix for details). At the 85% photon collection ef-
ficiency, the gate fidelity is 0.8547± 0.0040.

The second strategy aims to improve gate fidelity with
an imperfect photon detection efficiency, by limiting the
maximum photon collection time window. This will help
to rule out missing photon cases and improve the fidelity
of the 2-qubit gate operation. However, as we decrease
the collection window, it is possible not to detect any
photons within the time bin, and hence the gate success
probability is expected to drop as we shrink the collection
window. We numerically investigate the output state fi-
delity and success probability as we change the duration
of collection window. We use the same quantum trajec-
tory method with a collection efficiency η to stochasti-
cally time evolve the master equation in Eq. (27). We
still use the state |ψi〉 = |g2; g2〉 as the input state and
|ψt〉 = 1√

2
(|g2; g3〉 + i |g3; g2〉) as the target state. If we

get a positive detection result within the collection win-
dow, we stop the trajectory and measure the output state
fidelity. Otherwise, if no scattered photon is detected
till the end of the collection window, we reckon the gate
fails and stop the trajectory. The numerically calculated
average gate fidelity and gate success probability with
η = 0.85 as we change the collection window is plotted
in Fig. 5(b) and Fig. 5(c) respectively. The average gate
fidelity improves as we shrink the collection window, but
the success probability drops, as we expected. For exam-
ple, if we choose the collection window Γ∆τ = 0.1, the
fidelity can be improved to 0.9857±0.0007, however, the
success probability of the gate decreases to 0.155. To con-
clude, this gate operation strategy trades the successful
probability for high gate fidelity.

We want to point out that Ref. [26] shows that con-
structing a graph or cluster state requires a minimum
success probability of 1/3. In our numerical simulations
this threshold can be met by setting the collection win-
dow to be Γ∆τ = 0.3, which results in the gate success
probability of 0.397 and an average output state fidelity
of 0.9588± 0.0013.

B. Unbalanced state-flipping transitions

In the above calculation, we assumed that the two
state-flipping transition rates are balanced. However,
this assumption does not have to hold. For example,
in scheme M1, which we discuss in Section III B, the
transition rates for the two state-flipping transitions are
different. Furthermore, the state-flipping transition rates
of two NV centers may also be different (e.g. due to dif-
ferent coupling strength to the waveguide modes). In
Section III B, we considered the gate fidelity when the
state-flipping transitions rates are not equal, but two NV
centers are identical. In this subsection we consider a
more general case when the two state-flipping transitions
of two NV centers emit indistinguishable scattered pho-
tons, but the rates can be different. We analyze the gate
operation and the gate fidelity.

When the state-flipping transition rates are different

from one NV center to the other one, we use A
(i)
1 and

A
(i)
2 to note the transition amplitude for state-flipping

transitions from |g2〉 to |g3〉 and |g3〉 to |g2〉 of i-th NV
center. Here we assume there is no state-preserving tran-
sitions and detection efficiency is 1 to only focus on the
imperfection caused by the unbalanced state-preserving
transitions. We also assume the state-flipping transition
amplitudes are all positive.

Similar to the previous subsection, we assume the
scattered photons only couples to the right-propagating
modes, and thus the master equation of the two NV cen-
ters in this case is similar to the master equation shown
in Eq. (26) as,

∂ρ

∂t
= −B

2

(
L̂†L̂ρ+ ρL̂†L̂− 2L̂ρL̂†

)
L̂ = iA

(1)
1 σ

(1)
23 +A

(2)
1 σ

(2)
23 + iA

(1)
2 σ

(1)
32 +A

(2)
2 σ

(2)
32

(28)

When a photon is captured by the detector, it corre-
sponded to a projection measurement onto the NV cen-
ters which is described by the jump operator L̂. There-
fore the gate operation can be described by the matrix,

L̂ =


0 A

(2)
2 iA

(1)
2 0

A
(2)
1 0 0 iA

(1)
2

iA
(1)
1 0 0 A

(2)
2

0 iA
(1)
1 A

(2)
1 0

 (29)

in the same basis as Eq. (11). We can use the same
method as discussed in Section III B to estimate the gate
fidelity. We can define Ā as the average of these four

state-flipping transition amplitudes as Ā =
∑
i,j A

(i)
j /4

and the derivations of each specific transition amplitude

from this average amplitude by δi,j = A
(i)
j −Ā. When the

four transition amplitudes are not severely unbalanced,
i.e.

∣∣δi,j/Ā∣∣� 1, we can expand the output state fidelity

in series of δi,j/Ā. In general, the gate fidelity will drop
linearly as δ2

i,j/Ā
2 increases. As we see from Section III B,
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when A
(1)
i = A

(2)
i , the deviation of the transition ampli-

tudes δi,1 = −δi,2 ≡ δ. The gate fidelity can then be
expanded as,

F =
Ā2

Ā2 + δ2
∼ 1− δ2

Ā2
(30)

Let’s also discuss the case when two state-flipping tran-
sition amplitudes for a single NV center are balanced,
however, the same transitions for different NV centers
have a constant transition amplitude offset. In this case,

we assume A
(1)
j = Ā − δ, and A

(2)
j = Ā + δ. The gate

fidelity is also given by Eq. (30).

C. Overall output state fidelity

In this subsection, we evaluate the gate quality by nu-
merically simulating the output state fidelity and success
probability with the four possible gate operation schemes
discussed in Section III combined with the two proposed
collection strategies discussed in Section IV A. The four
gate operation schemes are summarized in Table. I. The
two collection strategies are collecting the photon (1)
without and (2) with a maximum collection window ∆τ .

With all four gate operation schemes, we explore the
output state fidelity when state |ψ1〉 = |g2; g2〉, |ψ2〉 =
|g2; g3〉 and |ψ3〉 = 1√

2
(|g2; g2〉+ i |g3; g3〉) as the gate in-

put states using quantum trajectory simulation with con-
tinuous measurement on the scattered photons. We set
the overall collection efficiency of the photons through
the polarizer to 85%. The gate average fidelity and
gate success probability without and with a maximum
collection time window ∆τ = 0.1/Γ̄f is shown in Ta-
ble II. Here, Γ̄f is the average state-flipping transition
rates, Γ̄f =

(
A2

1 +A2
2

)
/2, where A1 and A2 is the abso-

lute value of the state-flipping transition amplitudes at
the working frequency [see Eq. (6)]. We also listed the
output state fidelity with corresponding gate operation
schemes with perfect photon detection efficiency and in-
finite pump power for reference, which set a theoretical
upper bound for the output state fidelity in the corre-
sponding cases.

To estimate the gate fidelity of the different schemes
we use the worst output state fidelity in Table II. M3
and B1 are two schemes that are perfectly unitary in
ideal conditions. When we don’t setup a finite collec-
tion window, since the gate operation scheme M3 suffers
low success probability, even with perfect collection effi-
ciency, the output state fidelity drops significantly from
unity. This is because most of the detected photons are
from the long-time scatter events, i.e. the NV center sys-
tem tends to relax to its steady state before the heralding
photon is detected. Therefore, it is equivalent to applying
the gate to the steady state of the master equation, which
gives an output state fidelity ≈ 0.25. If we don’t limit
the collection window, the gate operation scheme B1 has
significantly different output state fidelity when the input

TABLE II. Output state fidelity and gate success probabil-
ity for input states |Ψ1〉 = |g2; g2〉, |Ψ2〉 = |g2; g3〉, |Ψ3〉 =
1√
2
(|g2; g2〉+ i |g3; g3〉) with the four gate operation schemes,

M1, M2, M3 and B1 (see Table. I), when the photon collec-
tion efficiency is perfect (labeled Perfect Collection), imper-
fect with an infinite photon collection time window (labeled
η = 0.85, Γ̄f∆τ = ∞), and imperfect with a finite photon
collection time window (labeled η = 0.85, Γ̄f∆τ = 0.1). Note
for the case of perfect collection, and the case of imperfect
collection with infinite photon collection time window P = 1.

Input Perfect η = 0.85 η = 0.85
State Collection Γ̄f∆τ =∞ Γ̄f∆τ = 0.1

F F F P
M1
|Ψ1〉 1.0 0.848± 0.004 0.9896± 0.0006 0.106
|Ψ2〉 0.981 0.837± 0.005 0.9704± 0.0005 0.164
|Ψ3〉 0.981 0.824± 0.005 0.9665± 0.0006 0.156
M2
|Ψ1〉 0.981 0.819± 0.005 0.9683± 0.0006 0.172
|Ψ2〉 0.981 0.824± 0.005 0.9678± 0.0006 0.166
|Ψ3〉 0.981 0.823± 0.005 0.9683± 0.0006 0.169
M3
|Ψ1〉 1.0 0.255± 0.002 0.916± 0.004 0.0037
|Ψ2〉 1.0 0.256± 0.002 0.902± 0.004 0.0035
|Ψ3〉 1.0 0.255± 0.002 0.911± 0.004 0.0033
B1
|Ψ1〉 1.0 0.859± 0.004 0.9870± 0.0006 0.172
|Ψ2〉 1.0 0.857± 0.004 0.9842± 0.0007 0.153
|Ψ3〉 1.0 0.571± 0.006 0.906± 0.004 0.150

state is |ψ1〉 (or |ψ2〉) and |ψ3〉. This is because the un-
detected state-preserving transitions decohere the input
state, even though they do not flip the NV spin states
and their photons are perfectly separated from the state-
flipping photons. The input state |ψ3〉 decoheres to an
equal mixture of states |g2; g2〉 and |g3; g3〉, which makes
the output state-fidelity drop to ≈ 0.5. The finite collec-
tion time window helps to discard the long-time detection
events, which improves the output-state fidelity signifi-
cantly, especially for the gate operation scheme M3.

Gate operation schemes M1 and M2 are not perfectly
unitary even in the ideal case. However, since the polar-
izer setup has little probability to block the state-flipping
photons and the state-preserving transitions are highly
suppressed due to the “magic” frequency of the driving
light, these two schemes behave much better when the
collection time is not limited. When we have a finite col-
lection window, the output state fidelity also improves.
Compared to the gate operation schemes M3 and B1, the
schemes M1 and M2 have better output state fidelity.

We comment that schemes M3 and B1 can, in prin-
ciple, reach sufficiently high fidelity so as to overcome
the error correction threshold. This would make it pos-
sible to implement error correction codes like the surface
code [27, 28]. At present, achieving this goal requires (1)
significant progress in optical single photon detectors and
(2) device optimization that is closely tied to the device
fabrication process.
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D. Population loss due to the transition out of the
|g2〉, |g3〉 manifold

Any process that transfers population out of |g2〉 and
|g3〉 manifold, i.e. to the other states like |g1〉, results in
no further photon detections after this “leakage” transi-
tion happens. This will degrade the success probability
of the gate. There are two possible leakage paths, (1)
by the Raman scattering process to state |g1〉, (2) by ex-
citing to the NV electronic excited states then by the
non-radiative relaxation through the meta-stable states
of NV centers to |g1〉.

To examine the effect of spin Raman transition from
logic states |g2〉 and |g3〉 to state |g1〉, we refer to the
dipole matrix in Eq. (41) in Appendix B, and calculate
the leakage transition amplitudes as,

Axl,2

A
(x)
0

=
1

∆1
F21F11 −

1

∆3
F22F12

Ayl,2

A
(y)
0

= − 1

∆1
F21F11 +

1

∆3
F22F12

Axl,3

A
(y)
0

= − 1

∆2
F21F11 +

1

∆4
F22F12

Ayl,3

A
(x)
0

= − 1

∆1
F21F11 +

1

∆3
F22F12

(31)

Where F11 = 0.0513 and F12 = 0.9987 are two dimen-
sionless parameters from the dipole moments between
eigenstates of spin-orbit and spin-spin Hamiltonian of
single NV centers (see Eq. (41) in Appendix B), ∆i are
the energy mismatch for excited level |ei〉. If we con-
sider the fact that the excited states |e1〉 and |e2〉, |e3〉
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FIG. 6. We study the population leakage from state |g2〉 and
|g3〉 manifold into state |g1〉 state caused by spin-Raman tran-
sitions. We plot the transition rate under the same pumping
laser as in Fig. 3. The “magic” frequency is pointed out by
the red dashed arrow while the “balance” frequency is labeled
by the blue solid arrow. The population leakage rate by spin-
Raman transition is much slower than the state-flipping tran-
sitions shown in Fig. 3 and hence we do not expect to see
large population within the detection window.

and |e4〉 are energetically degenerate, i.e. ∆1 = ∆2,
∆3 = ∆4, these four transition amplitudes satisfies

− Axl,2

A
(x)
0

=
Ayl,2

A
(y)
0

=
Axl,3

A
(y)
0

=
Ayl,3

A
(x)
0

. We plot the magnitude of

R.H.S of Eq. (31) in Fig. 6, and label the “magic” point
and “balance” point by red dashed and blue solid arrows
respectively. At the “balance” point, the leak transition
amplitudes are two orders of magnitudes smaller than the
state-flipping transition amplitudes and hence have little
impact on the gate operation scheme B1. The population
of the NV centers in ground states |g2〉 and |g3〉 decays
slowly to |g1〉 due to the existence of the leakage transi-
tions, which sets a maximum gate operation window to
avoid significant population loss.

At the “magic” point, the leak transition amplitudes
are comparable to the state-preserving transition am-
plitudes. Note that this suppression is not due to the
interference. Instead, it is mainly suppressed by the
small mixing of excited spin Sz = 0 states with spin
Sz = ±1 states that caused by the spin-spin interac-
tion [20]. Compared to the state-flipping transition am-
plitudes, the leakage transition amplitudes are approxi-
mately ten times smaller than the state-flipping transi-
tion amplitudes. The gate operation schemes working at
the “magic” frequencies are not severely affected.

To quantitatively estimate the effect of the non-
radiative relaxation process, we approximate the dynam-
ics of NV centers with the metastable spin-singlet states
as a three-level system, ground state |0〉, excited state |1〉
and meta-stable state |2〉. The transition between states
|0〉 and |1〉 are driven by an off-resonance classical laser
field. The non-radiative relaxation process from state |1〉
to meta-stable state |2〉 are modeled by the coupling to
a thermal optical phonon bath with temperature zero.
Therefore the dynamics can be described by the master
equation

∂tρ = −i(2π) [−δσ00 + ΩR (σ01 + σ10) , ρ] + Lρ,

Lρ = −ΓNR
2

(σ11ρ+ ρσ11 − 2σ21ρσ12) ,
(32)

where operators σij are defined by σij = |i〉〈j|, hδ =
ε1−ε0−hνd is the detuning of the drive field, εi is the en-
ergy of the state |i〉, hΩR = p0Ed is the Rabi frequency,
p0 is the dipole moment for the optical transition be-
tween |0〉 and |1〉, which is approximated as p0 ≈ 5.2 De-
bye (see Appendix C and Ref. [29]), Ed is the driving
light electric field, ΓNR is the non-radiative relaxation
rate from state |1〉 to |2〉.

We estimate the non-radiative relaxation rate ΓNR

by the lifetime of the excited levels of NV centers. In
Ref. [21], a six-level model is introduced to describe the
NV center electronic structure. The excited manifold is
simplified as two states with quantum number Sz = 0 and
Sz = ±1, with measured lifetime 12.0 ns and 7.8 ns re-
spectively [30]. We further assume that the excited state
Sz = 0 has no relaxation path to the meta-stable state
and the radiative relaxation from excited states back to
ground states of NV centers are the same, and hence the
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non-radiative relaxation rate from excited state Sz = ±1
can be estimated using the difference of the lifetimes of
these two excited states as ΓNR ≈ 44.9 MHz.

We approximate the detuning by the smallest detuning
of our driving light, to one of the four excited states with
Sz ∼ ±1, i.e. |e1〉, |e2〉, |e5〉 and |e6〉. If our proposed gate
is working at the “magic” frequency of the driving light,
the detuning δ ≈ 3.95 GHz for a ŷ polarized driving light
and 5.11 GHz for a x̂ polarized driving light. Clearly,
ΓNR/δ � 1, so that we work in the dressed-state basis
and then treat the Lindblad term Lρ in Eq. (32) as a
perturbation.

In our previous treatment of scattering transitions, we
implicitly assumed that the Rabi frequency is small com-
pared to detuning, i.e. ΩR/δ � 1. The dressed state ba-
sis for the Hamiltonian in Eq. (32) is |−〉 ∼ |0〉 − ΩR

δ |1〉
and |+〉 ∼ |1〉 + ΩR

δ |0〉. If all the population is in
state |0〉 at the beginning, we would expect most of
the population will be remain in the state |−〉 after
we start driving the Rabi oscillation. Since the non-
radiative relaxation removes the population in state |1〉
only, the decay rate for the population in state |−〉 is

Γ− ∼ ΓNRσ11 |−〉 〈−|σ11 ∼ ΓNR
Ω2
R

δ2 ∝ E2
d . As we show

in Appendix C, the state-flipping transition rate at the
“magic” point is Γt ∼ Γ0 ∝ E2

d , we can calculate the ra-
tio between the lower state-flipping transition rates ver-
sus the non-radiative relaxation rate as Γt/Γ− ∼ 1.63
and 0.975 for x̂ and ŷ polarized driving light respectively,
which are independent of the driving strength Ed. These
two ratios set a hard limit on the collection time window
of the scattered photon before the population is lost.

We perform the same calculation at the “balance”
point, and determine the hard limit on the collection win-
dow. As the “balance” point is located between the ex-
cited states |e5〉 and |e6〉, this balance frequency for gate
operation is more vulnerable to population loss. The
transition ratio Γt/Γ− is calculated as 0.744 and 0.412
for x̂ and ŷ polarized driving light at “balance” point.
We summarize the parameters we used and the results in
Table III for reference.

V. SUMMARY AND OUTLOOK

In this paper, we proposed a 2-qubit unitary quan-
tum gate to achieve quantum logic operations using two
NV centers. We theoretically analyzed how a photon is
scattered by an NV center, taking care of the interfer-
ence between different excitation paths. We found that
for scattering rates between two electronic spin states
(|Sz = ±1〉) there are two special frequencies for the driv-
ing light: a “magic” frequency at which the state con-
serving scattering rate is suppressed and a “balanced”
frequency at which the state-flipping transition rates are
equal. We analyzed the gate unitarity, fidelity and suc-
cess probability for each of the schemes with possible
experimental imperfections. When the photon collection
efficiency is ∼ 0.85, the gate fidelity of the most reli-

able scheme can reach ∼ 0.97 when we impose a photon
collection window 0.1/Γ̄f , where Γ̄f is the averaged state-
flipping transition rate. While decreasing the photon col-
lection window can improve the gate fidelity, the corre-
sponding decrease in the success probability will have
to be mitigated by some other means to ensure we stay
above the threshold for cluster or graph-state quantum
computing. The proposed scheme could also be extended
to other qubits such as Silicon-vacancy in diamond, or to
localized vibronic states of the NV or other defect centers
where the larger energy splittings can allow for quantum
computing even at room temperature.
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VII. APPENDIX

Appendix A. Waveguide modes and the NV center
coupling strength

In this section of the appendix, we analyze the tri-
angular diamond waveguide and its mode profiles. The
triangular diamond waveguide we proposed in our paper
has 300 nm edge. The diamond waveguide can be exper-
imentally fabricate using anisotropic plasma etching [31].
The mode profiles are calculated by solving eigenproblem
of discretized transverse Maxwell equation using Lumer-
ical Mode solution solver. There are only two degener-
ate guided modes at the “magic” frequency. The mode
profiles are shown in Fig. 7. The modes are normalized
according to,∫

dxdyεr(x, y) ~E∗m(x, y) · ~En(x, y) = δm,n (33)

where indices m and n are for modes, εr is the relative
permittivity.

To calculate the light collection efficiency of the di-
amond waveguide, we treat the NV-center as a dipole
moment ~p = |p| · p̂ located at position ~r0, where p̂ is
the unit vector along the dipole moment. We only con-
sider the dipole interaction between NV-centers and the
modes inside the waveguide. If we have a well defined

mode in the cross-section, whose electric field is ~En(~r),
the emission rate from the NV-center to this mode Γn
is proportional to |p|2 · | ~En(~r0) · p̂|2. For a complete set
of orthonormal modes in space with frequency of emis-

sion light { ~En(~r)}, the total rate can be calculated as

Γtotal =
∑
n|p|2 · | ~En(~r0) · p̂|2. Therefore, the collection
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TABLE III. Summary of the parameters we used for estimating the effect of the non-radiative relaxations. We also listed
the smallest frequency detuning when the drive light is at the “magic” frequency and the “balanced” frequency and the
corresponding ratio between lower state-flipping transition rate versus the non-radiative relaxation rate, Γt/Γ−.

NV-center electronic dipole moment p0 5.2 Debye
Non-radiative relaxation rate for NV excited states ΓNR 44.9 MHz
x̂-polarized drive at “magic” frequency detuning δ 5.11 GHz

transition rates ratio Γt/Γ− 1.63
ŷ-polarized drive at “magic” frequency detuning δ 3.95 GHz

transition rates ratio Γt/Γ− 0.975
x̂-polarized drive at “balance” frequency detuning δ 3.45 GHz

transition rates ratio Γt/Γ− 0.744
ŷ-polarized drive at “balance” frequency detuning δ 2.57 GHz

transition rates ratio Γt/Γ− 0.412

(c)(b)(a)

(d) (e) (f)

FIG. 7. The mode profiles of the triangular diamond waveguide. The waveguide has 300 nm edge. The diamond waveguide
supports two degenerate propagating modes. Mode 1 Ex, Ey and Ez components are plotted in (a) to (c), while mode 2
components are plotted in (d) to (f).

efficiency of the waveguide is,

η(~r0) =

∑′
n| ~En(~r0) · p̂|2∑
n| ~En(~r0) · p̂|2

, (34)

where
∑′
n is the summation over the guided modes only,

an
∑
n is the summation over all the modes in the com-

plete set of orthonormal modes.
In the numerical approach, we cannot solve an infinite

large region. Instead, we solve the modes using a finite
size cross-section region. The boundary condition around
the region is chosen as perfect matched layer (PML) to
simulate the infinite space. We plot the collection effi-
ciency of the diamond waveguide with a dipole moment

pointing along x, y and z direction at different position
in this cross-section in Fig. 8. From the figure, the collec-
tion efficiency for a NV-center whose electric dipole mo-
ment is along the x or y direction is η ≈ 0.86. However,
when the dipole moment is pointing along z direction,
the collection efficiency is poor because a dipole moment
pointing along z direction mainly radiates in a direction
transverse to the direction of the waveguide.

Assuming the NV center is centered in the waveguide,
i.e. x, y ∼ 0, and the NV center is orientated as Fig. 1(c)
shows, the optical dipole moment is along the transverse
direction of the waveguide. According to Fig. 8, the NV
center optical transitions with x̂ dipole moment strongly
couples to the mode 1 and almost no coupling to mode 2,
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FIG. 8. The diamond waveguide collection efficiency of the Raman photon emitted from a NV-center located in the cross-section
of the waveguide. The NV-center is modeled as a dipole moment. The black triangle labeled in the plot shows the diamond
waveguide boundary. The collection efficiency of photons when the dipole moment is pointing along x, y and z direction is
plotted in (a), (b) and (c).

while the transitions with ŷ dipole moment strongly cou-
ples to the mode 2 and almost no coupling to mode 1.

Appendix B. Dipole moment of NV-centers
without external magnetic field

In this section, we discuss the NV center dipole mo-
ment matrix for optical transitions between electronic
ground and excited state of NV centers with spin-orbit,
spin-spin interactions, and with strain field in diamond
crystal. We assume there is no magnetic field applied to
the NV center. Here, we follow the notation of Ref. [20],
which gives a detailed review of the electronic properties
of negatively charged NV centers. We want to stress that
the directions x̂, ŷ and ẑ in this section are the intrinsic
directions of an NV center. The direction ẑ is defined as
the axial direction of NV center, i.e. the direction along
the nitrogen atom and the vacancy site, which is the [111]
direction of the diamond crystal.

The NV center electronic fine states structure is shown
in Fig. 3(a) of our main paper. Here we assume the dipole

moment operator ~̂p between the molecule orbits of NV-
centers are,

〈ex| ~̂p |a1〉 = p0 · x̂ , 〈ey| ~̂p |a1〉 = p0 · ŷ (35)

where |a1〉, |ex〉 and |ey〉 are molecule orbits of NV cen-
ters [20], x̂ and ŷ are unit vector pointing along x or y
direction. We note that the state |ey〉 has intrinsic dipole

moment and 〈ex| ~̂p |ey〉 is non-zero. However, since we
only consider the transition between spin-triplet ground
states and excited states of an NV center, the assumption
in Eq. (35) is enough. The equality of the magnitude of
these two dipole moment is guaranteed by Wigner-Echart
theorem.

Using Eq. (35) with Table 1 (and Table A.1) in
Ref. [20], we can calculate the dipole moment operators
between the electronic fine levels of ground and excited
states. Here we only consider spin 1 states whose en-
ergy is inside the diamond band gap. Because the dipole
transition does not interact with spin degree of freedom,
the spin projection along z direction should be invariant.
The non-zero dipole moment operator elements between
definite orbital symmetry states are:

〈A2, 1, 0|~̂p |Ex, 1, 0〉 = p0 · ŷ

〈A2, 1, 0|~̂p |Ey, 1, 0〉 = p0 · x̂

〈A2, 1,+1|~̂p |Ex, 1,+1〉 = p0 · ŷ

〈A2, 1,+1|~̂p |Ex, 1,+1〉 = p0 · x̂

〈A2, 1,−1|~̂p |Ex, 1,−1〉 = p0 · ŷ

〈A2, 1,−1|~̂p |Ex, 1,−1〉 = p0 · x̂

(36)

Here the states are labeled as |k, S, Sz〉, where k labels
the lattice symmetry group irreducible representations,
S is the spin quantum number, Sz is the z-direction spin
projection quantum number. These states can be found
in Ref. [20] Table 1 and Table A.1. For completeness, we
list them using hole representation here,

|A2, 1, 0〉 = (|exēy〉+ |ēxey〉) /
√

2

|Ex, 1, 0〉 = (|ā1ex〉+ |a1ēx〉) /
√

2

|Ey, 1, 0〉 = (|ā1ey〉+ |a1ēy〉) /
√

2
|A2, 1, 1〉 = |ēxēy〉
|Ex, 1, 1〉 = |ā1ēx〉
|Ey, 1, 1〉 = |ā1ēy〉
|A2, 1,−1〉 = |exey〉
|Ex, 1,−1〉 = |a1ex〉
|Ey, 1,−1〉 = |a1ey〉

(37)

where the bar denotes spin-down.
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Similarly, we can also find the dipole moment operators
between definite spin-orbital symmetry states which are
shown in Table 1 of Ref. [20]. The states |g1〉, |g2〉 and
|g3〉 are used to label states ΦSO

1,A1
, ΦSO

2,E,x and ΦSO
2,E,y in

Ref. [20] respectively. Since these states do not mix under
spin-orbit and spin-spin interactions, we write them down
explicitly here for ease of use later,

|g1〉 = |A2, 1, 0〉

|g2〉 =
−1√

2
(|A2, 1, 1〉 − |A2, 1,−1〉)

|g3〉 =
−i√

2
(|A2, 1, 1〉+ |A2, 1,−1〉) .

(38)

We also write down the excited fine levels with definite
spin-orbit symmetry, which we label |e1〉 to |e6〉 here
(these are labeled ΦSO

5,E,x, ΦSO
5,E,y, ΦSO

6,E,x, ΦSO
6,E,x, ΦSO

7,A2

and ΦSO
8,A1

in Ref. [20]):

|e1〉 = ΦSO
5,E,x = 1

2 [−i (|Ex, 1, 1〉+ |Ex, 1,−1〉)
− (− |Ey, 1, 1〉+ |Ey, 1,−1〉)]

|e2〉 = ΦSO
5,E,y = 1

2 [− (− |Ex, 1, 1〉+ |Ex, 1,−1〉)
+i (|Ey, 1, 1〉+ |Ey, 1,−1〉)]

|e3〉 = ΦSO
6,E,x = − |Ey, 1, 0〉

|e4〉 = ΦSO
6,E,y = |Ex, 1, 0〉

|e5〉 = ΦSO
7,A2

= 1
2 [(− |Ex, 1, 1〉+ |Ex, 1,−1〉)
+i (|Ey, 1, 1〉+ |Ey, 1,−1〉)]

|e6〉 = ΦSO
8,A1

= 1
2 [−i (|Ex, 1, 1〉+ |Ex, 1,−1〉)
+ (− |Ey, 1, 1〉+ |Ey, 1,−1〉)]

(39)

The non-zero dipole moment operator matrix elements
can be calculated for states of definite spin-orbital (SO)
symmetry using the molecular orbitals. The dipole mo-
ment operators between the SO ground and excited state

are labeled ~̂pi,j = 〈gi| ~̂p |ej〉, and can be represented as a
matrix:

~̂pi,j = p0 ·

 0 0 x̂ ŷ 0 0

− x̂√
2

ŷ√
2

0 0 − ŷ√
2

x̂√
2

ŷ√
2

x̂√
2

0 0 x̂√
2

ŷ√
2

 . (40)

Here 0 indicates forbidden in dipole transitions. Note,
this dipole moment operator matrix is consistent with
the group symmetry prediction shown in Table A.4 of
the Ref. [20].

Furthermore, the spin-orbit interaction and spin-spin
(SS) Hamiltonian given in the basis of SO states can be
found in Ref. [20] Table 2 and Table 3. Due to the large
energy separation between the electronic ground states
and excited states, the matrix elements out of the block
of ground states or excited states are ignored, i.e. the
perturbation theory can applied to the electronic ground
states and excited states separately. The perturbation
Hamiltonian for SO and SS interactions in ground state

manifold, Vg = V
(SO)
g + V

(SS)
g , is diagonal, which means

the states |g1〉, |g2〉 and |g3〉 are still the eigenstates of

the NV-center with SO interaction (V
(SO)
g ) and SS inter-

action (V
(SS)
g ). However, the perturbation Hamiltonian

in the excited state manifold, Ve = V
(SO)
e +V

(SS)
e , is not

diagonal. Besides affecting the level splitting, the pertur-
bation interaction Hamiltonian results in mixing of the
excited state.

We can find a unitary matrix Ue to diagonalize the ex-
cited state perturbation Hamiltonian Ve by UeVeU

†
e . The

eigenstates of the new basis can be transformed from the
SO basis by applying the unitary matrix Ue to the SO ba-
sis. Therefore, the dipole moment operator between the
ground states and the new excited states can be found

by treating
(
~̂pi,j

)
in Eq. (40) as a matrix and applying(

~̂pi,j

)
·U†e . After taking the SS interactions into consid-

eration, the excited state |e1〉 mixes with state |e3〉, state
|e2〉 mixes |e4〉, which results in small but non-zero dipole
moment matrix elements between ground states |g2〉 and
|g3〉 to the excited states |e3〉 and |e4〉. The eigenstates
that diagonalize the SO and SS interaction Hamiltonian
in NV electronic excited states are noted as SS basis of
the NV center excited states and they are labeled as |ẽi〉
for i = 1 to 6. Note that the notation |ei〉 in our main
paper refers to the SS basis states instead. The dipole
moment operator between NV ground states and SS basis
states of excited states is

~̂p

p0
=

 −F11x̂ −F11ŷ F12x̂ F12ŷ ~0 ~0
−F21x̂ F21ŷ −F22x̂ F22ŷ −F23ŷ F23x̂
F21ŷ F21x̂ F22ŷ F22x̂ F23x̂ F23ŷ


(41)

where F11 = 0.0513, F12 = 0.9987, F21 = 0.7062, F22 =
0.0363, F23 = 1/

√
2.

The strain field (~ξ) can also affect the NV electronic
states. The strain field interactions to the NV electronic
ground states are much smaller than the interactions to
the excited states. Therefore we ignore the strain inter-
action to the NV ground states and only consider the
excited state mixing due to the strain field. According to
Ref. [20], axial strain field (ξz) does not mix the excited
states, it only shifts the energy of the excited states and
hence the dipole moment matrix does not change. How-
ever, the interaction Hamiltonian due to transverse strain
field ξx and ξy has off-diagonal matrix elements in the SO
basis of excited states, which means the transverse strain
field mixes the SO basis of excited states.

Assume the transverse strain field is small so that the
group symmetry of NV center is still preserved. The
interaction Hamiltonian for x̂-direction strain field is

H(ξx) =


0 0 0 0 0 −E
0 0 0 0 E 0
0 0 E 0 0 0
0 0 0 −E 0 0
0 E 0 0 0 0
−E 0 0 0 0 0

 (42)

in the basis of the SO basis states, where E is the interac-
tion strength introduced by x̂ direction strain field. From
the Hamiltonian, the excited state |e1〉 mixes with state
|e6〉, state |e2〉mixes with state |e5〉. Since the dipole mo-
ment between the states |e1〉, |e6〉 and ground states has
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the same direction, we should expected that the dipole

moment elements between SS basis states 〈ẽ1| ~̂p |gj〉 and

〈ẽ6| ~̂p |gj〉 for j = 2, 3 does not change directions, which
can be easily checked after diagonalize the SO, SS with
the strain field coupling Hamiltonian. Similar to the

〈ẽ2| ~̂p |gj〉 and 〈ẽ5| ~̂p |gj〉. Besides, due to the perturbation
introduced by x̂-direction strain field, the degeneracy of
excited states |ẽ1〉 and |ẽ2〉 as well as the degeneracy of
states |ẽ3〉 and |ẽ4〉 is broken.

The Hamiltonian for small ŷ-direction strain field in
diamond crystal is,

H(ξy) =


0 0 0 0 −E 0
0 0 0 0 0 −E
0 0 0 −E 0 0
0 0 −E 0 0 0
−E 0 0 0 0 0
0 −E 0 0 0 0

 (43)

where E is the interaction energy due to the ŷ direction
strain field. The ŷ direction strain field mixes the ex-
cited state |e1〉 with |e5〉, state |e2〉 with |e6〉 and state

|e3〉 with |e4〉. The dipole moment 〈ẽi| ~̂p |gj〉 for i = 1 to
6 and j = 2, 3 does not point along x̂ or ŷ directions any
more. Instead, the dipole moment between the same ex-
cited state and the two ground states |g2〉 and |g3〉 are no
longer orthogonal. This feature of the dipole moment ma-
trix causes that the scattering light from state-preserving
and state-flipping transitions are not polarized along per-
pendicular directions.

Appendix C. Transition rates and Scattered
photon polarization

In this section, we present the details of the scattering
rate calculation. To estimate the magnitude of the dipole
moment, we modeled the relaxation from the electronic
excited state with Sz = 0 (e.g |e3〉), back to ground state
with Sz = 0 (e.g. |g1〉) as a two-level system spontaneous
relaxation process. If we ignore the slow relaxation pro-
cesses from state |e3〉 to the other two ground state lev-

els |g2〉 and |g3〉, then the lifetime of state |e3〉, which is
13 ns [21], can be used to estimate the value of dipole mo-
ment. The magnitude of dipole moment estimated based
on this method is |p| = e|d| = 5.2 Debye [29], where e is
the electron charge.

As we pointed out in Appendix A and Appendix B
the NV center dipole moments for optical transition be-
tween ground and excited states are along the transverse
direction. Therefore, we choose to match the axial di-
rection of NV centers (ẑ direction) to the waveguide ẑ
direction to have optimum coupling efficiency. We also
choose to match the NV center intrinsic transverse direc-
tions x̂ and ŷ with the waveguide transverse direction x̂
and ŷ as Fig. 1(c) shows.

To calculate the scattering transition rates between
ground states |g2〉 and |g3〉, we consider a single NV
center residing inside an infinitely long waveguide shown
in Appendix A. The quantized guided waveguide mode
in a length L waveguide, with wavevector along the
waveguide axial direction kz and mode index m is [32]:

Êkz,m = E0(kz)~ukz,m(x, y)akz,m
1√
L
eikzz−iωkz t + h.c.,

(44)
where akz,m is the annihilation operator for photons with
kz and mode m, ωkz is the angular frequency of the mode
photon, which can be determined by the waveguide dis-
persion relations, E0(kz) =

√
~ωkz/2ε0 in which ε0 is the

vacuum permittivity, ~ukz,m(x, y) is the mode profile on
the cross section of the waveguide. The mode profile is
normalized according to the normalization condition,∫

dxdy εr(x, y)~u∗kz,m(x, y) · ~ukz,n(x, y) = δm,n (45)

To simplify the calculation, we assume the NV cen-
ters only couple to the driving light and the waveguide
modes, and ignore the coupling to the non-guided modes.
We further assume the driving light is a classical field
while the waveguide modes are quantized. The interac-
tion Hamiltonian is,

Hint =Hdrive +Hguide

Hdrive =

∑
i,j

~E∗d(~r0) · ~̂pi,j |gi〉 〈ej | ei(ωd−ωej,gi)t + h.c.


Hguide =

∑
i,j

∑
kz

∑
mk

E0(kz)
(
~ukz,mk(~r0) · ~̂p∗i,j

)
akz,m |ej〉 〈gi| e

i(ωej,gi−ν~k,λ) + h.c.

 .
(46)

Hdrive is for the interaction between the NV center and
the driving light. The classical electromagnetic field,

~E(~r)eiωdt, is the driving laser light. ~̂pi,j is defined as

〈gi| ~̂p |ej〉, where |ej〉 is the eigenstates of electronic ex-
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cited state of NV center. Hguide is for the interaction
with the waveguide guided modes, ~r0 is the position of
the NV center. The summation index i = 1 to 3, while
index j = 1 to 6. The mode index m goes through all
the guided modes in the waveguide with wave vector kz.

Note that the photon scattering process from ground
state |gi〉 to the ground state |gi′〉 is a second order pro-
cess. We use second order Fermi’s golden rule to calcu-
late the transition rates. Assuming that initially there
are no photons in the guided modes, and hence the ini-
tial state is |Ψi〉 = |gi〉 ⊗ |0〉, where |0〉 is the vacuum
guided mode fields, while the scattering final state is
|Ψf 〉 = |gi′〉 ⊗ |1m〉, where |1m〉 is the state for one pho-
ton inside the guided mode m. Based on the second order
Fermi’s Golden Rule, the transition rate from initial state
|gi〉 ⊗ |0〉 to final state |gi′〉 ⊗ |1m〉 is,

Γi→i′ =
2π

~
δ(εf − εi)

×

∣∣∣∣∣∣
6∑
j=1

〈Ψf |
Hguide |ej〉 |0〉 〈0| 〈ej |Hdrive

~ωd + εg,i − εe,j
|Ψi〉

∣∣∣∣∣∣
2 (47)

where εg,i and εe,j are for the energy of NV states |gi〉
and |ej〉, ωd is the driving light angular frequency. We

define an effective Hamiltonian for Raman transition as,

Heff =

6∑
j=1

Hguide |ej〉 |0〉 〈0| 〈ej |Hdrive

~ωd + εg,i − εe,j

=
∑
kz,m

6∑
j=1

Akz,m(~r0)

∆j
(ûkz,m · p̂i′,j)

∗
(
λ̂d · p̂i,j

)
a†kz,m

(48)
where Akz,m(~r0) is a constant defined as
E0(kz)u

∗
kz,m

Edp
2
0, energy mismatch ∆j is defined

as ~ωd + εg,i − εe,j . The variable ukz,m is the magnitude
of the waveguide mode with wave-vector kz and mode
index m at the NV position ~r0, ûkz,m is the unit vector
along the electric field of the mode at the NV center
location, p̂i,j is defined as p̂i,j = ~pi,j/p0 in which ~pi,j is
the dipole moment operator elements between ground
state |gi〉 and excited |ej〉. The driving field magnitude
at the NV location is noted as Ed, while its polarization

direction is labeled as λ̂d. The transition amplitude can
be written as 〈Ψf |Heff |Ψi〉.

As we pointed out in Appendix A, at the “magic”
frequency, there are only two guided modes supported
by the diamond waveguide. Further, mode 1 and mode
2 only have non-zero Ex or Ey components respectively
(when the NV center is centered in the waveguide: x, y ∼
0). Therefore, the transitions with x̂ dipole and transi-
tions with ŷ dipole couple to different modes. If we also
assume that at the NV center location, Ex(~r0) of mode
1 is equal to Ey(~r0) of mode 2, the constant A does not
depend on mode number m. If we only considered the
modes which respect the energy conservation, and use
x̂ polarized light to drive the transitions, the effective
Hamiltonian can be written as,

Heff,kz0/Akz0 =

(
F 2

21

∆1
+
F 2

22

∆3
+
F 2

23

∆6

)
|g2〉 〈g2| a†kz0,2 +

(
F 2

21

∆2
+
F 2

22

∆4
+
F 2

23

∆5

)
|g3〉 〈g3| a†kz0,2

+

(
−F 2

21

∆1
+
−F 2

22

∆3
+
F 2

23

∆6

)
|g3〉 〈g2| a†kz0,1 +

(
F 2

21

∆2
+
F 2

22

∆4
+
−F 2

23

∆5

)
|g2〉 〈g3| a†kz0,1

(49)

where we adopt the dipole moment operator expres-
sion in Eq. (41). The first and second terms give the
state-preserving transitions, while the third and fourth
terms give the state-flipping transitions. According to
Eq. (49), photons from state-preserving transitions and
state-flipping transitions have perpendicular polariza-
tions, and hence they couple to two different modes. Sim-
ilarly, if the driving light is polarized along ŷ direction,
following the same argument, it is easy to show that the
photons from state-preserving transitions are coupled to
mode 2, while photons from state-preserving transitions
are coupled to the mode 1 instead. The orthogonal po-
larization of photons is a feature that originates in the or-
thogonal dipole moment between the ground states |g2〉,

|g3〉 and the same excited state |ej〉, i.e.

〈g2| ~̂p |ej〉 · 〈g3| ~̂p |ej〉 = 0 (50)

for j = 1 to 6 (we call this property orthogonality). The
perturbation on the excited state energy, the dipole mo-
ment elements and the x̂ direction strain field interac-
tion, does not change this dipole moment property, and
hence orthogonal polarization of photons is still expected
from state-preserving and state-flipping transitions. If
this feature does not persist, e.g. adding ŷ direction
strain field, the photons coming from state-flipping and
state-preserving transitions become non-orthogonally po-
larized.

The “magic” point is the point where both state-
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preserving transitions are highly suppressed. According
to the Eq. (49), this requires,

F 2
21

∆1
+
F 2

22

∆3
+
F 2

23

∆6
= 0

F 2
21

∆2
+
F 2

22

∆4
+
F 2

23

∆5
= 0

(51)

However, there is no driving light frequency that can sat-
isfy both equations. Instead, we choose to minimize the
larger rates of these two transitions to improve the gate
fidelity, i.e. to minimize

Max

[∣∣∣∣F 2
21

∆1
+
F 2

22

∆3
+
F 2

23

∆6

∣∣∣∣ , ∣∣∣∣F 2
21

∆2
+
F 2

22

∆4
+
F 2

23

∆5

∣∣∣∣] .
We found this is equivalent to solving the equation:(

F 2
21

∆1
+
F 2

22

∆3
+
F 2

23

∆6

)2

=

(
F 2

21

∆2
+
F 2

22

∆4
+
F 2

23

∆5

)2

, (52)

which gives the frequency of the “magic” point used in
the main manuscript.

The transition rates at the “magic” point can be cal-
culated using Fermi’s golden rule. We sum over all the
possible kz and m to get the transition rate from the
initial state |gi〉 to final state |gi′〉:

Γi→i′ =
πneffωdp

4
0|u|2|Ed|2

c~ε0

×

∣∣∣∣∣∣
∑
j,m

1

∆j
(ûm · p̂i′,j)∗

(
λ̂d · p̂i,j

)∣∣∣∣∣∣
2

.

(53)

Here, neff is the effective refractive index for the modes
at the frequency of the driving light, the dispersion rela-
tion of the guided modes at the driving light frequency is
ω = (c/neff)kz. We also assume the NV center is located
at a point where the Ex field of mode 1 is equal to the Ey
field of mode 2, which is represented as u, while the Ey
of mode 1 and Ex of mode 2 is zero. The unit vectors ûm
and λ̂d shows the direction of the guided field in waveg-
uide and the driving field at the NV location. To convert
the term inside | . . . |2 to a dimensionless parameter, we

define ∆j = hν0∆̃j where ν0 = 1 GHz. Therefore we can
define a rate constant Γ0 and a dimensionless parame-
ter Gi,i′ so that the transition rate Γi→i′ = Γ0Gi,i′(ωd),
where

Γ0 =
neffωdp

4
0|u|2|Ed|2

4πc~3ε0ν0
(54)

Gi,i′ =

∣∣∣∣∣∣
∑
j,m

1

∆̃j

(ûm · p̂i′,j)∗
(
λ̂d · p̂i,j

)∣∣∣∣∣∣
2

(55)

By solving the mode profiles at the “magic” frequency,
the effective refractive index of these two modes are
neff = 1.580. At x = 0, after properly normalize the

y (  m)

FIG. 9. Ex component of mode 1 and Ey component of mode
2 at x = 0 of the waveguide. We can find a point (red circle)
that satisfies Ex,1 = Ey,2.

mode fields using Eq. (45), we can find a point which
satisfies our assumptions, i.e. Ex,1(y0) = Ey,2(y0) (see
Fig. 9). At this point, u = 2.4847µm−1. We estimate
the electric field of the driving light by a 1µW plane
wave focused with a 1µm2 region. The transition rate
constant is calculated as Γ0 = 20.78 MHz.

Appendix D. Gate fidelity and tolerance of the
magic point against NV electronic state

perturbation

In this section, we provide a more detailed discussion
and analysis of how perturbations to NV electronic states
affect the drive frequency (especially the “magic” fre-
quency) and the gate fidelity. We focused on three types
of perturbations: (1) shifts of the excited state energy
/effect of an NV center, (2) perturbation of the dipole
moment matrix elements and (3) small transverse strain
fields inside the diamond crystal. We also analyze how
each of the perturbation affects the polarization of the
emitted photons. We mainly focus on the effect of per-
turbation at the “magic” point and explore how these
perturbations affect gate fidelity for the gate operation
schemes M1, M2, and M3.

First, we consider perturbations that shift the energy
of NV excited states. Since this type of perturbations
does not affect the dipole moment between the ground
states and excited states, the orthogonal property of scat-
tered photon polarizations that are utilized by M1 and
B1 are preserved. However, shifts of the excited state en-
ergies changes the transition amplitudes and hence may
shift the position of the “magic” point. Changes in the
state-flipping amplitudes affect the imbalance of the two
state-flipping transitions rates, thus affect gate fidelity
in scheme M1. Changes of the state-preserving tran-
sition amplitudes affect the suppression at the “magic”
frequency, which affects the gate fidelity of scheme M2.

To quantitatively explore the effects of the shifting of
NV center electronic excited states, we artificially shift
the energy of the excited states |e1〉 to |e6〉 one-by-one
by ±1 GHz, while leave the dipole moments unchanged.
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FIG. 10. Tolerance of the “magic” point to shifts of the fine levels of the NV excited states. We perturb the energy of each
level (∆Ee,i) by ±1 GHz. In (a), we plot the shift of the “magic” frequency relative to the unperturbed case as we perturb the
energy of each excited state. Shifting the energy of excited states also affects the state-preserving and state-flipping transition
rates. In (b), we plot the gate infidelity of scheme M1 due to the imbalance in the state-flipping transition rates as we perturb
the energy of each excited state. In (c), we plot the gate infidelity of scheme M2 caused by the leakage of the state-preserving
photons as we perturb the energy of each excited state.

With the energy level perturbation, we search around the
original “magic” frequency to find a new “magic” fre-
quency that minimize both state-flipping transition am-
plitudes. The shift of the “magic” frequency as we shift
each of the excited state energies is plotted in Fig. 10(a).

Assuming that the imbalance of the two state-flipping

transition amplitudes is small, i.e. |A1−A2|
A1+A2

� 1, where

A1 and A2 are defined in Eq. (10), enables us to expand
the gate fidelity of scheme M1 as:

Fe,1 =
(A1 +A2)

2

2 (A2
1 +A2

2)
=

Ā2

Ā2 + ∆A2
∼ 1− ∆A2

Ā2
(56)

where Ā = (A1 + A2)/2 and ∆A = |A1 − A2|/2. We
calculate the gate infidelity (1 − Fe1) in each cases with
gate operation scheme M1 and show it in Fig. 10(b). As
we shift each excited state energy of the NV center by
±1 GHz, the gate fidelity of gate operation scheme M1
is only slightly affected. In the worst case, when we shift
the energy of state |e2〉 by +1 GHz, the gate fidelity drops
to ∼ 0.96.

The gate operation scheme M2 is not affected by the
imbalance of state-flipping transitions. However, because

the state-preserving transition relation
Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

=

−A
y
p,2

A
(y)
0

= −A
x
p,3

A
(x)
0

holds, when drive light is polarized along

(x̂+ ŷ) direction, the state-preserving scattered photons
are still along (x̂ − ŷ) direction, which causes leakage
of the state-preserving photons to the detector. Since
we are working at the “magic” point where the state-
preserving transitions are highly suppressed, we can also
expand the gate fidelity of gate operation scheme M2 as:

Fe,2 =
Ā2

Ā2 +A2
p

∼ 1−
A2
p

Ā2
(57)

where Ap is the magnitude of the state-preserving transi-
tion amplitudes. In Fig. 10(c), we plot the gate infidelity
of the scheme M2. When shifting energy of state |e1〉
by +1 GHz, the gate infidelity increases ∼ 0.04. Again,

the gate operation fidelity is only slightly affected by the
excited state energy level shifting.

Scheme M3 is not effected by shifting the excited state
levels. Because the dipole moment is not affected, when
the drive light is polarized along (x̂ + ŷ) direction, the
state-preserving photons are still polarized along (x̂− ŷ)
direction. The collection path polarizer along (x̂+ ŷ) can
fully eliminate the state-preserving photons. The polar-
izations of the two types of state-flipping photons still
deviated from (x̂− ŷ) direction by ±θ (see Fig. 4), where
θ is determined by the imbalance of the state-flipping
transitions. However, since these two directions are cen-
tered on the direction (x̂− ŷ), after the polarizer, the two
state-flipping transition rates are balanced.

Second, we explore the effect of perturbations
that modify the dipole moments of the NV centers.
In Appendix B, we constructed the dipole moment using

Eq. (35). Let 〈ex| ~̂p |a1〉 = p0x · x̂, 〈ey| ~̂p |a1〉 = p0y · ŷ, then
C3v symmetry in combination with the Wigner-Eckart
theorem guarantees that p0x = p0y, which is consistent
with the assumptions in Eq. (35). Here we assume there
might be certain types of perturbations that break this
relation and give p0x/p0y 6= 1. Notice, that these pertur-
bations break the state-preserving amplitudes relation,
i.e. | 〈g2| p̂ |ei〉 | 6= | 〈g3| p̂ |ei〉 |, which voids the origin
of the equality of state-preserving transition amplitudes
in Eq. (8). Therefore, we will have four different state-
preserving transition amplitudes. If we assume p0y = p0,
as we shift p0x, in dipole moment matrix in Eq. (41), the
components along ŷ direction do not change, while the
components along x̂ change by a factor Ox = p0x/p0 and
hence the state-preserving transition amplitudes become
Ãxp,2 = O2

xA
x
p,2 and Ãxp,3 = O2

xA
x
p,3.

At the unperturbed “magic” point, the state-

preserving transition amplitudes satisfy
Axp,2

A
(x)
0

=
Ayp,3

A
(y)
0

=

−A
y
p,2

A
(y)
0

= −A
x
p,3

A
(x)
0

. Under the dipole moment perturbation
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FIG. 11. We plot the entanglement gate fidelity for gate operation schemes M1 to M3 at the “magic” frequency of the drive
light when we add dipole moment mismatch in (a). If the NV centers are driven by a (x̂+ ŷ) polarized light, because the four
transition amplitudes are not all balanced, the two kinds of state-preserving photons, i.e. |g2〉 → |g2〉 and |g3〉 → |g3〉, are no
longer polarized along (x̂− ŷ) direction. We plot the polarization angle of the state-preserving photons with respect to (x̂− ŷ)
direction as a function of dipole mismatch in (b).

we obtain:

Ãxp,2

A
(x)
0

= −
Ãxp,3

A
(x)
0

= O2
x

Ãyp,3

A
(y)
0

= −O2
x

Ãyp,2

A
(y)
0

. (58)

Even through we cannot suppress all four state-
preserving transition amplitudes to the same level, we
can still achieve a good suppression for Ãxp,2 and Ãxp,3 at
the original “magic” point if the dipole mismatch factor
Ox is close to identity and hence we still use this drive
frequency point as a “magic” point under perturbation.

We also notice that the orthogonality property of the
dipole matrix persists, i.e. 〈g2| p̂ |ej〉 · 〈g3| p̂ |ej〉 = 0 for
j = 1 to 6. Due to this feature, if the drive is polar-
ized along x̂ or ŷ direction, the state-flipping photons
are polarized along the direction perpendicular to state-
preserving photons. Hence, the drive and polarizer setup
in M1 can fully eliminate the state-preserving Raman
photons from the collection path. Moreover, according
to the state-flipping transition amplitudes in Eq. (9),
when the perturbation gives mismatch factor Ox 6= 1,
the state-flipping transition amplitudes are all enhanced
(or shrunk) by a factor of Ox. Based on Eq. (56), the
gate fidelity for scheme M1 is not affected by the dipole
moment perturbation, as shown in Fig. 11(a).

When the drive is polarized along (x̂+ŷ) direction, due
to the fact that the four state-preserving transition am-
plitudes in Eq. (58) are not all equal at “magic” point, the
state-preserving photons are not polarized along (x̂− ŷ).
We plot the deviation of the state-preserving transition
photon polarization direction from (x̂− ŷ) as the dipole
mismatch changes in Fig. 11(b). Due to the rotation
of the polarization direction of state-preserving photons,
the state-preserving transition amplitudes seen after a
(x̂ − ŷ) polarizer also varies. However, as the state-
flipping transition amplitudes after the polarizer is much
larger than the state-preserving transitions amplitudes,
the gate operation scheme M2 is tolerant to small dipole
mismatch as shown in Fig. 11(a). When the dipole mo-
ment mismatch is large (e.g. ∼ 0.5), the gate fidelity of
M2 drops by ∼ 0.01.

The gate fidelity of scheme M3 is strongly affected by
the dipole moment perturbation as shown in Fig. 11(a).
The polarizer setup in M3 is along (x̂ + ŷ) direction,
which blocks most of the state-flipping photons. How-
ever, under the dipole moment perturbation, the state-
preserving photons are not polarized along (x̂ − ŷ) di-
rection, which breaks the unitarity of scheme M3. Fur-
ther, the leakage of the state-preserving photons through
the polarizer can be as strong as the state-flipping pho-
tons, which strongly affects the gate fidelity. Since the
two kinds of state-preserving photons are linearly polar-
ized along the same direction, it is possible to rotate the
polarizer on the collection path to completely eliminate
the state-preserving photons. However, the two state-
flipping transitions seen after the polarizer are not bal-
anced anymore. In this way, we can improve the fidelity
of scheme M3, but the gate is no longer perfectly unitary.

Third, we consider perturbations due to a strain field
in the diamond crystal. A strain field applied along the
x̂ (ŷ) direction mixes the NV excited states via the per-
turbation Hamiltonian Eq. (42) (Eq. (43)). The strain
field also acts on the ground state manifold, however, it
only shifts the energy of the |g2〉 and |g3〉 states. Here,
we ignore the impact of the strain fields on the ground
states and only focus on the excited states. Due to the
mixing of the excited states, the dipole moment matrix
does not preserve the property | 〈g2| p̂ |ei〉 | = | 〈g3| p̂ |ei〉 |
and hence we expect the four state-preserving transition
amplitudes to be different. Moreover, in the presence of
a strain field, it is impossible to find a frequency point
to make all four transitions balanced. Instead, in the
vicinity of the unperturbed “magic” frequency, there is a
window of drive frequencies in which the state-preserving
transitions are suppressed. Therefore, we can still use the
unperturbed “magic” point as the drive frequency in the
presence of a weak strain field.

Strain field applied in the x̂ direction mixes the states
|e1〉 ↔ |e6〉, and |e2〉 ↔ |e5〉. Note, the dipole mo-
ments between a certain ground state and the two ex-
cited states that are being mixed have the same direc-
tion. Hence, while the magnitude of the dipole moment
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(e) polarized driving light
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(d) polarized driving light
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FIG. 12. We add x̂ (ŷ) direction strain fields in diamond crystal to induce interaction with strength E(ξx) [E(ξy)] [see Eq.(42)
and Eq.(43)]. The gate entanglement fidelity of schemes M1, M2 and M3 are plotted in (a) for x̂ direction strain field and
(b) for ŷ direction strain field. In (c), we apply x̂ polarized driving light and plot the transition amplitudes (Trans. Amp.) as
a function of the x̂ direction strain field, ξx. We observe that the two state-flipping transition amplitudes are unbalanced and
weakly affected by the strain. In (d), we apply (x̂+ŷ) polarized driving light, and plot the polarization angles of state-preserving
and state-flipping photons with respect to the (x̂ − ŷ) direction (top panel) and the magnitude of the state-preserving and
state-flipping transition amplitudes (bottom panel) as a function of the x̂ direction strain field. Note that the magnitudes of
two state-flipping transition amplitudes (top lines in the bottom panel) are the same as we perturb the x-direction strain field.
In (e), we apply x̂ polarized driving light and plot the polarization angles of the state-preserving and state-flipping photons
with respect to the x̂ direction (top panel) and the magnitude of the state-preserving and state-flipping transition amplitudes
(bottom panel) as a function of the ŷ direction strain field. In (f), we apply (x̂ + ŷ) polarized driving light and plot the
polarization angles of the state-preserving and state-flipping photons to the (x̂− ŷ) direction (top panel) and the magnitude of
the state-preserving and state-flipping transition amplitudes (bottom panel) as a function of the ŷ direction strain field. Note
that the curves for the magnitudes of the two state-flipping transition amplitudes are overlapped (top curves in the bottom
panel). The curves of two state-preserving transition amplitudes are overlapped (bottom curves in the bottom panel).

between ground and excited states is affected by strain,
its direction is not. Therefore, the orthogonal properties
of the dipole moment [see Eq. (50)] are preserved with
the x̂ direction strain field perturbation.

In Fig. 12(a) we plot the gate entanglement fidelity
for schemes M1, M2, and M3 as a function of strain
in the x̂ direction [expressed via the matrix element E
in Eq. (42)]. We observe that strain has essentially no
effect on the M1 scheme, weak effect on the M2 scheme,
and strong effect on the M3 scheme.

To understand the effect of the x̂ strain field on the
gate fidelity, we begin by plotting its effect on the non-
zero state-preserving and state-flipping transition ampli-
tudes at the “magic” frequency [see Fig. 12(c)]. We ob-
serve that in the presence of a small x̂ strain field the
state-flipping transitions are only slightly affected [see
the bright green (the top and bottom) lines in Fig. 12(c)],
while the state preserving transition amplitudes are still
suppressed [see the middle four lines in Fig. 12(c)].

In scheme M1, state-preserving photons can be
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blocked by the polarizer on the collection path due to the
orthogonality property of the dipole moment matrix ele-
ments. As the state-flipping transitions are only slightly
affected by the x̂ direction strain field, the gate fidelity
of M1 is almost flat [see the blue curves with dots in
Fig. 12(a)].

When the drive is polarized along (x̂ + ŷ) direc-
tion, since the transition amplitudes Axf,2 and Axf,3 only

slightly affected by the x̂ strain field [see Fig. 12(c)], nei-
ther the rates nor the polarizations of the state-flipping
photons are heavily affected [see green curve with dia-
mond markers and red curve with triangles in Fig. 12(d)
top panel]. However, the x̂ strain field shifts the four
state preserving transition amplitudes a lot, which causes
the increase of the state-preserving transition rates [see
blue solid line and orange dashed line in Fig. 12(d) bot-
tom panel]. Note that the polarization of the state-
preserving photons points along (x̂− ŷ) direction without
strain field is because that the state-preserving transi-
tion amplitudes satisfy Axp,2 = Ayp,3 = −Ayp,2 = −Axp,3
at the “magic” point. The non-zero x̂ strain field de-
stroys this feature, which causes the polarization of the
state-preserving photons deviates from (x̂− ŷ) direction
[see blue curves with dots and orange curve with square
markers in Fig. 12(d) top panel].

In M2, the polarizer on the collection path is along
(x̂ − ŷ) direction, which still allows most of the state-
flipping photons passing through. In non-perturbed case,
the state-preserving photons are polarized along (x̂− ŷ)
direction, which can pass the collection path polarizer
for certain. With the x̂ strain field perturbation, the
more the polarization of the state-preserving photons de-
viates from (x̂−ŷ) direction, the less probable the photon
can pass the collection path polarizer. However, the x-
direction strain field also boost the generation rates of the
state-preserving photons [see Fig. 12(d) bottom panel].
Combining these two factors, the overall gate fidelity for
scheme M2 drops to ∼ 0.95 as the x-direction strain field
increases to 1 GHz [see Fig. 12(a)].

However, in scheme M3, the collection path (x̂+ ŷ) po-
larizer blocks most of the state-flipping photons, which
makes this scheme fragile to the leaking state-preserving
photons. The key for the success of M3 in the non-
perturbed case is the fact that state-preserving photons is
polarized along (x̂−ŷ) direction. However, as we increase
the x̂ strain field, the polarization of the state-preserving
photons are not exactly aligned (x̂ − ŷ) direction [see
Fig. 12(d) top panel], which deteriorates the gate fidelity
as shown in Fig. 12(a).

The entanglement gate fidelity Fe when ŷ direction
strain field is applied to the diamond crystal is plotted in
Fig. 12(b). The ŷ direction strain field mixes the states
|e1〉 ↔ |e5〉, |e2〉 ↔ |e6〉, and |e3〉 ↔ |e4〉. The mixing of
the states results in the loss of the dipole moment orthog-
onality property. Therefore, for drive photons polarized
along x̂ direction the state-preserving photons are not
necessarily polarized along x̂, nor the state-flipping pho-
tons along ŷ. The polarization of both state-preserving

photons and state-flipping photons relative to the ŷ di-
rection is plotted in Fig. 12(e) top panel. As we vary
the ŷ direction strain field, the polarization of the two
kinds of state-flipping photons remains nearly along the
ŷ direction [see the green curve with diamond markers
and the red curve with triangle markers in Fig. 12(e) top
panel], but the polarization of state-preserving photons
changes significantly [see the blue curve with dots and
the orange curve with square markers in Fig. 12(e) top
panel].

For scheme M1 (with x̂ polarized drive), there are two
main sources of error: (1) unbalanced state-flipping tran-
sitions as before and (2) ŷ photons from state-preserving
transitions that leak past the polarizer. We plot the po-
larization angle with respect to the ŷ direction and the
magnitude of the transition amplitudes for both state-
preserving and state-flipping transitions in Fig. 12(e). As
we increase the perturbation of y-direction strain field,
the state-preserving transition amplitudes are slightly in-
creased [see the blue solid line and the orange dashed
line in Fig. 12(e) bottom panel]. Combining with the
fact that polarization of the state-preserving photons are
no longer along x̂ direction exactly [see the blue curves
with dots and the orange curves with square markers in
Fig. 12(e) top panel], the leaking state-preserving pho-
tons to the detector decreases the gate fidelity to ∼ 0.95
as we change ŷ direction strain field to ∼ ±1 GHz.

Similarly, when the drive is along (x̂+ ŷ) direction, the
polarization features that were utilized in gate operation
schemes M2 and M3 are no longer valid. We plot the
deviation of the polarization angle of all scattered pho-
tons with respect to the polarizer direction in M2, i.e.
(x̂ − ŷ), in the top panel of Fig. 12(f). The polarization
of the state-flipping photons are slightly affected by the
ŷ-direction strain field, while the state-preserving pho-
ton polarization rotates ∼ 54◦ as we increase ŷ-direction
strain field to ±1 GHz. The amplitudes of the state-
preserving and state-flipping transitions are plotted in
the bottom panel of Fig. 12(f). We observe that the tran-
sition amplitudes are only slightly affected by the applied
ŷ-direction strain field. Therefore, to understand the ef-
fect of y-direction strain field on schemes M2 and M3,
we mainly focus on the rotation of the scattered photon
polarizations.

The main error source in schemeM2 without perturba-
tion is the leakage of state-preserving photons past the
polarizer in the collection path. As we change the ŷ-
direction strain field, the state-preserving transitions are
only slightly affected, while the polarization of the state-
preserving photons rotates away from the collection path
polarizer direction, i.e. (x̂− ŷ) direction [see Fig. 12(h)].
The state-preserving photons thus have a smaller prob-
ability to get past the polarizer in the collection path.
Consequently, the gate fidelity for scheme M2 slightly
improves as a result of ŷ-direction strain field perturba-
tion, as we show in Fig. 12(b).

On the other hand, the perfect gate fidelity of scheme
M3 in the absence of perturbation is based on the fact
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that all state-preserving photons are polarized along
(x̂ − ŷ) direction and hence are stopped by the polar-
izer in the collection path (along with most of the state-
flipping photons). Large rotation angle of the state-

preserving photon polarization makes the leakage rate of
the state-preserving photons comparable to that of the
state-flipping photons. This quickly degrades the gate
fidelity as we show in Fig. 12(b).
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