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Characterizing trade-offs between simultaneous violations of multiple Bell inequalities in a large
network has important physical consequences but is computationally demanding. We propose a
graph-theoretic approach to efficiently produce Bell monogamy relations in arbitrary arrangements
of qubits. All the relations obtained for bipartite Bell inequalities are tight and leverage only a single
Bell monogamy relation. This feature is unique to bipartite Bell inequalities, as we show that there
is no finite set of such elementary monogamy relations for multipartite inequalities. Nevertheless,
many tight monogamy relations for multipartite inequalities can be obtained with our method as
shown in explicit examples.

I. INTRODUCTION

Bell monogamy relations describe the degree of simul-
taneous violation of multiple Bell inequalities. They find
applications in foundations of physics and quantum in-
formation. On the fundamental side: (i) They were
shown to exist in every no-signaling theory [1–9], but the
principle of no-signaling alone does not single out the
monogamies derived within the quantum framework [10–
12]. They are therefore a natural test bed for candidate
principles underlying quantum formalism [13]. (ii) They
were also shown to play a role in quantum-to-classical
transition [14], where tight Bell monogamy relations for
multipartite inequalities reduce the number of particles
for which the classical description emerges. On the prac-
tical side: (i) They were used to obtain the upper bound
on the average shrinking factor of cloning machines [6],
which will here be refined [15]. (ii) They were also shown
to improve device-independent tasks such as randomness
amplification and quantum key distribution [7, 8]. In the
latter case, it is the existence of the Bell monogamy re-
lation that allows for secure cryptography even in the
presence of signaling [7]. The method we propose here
will contribute to generalizations of these results to mul-
tipartite cases.

Despite their importance, only a handful of Bell
monogamy relations have been derived within the quan-
tum formalism [1, 2, 10–12]. A powerful approach to
generate tight relations is given by the correlation com-
plementarity [11, 16–18]. The approach involves di-
viding relevant observables into sets of mutually anti-
commuting ones. The complexity of this task grows expo-
nentially with the number of Bell parameters and there-
fore renders correlation complementarity inefficient for
large networks. In fact, an efficient method to generate
tight monogamy relations in arbitrary arrangements of a
large number of qubits is not yet available. We propose

such a method in this paper.
For every collection of bipartite Bell parameters, our

method yields a corresponding tight monogamy relation.
The approach leverages a single Bell monogamy relation
(derived in Ref. [10]) multiple times. We, therefore, name
this monogamy relation as elementary. We then inves-
tigate if the method generalizes to multipartite inequal-
ities. It turns out that the situation is far more com-
plicated already for tripartite inequalities. We construct
a Bell scenario with an increasing number of observers
for which the method produces a Bell monogamy rela-
tion that is not tight, even if all elementary relations
for smaller numbers of observers are taken into account.
We conclude that already in tripartite scenario there is
no finite set of elementary relations. Nevertheless, the
method does produce many tight monogamies and hence
is valuable also in the multipartite case.

II. BELL INEQUALITIES

We focus on a complete set of correlation Bell inequal-
ities for m observers, each choosing between two mea-
surement settings and obtaining a dichotomic ±1 out-
come [19, 20]. The set is equivalent to a single general
Bell inequality B1...m ≤ 1 [21], where the following upper
bound on the Bell parameter B1...m was also derived:

B21...m ≤
∑

k1=x,y

· · ·
∑

km=x,y

T 2
k1...km ≡ T

2
1...m. (1)

The summation is over orthogonal local directions x and
y which span the plane of local settings and Tk1...km =
Tr (ρ.σk1 ⊗ · · · ⊗ σkm) are the quantum correlation func-
tions of state ρ. Therefore, if T 2

1...m ≤ 1 the quantum cor-
relations admit a local hidden variable model (for mea-
surements in the xy plane). The condition is also nec-
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FIG. 1. Tight Bell monogamy of bipartite Bell inequali-
ties. The vertices (circles) of the black dotted graph G rep-
resent different observers and edges connect observers who
test whether a bipartite Bell inequality is violated. The red
solid graph, with squares as vertices, is a line graph of G. Its
vertices represent Bell inequalities and edges connect Bell in-
equalities which share a common observer. Properties of this
construct determine tight Bell monogamy relations (3).

essary and sufficient if m = 2 [22]. We shall use it as a
building block for our monogamy relations.

III. BIPARTITE INEQUALITIES

Let us first consider trade-offs between simultaneous
violations of a set of bipartite Bell inequalities. Each
bipartite Bell parameter may involve two out of n ob-
servers, each having access to a single qubit. The prob-
lem can be represented by a graph with n vertices de-
noting the n observers and edges denoting the relevant
Bell parameters. An example of such a graph is given in
Fig. 1. The simplest scenario of Bell monogamy is when
three observers try to simultaneously violate two Bell in-
equalities. The statement of Bell monogamy is that the
simultaneous violation is impossible and the quantitative
quantum relation reads [10]:

B212 + B213 ≤ 2. (2)

This monogamy relation is a straightforward application
of the correlation complementarity (see Appendix A).

For a general graph, one can in principle also apply
correlation complementarity to find tight monogamy re-
lations. The method requires grouping relevant observ-
ables into mutually anti-commuting sets, which is compu-
tationally demanding. Instead, we propose the following
simple method to derive a tight Bell monogamy relation
for every graph. Denote by G the graph with observers
represented by vertices and Bell inequalities by edges. A
line graph L of the initial graph G is constructed by plac-
ing vertices of L on every edge of G, and by connecting
the vertices of L whenever the corresponding edges of G
share a vertex (Fig. 1). The properties of the line graph
determine the Bell monogamy relations. Note that Bell
inequalities are represented by vertices of L and edges
of L provide information whether two Bell inequalities
share a common observer. In other words, for every edge
of L we have monogamy relation (2), and summing them

up gives a general monogamy∑
v∈L

dvB2v ≤ 2ε, (3)

where the sum is over the vertices of L, dv denotes the
number of edges incident to the vertex v, Bv is the Bell
parameter associated with vertex v and ε is the total
number of edges in L. The factor of 2 comes from the
monogamy relation (2). We shall refer to this method as
the averaging method.

The general monogamy relation (3) turns out to be
tight, i.e. the bound cannot be any smaller. This fol-
lows from the handshaking lemma that for any finite
undirected graph,

∑
v dv = 2ε. This corresponds to

Bv = 1 for all the vertices of L, achieved e.g. by the
state |↑ . . . ↑〉, where all the spins are aligned along the
x axis and the measurements are all σx.

We emphasize that this construction is general and
surprisingly simple. It applies to arbitrary graphs, i.e.
an arbitrary number of observers measuring an arbitrary
configuration of the bipartite Bell inequalities while in
the process only monogamy relation (2) is utilized. We
therefore term the monogamy relation (2) elementary.

On a side note, the elementary relation (2) has a re-
markable property that all mathematically allowed val-
ues of B12 and B13 that saturate it are physically re-
alizable [10]. The general monogamy relation (3) does
not share this property as simply seen by considering the
triangle graph: in this case (3) gives the bound of 3,
while each individual Bell expression can take at most
the maximum Tsirelson value of

√
2. However, one may

ask if the set defined by the intersection of elementary
relations (2) contains values of Bell parameters that are
all physically achievable. We show in the Appendix B
examples of configurations where all the points in the
intersection are indeed realized in quantum physics.

A natural question is whether the averaging method
generalizes to multipartite Bell monogamy, i.e. m >
2. In particular, we ask if there exists an elemen-
tary monogamy relation, or a finite set of elementary
monogamy relations, from which tight monogamy rela-
tions could be derived in an arbitrary scenario. The an-
swer is more complex even for tripartite Bell inequalities.
On one hand, there are simple monogamy relations av-
eraging which results in tight monogamy relations. But
on the other hand, there are Bell scenarios where tight
monogamy relations cannot be obtained from simpler re-
lations. We now discuss them in more detail.

IV. TRIPARTITE INEQUALITIES

The graph-theoretic approach from the previous sec-
tion can be naturally extended to tripartite Bell inequal-
ities. The graph G is now upgraded to a hypergraph
with the vertices representing observers and hyperedges
connecting three observers testing a violation of the Bell
inequality. Fig. 2 presents examples of such hypergraphs.
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FIG. 2. Examples of hypergraphs describing Bell monogamy
relations of tripartite Bell inequalities. The vertices corre-
spond to qubits and the hyperedges, represented by different
shaded areas (color online), are Bell inequalities.

The two Bell monogamy relations at the bottom of Fig. 2
list all possible ways two tripartite Bell parameters may
overlap and results from the bipartite case suggest they
might be of special importance. Using correlation com-
plementarity, one easily verifies that the corresponding
monogamy relations hold (see Appendix A):

B2123 + B2124 ≤ 4, (4)

B2123 + B2145 ≤ 4. (5)

The averaging method naturally extends. But now in the
line graph, an edge connects Bell inequalities that share
at least one common observer. Since the bound in both
inequalities above is the same, the general monogamy
relation is of the form (3) with the factor of 2 on the
right-hand side replaced by 4.

Note, however, that the physical implication of
monogamy relations (4) and (5) is different than that
of the bipartite relation (2). In the bipartite case, when-
ever one Bell inequality is violated, the other has to be
satisfied. However, two tripartite Bell inequalities can
be violated simultaneously. There indeed exist quantum
states and measurements which give rise to any value of
the Bell parameters compatible with (4) and (5) [11, 12].
This suggests that there are Bell monogamy relations
stronger than the two listed above.

A concrete such Bell monogamy relation is presented
at the top left corner of Fig. 2. It is a very condensed
graph where four observers aim at testing four tripartite
Bell inequalities. The red graph is the line graph of the
original hypergraph. Since each dv = 3 and there are
ε = 6 edges of L in total, the averaging method predicts
B2123 + B2234 + B2341 + B2412 ≤ 8, whereas the tight bound
is [11]:

B2123 + B2234 + B2341 + B2412 ≤ 4. (6)

Accordingly, the monogamy relations (4) and (5) do
not form a set of elementary relations from which tight
monogamy relations can be derived using averaging
method for all more complicated hypergraphs.

Since the monogamy relation (6) involves four Bell pa-
rameters and it is bounded by 4, it shares with relation

(2) its physical implication. Namely, if one Bell inequal-
ity is violated, another must be satisfied. It is there-
fore interesting to augment the set of monogamy rela-
tions {(4), (5)} with inequality (6) and verify which tight
monogamy relations follow from the averaging method.
In fact, since (4) is a special case of (6), it is sufficient to
replace one with the other. Likewise, (5) is a special case
of the following monogamy relation, presented at the top
right corner of Fig. 2,

B2123 + B2145 + B2135 + B2356 ≤ 4. (7)

This leads the question whether a finite set of elemen-
tary monogamy relations exists, i.e. such a set that the
averaging method produces tight monogamy relation for
arbitrary hypergraphs. Note that when adding (6) and
(7) to the set of elementary relations, the line graph
method must be suitably updated. Since the relations
(6) and (7) involve more than two Bell parameters, an
edge in the line graph may connect more than two ver-
tices. Therefore the line graph needs to be upgraded to
a hypergraph. In contrast to the bipartite case, there
may be more than one line hypergraph for each original
hypergraph. We shall take into account all possible line
hypergraphs in the averaging method.

We may attempt to construct the set of elementary
relations by a brute force algorithm searching over all
hypergraphs with n vertices and h hyperedges, each cov-
ering m vertices (see Appendix C). In principle, if this
algorithm were to be run for infinitely large n, it returns
a set of elementary monogamy relations E . We shall now
argue that such a set must, in fact, be infinite, in stark
contrast to the case of bipartite Bell inequalities.

V. THE INFINITE SET

We shall construct a set of hypergraphs with increas-
ing number of vertices and show that their correspond-
ing monogamy relations obtained using the averaging
method are not tight, even if the set E is composed of all
elementary monogamy relations with smaller numbers of
observers. A part of the set is depicted in Fig. 3. We con-
sider cyclic hypergraphs Ch that involve an odd number
of Bell inequalities, h = 3, 5, . . . , which are tested by 2h
observers.
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FIG. 3. First three cyclic hypergraphs we use to show that
there is no finite set of elementary monogamy relations of
tripartite Bell inequalities.
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FIG. 4. Every elementary Bell monogamy relation to the
right involves two consecutive Bell parameters and has the
bound of 4, see (5). The line graph corresponding to the
cyclic hypergraph on the left is a pentagon and leads to the
monogamy relation B2
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5 ≤ 10.

Assume that the algorithm above returned a finite set
E and let n be the highest number of observers involved
in any elementary monogamy relation in E . We begin
our analysis with the graph Ch that has the number of
vertices higher than n. In this way, we rule out the case
that Ch is (a subgraph of a hypergraph) already present
in E . Therefore, the only way of obtaining a bound on
the monogamy relation corresponding to Ch is to com-
bine graphs or subgraphs of monogamy relations in E
that simultaneously are the subgraphs of Ch. The only
non-trivial subgraphs of Ch are connected graphs involv-
ing b consecutive Bell parameters. The case of b = 2
is covered by the monogamy relation (5), for which the
bound is achieved, e.g. if the first three particles are in
the Greenberger-Horne-Zeilinger (GHZ) state [23]. For
any higher b, the corresponding monogamy relation has
to have the bound of at least 2b as this is the number
obtained if the triples of particles tested in every second
Bell parameter are in the GHZ state. Since our method
is averaging these monogamy relations, it follows that
the Bell monogamy relation corresponding to Ch has the
bound of at least 2h. A concrete example how the bound
of 2h is obtained is presented in Fig. 4.

We now show that the bound 2h is not tight, i.e. there
is no quantum state and measurements achieving it (re-
call that h is odd). We point out properties that such a
hypothetical state would have to satisfy and show that
they are contradictory. Let us label the Bell parame-
ters in Ch by index j = 1, . . . , h. A way to obtain the
bound 2h is presented in Fig. 4 and involves summing up
pairs of consecutive Bell parameters B2j + B2j+1 ≤ 4, for
j = 1, . . . , h, with h + 1 ≡ 1. Therefore, saturation of
the bound of 2h implies saturation of every constituent
monogamy, i.e. B2j + B2j+1 = 4 for all j’s in question.

Recall that the bound B2j + B2j+1 ≤ 4 is proved by par-
titioning 16 observables that enter the upper bound (1)
into 4 groups, each of 4 mutually anti-commuting observ-
ables (see Appendix A). According to correlation com-
plementarity, the constituent monogamy is saturated if

each group of anti-commuting observables saturates the
bound of 1. In particular, we have Xj +Xj+1 = 1, where
Xj is defined as

Xj ≡ 〈X2j−1X2jY2j+1〉2 + 〈X2j−1Y2jY2j+1〉2 , (8)

where e.g. X2j denotes Pauli-x operator acting on the
qubit 2j. Since there is an odd number of Bell parame-
ters, each Xj must be exactly 1/2. It is perhaps worth a
comment that one cannot proceed any further using cor-
relation complementarity alone. We shall now utilize the
relation between correlations and marginal expectation
values introduced previously in the context of non-local
hidden variable theories [24–26]. We construct an observ-
able that on one hand necessarily has high expectation
value but on the other hand it must have small average
as it anti-commutes with observables that enter X1 and
X2, leading to a final contradiction.

Let us consider X3. We introduce observable M6 =
αX5X6Y7+β X5Y6Y7, with normalized vector (α, β) par-
allel to (〈X5X6Y7〉 , 〈X5Y6Y7〉). It has expectation value

〈M6〉 = 1/
√

2, because X3 = 1/2. Similarly, we find

observable M2h with expectation value 〈M2h〉 = 1/
√

2
following from Xh = 1/2. For h ≥ 5 the two observables
M6 and M2h have no overlapping qubits and can be mea-
sured simultaneously. Their product satisfies the lower
bound (see Appendix D):

〈M6M2h〉2 ≥ (| 〈M6〉 |+ | 〈M2h〉 | − 1)
2

= (
√

2−1)2. (9)

At the same time one verifies that observable M6M2h to-
gether with observables entering X1 and X2 form a pair-
wise anti-commuting set. Therefore, by the correlation
complementarity,

X1 + X2 + 〈M6M2h〉2 ≤ 1. (10)

Inequalities (9) and (10) contradict X1 = X2 = 1/2.
Summing up, there is no state and measurements which
achieve the bound of 2h derived from the averaging
method applied on a sequence of cyclic hypergraphs Ch.
Accordingly, the set of elementary tripartite monogamy
relations E must contain an infinite number of monogamy
relations — at least those that correspond to all Ch’s with
odd h.

VI. OPTIMISTIC CODA

We showed a simple method to produce Bell
monogamy relations for an arbitrary arrangement of ob-
servers and Bell inequalities. For bipartite inequalities,
the monogamy relations obtained are tight and leverage a
single elementary monogamy relation derived in Ref. [10].
Using a combination of correlation complementarity and
inequalities for marginal expectation values, we showed
that in the multipartite case, however, there is no finite
set of elementary monogamy relations from which tight
relations corresponding to arbitrarily complicated graphs
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FIG. 5. Different ways tight monogamy relations can be ob-
tained from elementary monogamy relations. In the upper
row, a tight monogamy relation for the graph to the left, i.e.
B2

123 + B2
345 + B2

561 + B2
135 + B2

246 + B2
467 + B2

672 + B2
724 ≤ 8, is

obtained from averaging two different elementary monogamy
relations, namely (6) and (7). In the lower row, a tight
monogamy relation of four-partite Bell inequalities is obtained
from the elementary monogamy relations of tripartite Bell in-
equalities in Eq. (5).

could be obtained. Nevertheless, the method is useful
as it does produce non-trivial tight Bell monogamy re-
lations. For example, a tight monogamy relation for a
completely connected graph is obtained by averaging (6)
only, combining elementary monogamy relations of dif-
ferent types can give tight relations, e.g. top of Fig. 5, as
well as tight relations for a higher number of observers,
e.g. at the bottom of Fig. 5 and in the Appendix E. We
hope our general method will boost further applications
of Bell monogamy, especially in complex multiparty sce-
narios.
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Appendix A: Correlation complementarity and Bell
monogamy relations

Here we give examples how correlation complementar-
ity yields Bell monogamy relations. In particular, we
detail groups of anti-commuting observables that lead to
monogamy relations (2) and (5), the latter used in the

proof that the set of elementary tripartite relations is
infinite.

Given a set of dichotomic, mutually anti-commuting
observables {Oj}, correlation complementarity states

that
∑
j 〈Oj〉

2 ≤ 1, where 〈Oj〉 = Tr(ρ.Oj) are the ex-

pectation values in the state ρ [11, 16–18]. In the first
example, let us show how to use correlation complemen-
tarity to prove Eq. (2):

B212 + B213 ≤ 2. (A1)

The relevant observables that enter into the
upper bound (1) are X1X2, X1Y2, Y1X2, Y1Y2
(for B12) and X1X3, X1Y3, Y1X3, Y1Y3 (for B13).
These eight observables can be partitioned into
two sets, namely {X1X2, X1Y2, Y1X3, Y1Y3} and
{X1X3, X1Y3, Y1X2, Y1Y2}, each containing only mu-
tually anti-commuting observables. Eq. (2) follows by
direct application of correlation complementarity to
these two sets.

Similarly, B2123 +B2145 is upper bounded by the sum of
squared expectation values of 16 observables. They can
be arranged into 4 groups of mutually anti-commuting
observables, e.g. the 4 columns of the following table:

X1X2X3 Y1X2Y3 X1X2Y3 Y1X2X3

X1Y2X3 Y1Y2Y3 X1Y2Y3 Y1Y2X3

Y1X4Y5 X1X4X5 Y1X4X5 X1X4Y5
Y1Y4Y5 X1Y4X5 Y1Y4X5 X1Y4Y5

(A2)

Correlation complementarity gives a bound of 1 for each
group, and hence a bound of 4 for B2123 + B2145.

Appendix B: Configurations with quantum trade-off
completely characterized by Steinmetz solids

We shall give two examples of configurations where
the intersection of the elementary monogamy relations
precisely captures the trade-off relation within quantum
theory. The first example is the star configuration with
arbitrary number of observers, see Fig. 6, and the second
example involves four observers in the chain configura-
tion, see Fig. 7. The resulting quantum sets of allowed
values of Bell parameters are intersections of cylinders
having the same radii, the sets known as the Steinmetz
solids. We note that Toner and Verstraete already re-
alized that the Steinmetz solid corresponding to the tri-
angle configuration is not the quantum set, it contains
points which cannot be realized in quantum physics [10].

1. Star configuration

Consider n + 1 observers arranged in a star network
with a central Alice and n remaining observers, Fig. 6.
We show that any set of values B1i that obeys B21j+B21k ≤
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2 for i, j, k ∈ {2, . . . , n + 1} is achievable by a suitable
shared quantum state and measurements.

Let us take a Cartesian coordinate system in n dimen-
sions with each axis giving the value of B1i. Clearly, any
point in the intersection of the cylinders B21j + B21k ≤ 2
can have only one coordinate, say B12, larger than the
local bound of 1. At this point, the remaining Bell ex-
pressions can attain at most the value

√
2− B212. The

shared quantum state achieving these values is given as

|ψ〉 = (α|00〉+ β|11〉)12|0〉3 . . . |0〉n+1 (B1)

with α = 1√
2

√
1 +
√

2 sin t and β = 1√
2

√
1−
√

2 sin t,

with a parameter 0 ≤ t ≤ π
4 . The relevant correlations

are in the xz plane and give

B212 =
∑

k1=x,z

∑
k2=x,z

T 2
k1,k2 = 2 cos2 t,

B21j =
∑

k1=x,z

∑
kj=x,z

T 2
k1,kj = 2 sin2 t, ∀j > 2. (B2)

For the range 0 ≤ t ≤ π
4 , we see that B12 violates the local

bound of 1, and every relation of the form B212 +B21j ≤ 2
is saturated.

Moreover, there is a freedom to control the parameters
B1j for j > 2 such that not all of them achieve the maxi-

mum possible value of 2 sin2 t in this situation. To reduce
the value of any individual B1j , we replace in (B1) the

state |0〉j at position j by the noisy state pj |0〉j〈0|+ 1−pj
2 I,

where I denotes the 2×2 identity matrix. The new state
then gives

B212 =
∑

k1=x,z

∑
k2=x,z

T 2
k1,k2 = 2 cos2 t,

B21k =
∑

k1=x,z

∑
kj=x,z

T 2
k1,kj = 2 sin2 t, ∀k > 2, j 6= k

B21j =
∑

k1=x,z

∑
k2=x,z

T 2
k1,k2 = 2p2j sin2 t. (B3)

FIG. 6. A star configuration of four observers (left) and the
corresponding Steinmetz solid (right). All the points within
the solid, and only those points, are achievable within quan-
tum theory. Similar solids fully characterize the quantum set
of Bell parameters for arbitrary number of satellite parties
with common first observer.

FIG. 7. A chain configuration of four observers (left) and
the corresponding Steinmetz solid (right). This solid fully
characterizes allowed values of the three Bell parameters.

By controlling the noise levels pj we see that the strategy
allows to achieve every possible point within the Stein-
metz solid. The intersection of the cylinders is therefore
precisely the shape of the set of n+1-party quantum cor-
relations projected onto the space of two-party (CHSH)
Bell parameters.

2. Chain configuration

Here we provide another example where the Stein-
metz solid completely characterizes quantum trade-offs
between violations of Bell inequalities. The configura-
tion is illustrated in Fig. 7 and involves three bipartite
Bell parameters B12,B13 and B34, and two elementary
monogamy relations:

B212 + B213 ≤ 2,

B213 + B234 ≤ 2. (B4)

The intersection of the two cylinders above can be split
into one of the following parameter regions:

(P1) B12,B34 > 1, B13 ≤ 1;

(P2) B12 > 1, B34,B13 ≤ 1;

(P3) B12,B34 ≤ 1, B13 > 1;

(P4) B12,B13 ≤ 1, B34 > 1;

(P5) B12,B13,B34 ≤ 1.

We shall analyze them one by one. Note that cases (P2)
and (P4) are obtained by symmetric interchange of qubits
1 ↔ 3 and 2 ↔ 4, while case (P5) is the region within
the local set which is evidently realizable within quantum
theory.

Case (P1) To realize the region defined by (P1), we
consider the correlations in the xz plane of the state

|ψ1〉 = α1|0000〉+ α2|1111〉+ α3|1100〉+ α4|0011〉,



7

with αi ∈ R and
∑4
i=1 α

2
i = 1. The values of Bell pa-

rameters are:

B212 = 1 + 4 (α1α3 + α2α4)
2
,

B234 = 1 + 4 (α2α3 + α1α4)
2
,

B213 =
(
1− 2α2

3 − 2α2
4

)2
. (B5)

Considering without loss of generality the region where
B12,B13,B34 ≥ 0, we choose the following real coefficients

α1 =

√
1 + B13

2
cosφ, α2 =

√
1 + B13

2
sinφ,

α3 =

√
1− B13

2
cos θ, α4 =

√
1− B13

2
sin θ, (B6)

for angles θ, φ given as

θ =
1

2

[
arccos

(√
B212 − 1

1− B213

)
+ arcsin

(√
B234 − 1

1− B213

)]
,

φ =
1

2

[
arcsin

(√
B234 − 1

1− B2
13

)
− arccos

(√
B212 − 1

1− B213

)]
,

(B7)

which are well-defined for any values 1 < B12,B34 ≤
√

2
and 0 ≤ B13 < 1. For B13 = 1, Eq. (B6) gives α3 = α4 =
0.

Case (P2) The region (P2) is realized by the state

ρ2 = |ψ13〉 〈ψ13| ⊗ |0〉 〈0| ⊗
(
p|0〉〈0|+ 1− p

2
I
)

+ |ψ42〉 〈ψ42| ⊗ |1〉 〈1| ⊗
(
p|1〉〈1|+ 1− p

2
I
)
,

where

|ψjk〉 = αj |00〉+ αk |11〉 ,

with p, αi ∈ R,
∑4
i=1 α

2
i = 1 and 0 ≤ p ≤ 1. The cor-

responding Bell parameters calculated in the xz plane
are:

B212 = 1 + 4 (α1α3 + α2α4)
2
,

B234 = p2,

B213 =
(
1− 2α2

3 − 2α2
4

)2
. (B8)

Choosing the values of αi as in Eq. (B6) with the param-
eters θ, φ given in Eq. (B7) allows the realization of any
B12 > 1 and B34,B13 ≤ 1.

Case (P3) The region (P3) is realized by a state sim-
ilar to that defined in Sec. B 1, about the star configura-
tion. We compute the values of the Bell parameters from
the correlations in the xz plane for the state

|ψ3〉 = α|0000〉+ β|1010〉, (B9)

with α = 1√
2

√
1 +
√

2 sin t and β = 1√
2

√
1−
√

2 sin t,

and parameter 0 ≤ t ≤ π
4 . This gives

B213 = 2 cos2 t,

B212 = B234 = 2 sin2 t. (B10)

To obtain smaller values of B12,B34, we add noise to the
qubits at positions 2 and 4 as in Sec. B 1.

Appendix C: Counting all elementary monogamy
relations

This section details a simple brute force algorithm to
list all elementary monogamy relations. We shall focus
on m = 3, in which case the first nontrivial graph has
n = 4 and h = 2, giving rise to monogamy relation (4).
The set of elementary monogamy relations is denoted as
E and we now add to it the first member given by (4).
The algorithm then enters a loop as follows:

. construct all the hypergraphs with n vertices and
h hyperedges

. let index j loop over all these hypergraphs, and let
Gj denote the hypergraph corresponding to j

. for each j find the bound on the monogamy relation
Mj , corresponding to Gj , using averaging of the
elementary relations in E

. check if the bound is tight

� if it is tight, move on to the next j

� if it is not tight, add Mj to E and remove from
E all monogamy relations that correspond to
the subgraphs of Gj and have the same bound
as Mj

. loop over h [its maximum number is
(
n
3

)
], then loop

over n

Appendix D: Correlations versus local expectation
values

For completeness we derive the inequality presented
in [24–26], which leads to Eq. (9).

Lemma 1. Consider dichotomic observables Â, B̂ mea-
sured on different sets of particles. If |〈Â〉| + |〈B̂〉| ≥ 1,
then

〈Â⊗ B̂〉2 ≥
(
|〈Â〉|+ |〈B̂〉| − 1

)2
. (D1)

Proof. By assumption Â and B̂ can be measured simul-
taneously. Let us denote by A = ±1 and B = ±1 the
measurement outcomes obtained in a single experimental
run. They satisfy:

−1 + |A+B| = AB = 1− |A−B|. (D2)

Averaging over many runs of the experiment gives

−1 + 〈|A+B|〉 = 〈AB〉 = 1− 〈|A−B|〉 . (D3)

Since the average of modulus is at least the modulus of
average, we have

−1 + | 〈A〉+ 〈B〉 | ≤ 〈AB〉 ≤ 1− | 〈A〉 − 〈B〉 |. (D4)
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If signs of 〈A〉 and 〈B〉 are the same, then | 〈A〉+ 〈B〉 | =
| 〈A〉 | + | 〈B〉 |. The left inequality in Eq. (D4) then im-
plies

〈AB〉 ≥ −1 + | 〈A〉 |+ | 〈B〉 |. (D5)

By our assumption both sides are nonnegative leading to
Eq. (D1). Similarly, if 〈A〉 and 〈B〉 have opposite signs,
then | 〈A〉−〈B〉 | = | 〈A〉 |+| 〈B〉 |, and the right inequality
in Eq. (D3) becomes

〈AB〉 ≤ 1− | 〈A〉 | − | 〈B〉 |. (D6)

By our assumption, this time both sides are non-positive.
Multiplying the inequality with itself results in Eq. (D1).

In (D1) we use the operator notation to stress that Â and

B̂ are measured on different particles.

Appendix E: Monogamy relations for higher number
of observers

Here we show how to combine m-partite Bell
monogamy relations, obtained from correlation comple-
mentarity, to get tight (m+ 1)-partite relations.

We start from the monogamy relation for three-party
inequalities in Eq. (6), and use it to derive monogamy
between four-party inequalities. Recall Fig. 2, which
presents configuration corresponding to Eq. (6). We
construct the network for four-party inequalities by
adding a new party, labeled ‘0’, who takes part in
the four-party Bell experiment with each of the sets
in {(123), (234), (341), (412)}, as well as with a copy
{(1̃2̃3̃), (2̃3̃4̃), (3̃4̃1̃), (4̃1̃2̃)}. We derive the following tight
monogamy relation from Eq. (6), i.e. the ”square” graph:

B20123 + B20234 + B20341 + B20412 +

B2
01̃2̃3̃

+ B2
02̃3̃4̃

+ B2
03̃4̃1̃

+ B2
04̃1̃2̃
≤ 8. (E1)

To this end, we first recall that Eq. (6) was proven by
grouping the relevant observables into the following anti-

commuting sets

X1X2Y3 X1Y2X3 Y1X2X3 Y1Y2Y3
X1Y2X4 Y1Y2Y4 X1X2Y4 Y1X2X4

X1X3Y4 Y1X3X4 Y1Y3Y4 X1Y3X4

Y2Y3Y4 X2X3Y4 X2Y3X4 Y2X3X4

(Xi ↔ Yi) (Xi ↔ Yi) (Xi ↔ Yi) (Xi ↔ Yi)

(E2)

where the last line in the table indicates the four observ-
ables obtained from the previous lines by an interchange
Xi ↔ Yi at each site i, i.e., X1X2Y3 → Y1Y2X3, etc,
making a total of eight anti-commuting observables in
each of the four sets. In order to prove Eq. (E1) we form
the requisite eight sets of 16 anti-commuting observables
by adjoining X0 to each of the above sets and Y0 to the
corresponding sets for the ĩ qubits.

X0X1X2Y3 X0X1Y2X3 X0Y1X2X3 X0Y1Y2Y3
X0X1Y2X4 X0Y1Y2Y4 X0X1X2Y4 X0Y1X2X4

X0X1X3Y4 X0Y1X3X4 X0Y1Y3Y4 X0X1Y3X4

X0Y2Y3Y4 X0X2X3Y4 X0X2Y3X4 X0Y2X3X4

X0(Xi ↔ Yi) X0(Xi ↔ Yi) X0(Xi ↔ Yi) X0(Xi ↔ Yi)

Y0X1̃X2̃Y3̃ Y0X1̃Y2̃X3̃ Y0Y1̃X2̃X3̃ Y0Y1̃Y2̃Y3̃
Y0X1̃Y2̃X4̃ Y0Y1̃Y2̃Y4̃ Y0X1̃X2̃Y4̃ Y0Y1̃X2̃X4̃

Y0X1̃X3̃Y4̃ Y0Y1̃X3̃X4̃ Y0Y1̃Y3̃Y4̃ Y0X1̃Y3̃X4̃

Y0Y2̃Y3̃Y4̃ Y0X2̃X3̃Y4̃ Y0X2̃Y3̃X4̃ Y0Y2̃X3̃X4̃

Y0(Xĩ ↔ Yĩ) Y0(Xĩ ↔ Yĩ) Y0(Xĩ ↔ Yĩ) Y0(Xĩ ↔ Yĩ)
(E3)

In addition to the above four sets, we obtain four more
sets of 16 anti-commuting observables from each of the
above sets by interchanging X0 ↔ Y0, i.e., X0X1X2X3 →
Y0X1X2X3, etc.

It is readily verified that the observables within each
column in Tab. E3 anti-commute. Moreover, the con-
struction extends so that starting from any network
where one has derived a monogamy relation from corre-
lation complementarity for m-party inequalities, one can
obtain a tight monogamy relation for (m + 1)-party in-
equalities in a “tree” network, with a central qubit 0 and
with the two “leaves” corresponding to the original m-
party network. Furthermore, the derived inequalities are
tight and completely characterize the quantum trade-off
relation, which is ensured by considering the correlations
in the xy plane of the following state [11, 12]:

|ψ〉 =
1√
2

∑
e

αe| 0 . . . 0︸ ︷︷ ︸
e

1 . . . 1〉+
1√
2
|1 . . . 1〉 , (E4)

where αe ∈ R and normalized, e denotes the hyperedge
and |1 . . . 1〉 denotes the all-1 state on the (remaining)
qubits in the network.
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