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We demonstrate an optical quantum nondemolition (QND) interaction gate with a bandwidth of
about 100 MHz. Employing this gate, we are able to perform QND measurements in real time on
randomly fluctuating signals. Our QND gate relies upon linear optics and offline-prepared squeezed
states. In contrast to previous demonstrations on narrow sideband modes, our gate is compatible
with quantum states temporally localized in a wave-packet mode including non-Gaussian quantum
states. This is the cornerstone of realizing quantum error correction and universal gate operations.

I. INTRODUCTION

Quantum information processing with light is a
promising approach for universal and scalable quantum
computation. In recent years, there has been a signifi-
cant progress in optical continuous variable (CV) quan-
tum computation by using a time-domain multiplexing
scheme [1–4], where quantum states are encoded in a
string of wave packet modes in a single optical beam.
This scheme enables us to prepare an unlimited num-
ber of quantized modes in a single beam, individually
access each of these modes, and continuously manipu-
late these modes with a small number of optical compo-
nents. Therefore, this is one of the most efficient and
practical schemes in terms of scalability, and in practice,
the largest-scale entangled quantum state to date was
generated by the time-domain multiplexing scheme [4].
Though such entanglement, in principle, enables univer-
sal and large-scale quantum computation, error correc-
tion to achieve fault tolerance and non-Gaussian gate op-
erations [5] still remain big challenges for CV quantum
computation with time-domain multiplexing schemes.

In order to realize error correction and non-Gaussian
operations, a quantum nondemolition (QND) interac-
tion [6–8], which couples two quantum systems, is an
essential component. A QND gate is indispensable to er-
ror syndrome measurements [9–11], including the special
case of CV error correction schemes [5, 12–14], and also
required for non-Gaussian operations via gate telepor-
tation [5, 15]. In one of the previous demonstrations,
a QND gate using linear optics and off-line prepared
squeezed states has been demonstrated with high pre-
cession [16, 17]. This off-line scheme can be, in principle,
applied to an arbitrary optical quantum state. However,
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QND gates in the previous demonstrations [17–19] only
work on quantum states in narrow sideband modes in
the frequency domain. This means these gates are not
applicable to general quantum states generated in wave-
packet modes and not compatible with the time-domain
multiplexing schemes. Therefore, a broadband QND gate
which can work on wave-packet modes needs to be im-
plemented for fault-tolerant and universal quantum com-
putation with the time-domain multiplexing schemes.

In this Letter, we demonstrate QND gate operations
and measurements on continuously fluctuating signals in
real time with a bandwidth of about 100 MHz. Un-
like previous experiments [17–19], the input signal is
randomly fluctuating with a short autocorrelation time,
and thus the success of QND interactions on this sig-
nal is a proof that our gate correctly operates instant
signals without memory-like effects. The time-domain
traces of quadrature values are obtained in real time by
just applying electric filters [20], and thus can be inter-
preted as results of real-time QND measurements with
respect to time-shifted wave-packet modes determined
by the electric filters. Since our QND gate works on
any wave-packet mode for up to about 100 MHz, our
gate is compatible with general quantum states includ-
ing non-Gaussian quantum states such as single photon
states [21, 22] and Schrödinger’s cat states [23, 24], which
are included in many CV protocols [5, 25, 26]. Note that,
for CV single-mode squeezing and teleportation gates,
operations on such non-Gaussian quantum states have
already been demonstrated with a bandwidth of about
10 MHz [27–32]. Here we demonstrate for the first time
a broadband interaction gate, and furthermore the band-
width is widened to about 100 MHz. Our gate is a cru-
cial component for future realizations of error correction
schemes [5, 12–14] based on the time-domain multiplex-
ing and non-Gaussian gate operations which are neces-
sary for universal quantum computation [5, 15, 25, 26].
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In addition, our gate is also applicable to generate time-
domain multiplexed cluster states for one-way quantum
computation [1, 33], to employ CV gate sequences in a
loop-based architecture [34] and for CV coherent com-
munication [35].

II. THEORY

Let us define quadratures of a quantum optical field

mode k as x̂k and p̂k with x̂k ≡ (â†k + âk) and p̂k ≡
i(â†k − âk), where âk and â†k are annihilation and cre-
ation operators, respectively (~ = 2, [x̂k, p̂k′ ] = 2iδkk′).
The QND interaction is a two-mode unitary operation
ÛQND = exp

(
− i

2Gx̂1p̂2

)
, where G is a QND gain, i.e.

the strength of the interaction of two optical modes. This
interaction transforms the quadrature operators as[

x̂out
1

x̂out
2

]
=

[
1 0
G 1

] [
x̂in

1

x̂in
2

]
,

[
p̂out

1

p̂out
2

]
=

[
1 −G
0 1

] [
p̂in

1

p̂in
2

]
. (1)

Since the QND interaction belongs to the class of Gaus-
sian operations, it is decomposable into beam-splitter
interactions and single-mode squeezing operations [See
Fig. 1(a)] [16, 36]. Furthermore, squeezing is also a Gaus-
sian operation, and is realized by an off-line scheme with
a beam splitter and ancillary squeezed light [16], where
the squeezing degree is tunable via the reflectivity of
the beam splitter R. The QND gate is implemented by
choosing the beam-splitter reflectivities before and after
the squeezing gates as 1/(1 +R) and R/(1 +R), respec-
tively [See Fig. 1(a)]. We obtain

x̂out
1 = x̂in

1 −
√

1−R
1 +R

x̂
(0)
A e−rA , (2a)

x̂out
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1−R√
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1 + x̂in

2 +

√
R
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1 +R

x̂
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A e−rA , (2b)

p̂out
1 = p̂in
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1−R√
R

p̂in
2 +

√
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1 +R
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B e−rB , (2c)

p̂out
2 = p̂in

2 +

√
1−R
1 +R

p̂
(0)
B e−rB , (2d)

where x̂
(0)
A e−rA and p̂

(0)
B e−rB are quadratures of ancillary

squeezed vacua of squeezing gates A and B with finite
squeezing parameters rA and rB. In the ideal limit of

rA, rB → ∞, both x̂
(0)
A e−rA and p̂

(0)
B e−rB terms vanish,

and Eq. (2) becomes equivalent to Eq. (1), where the

QND gain is G = (1 − R)/
√
R. In the experiment, we

choose the QND gain G = 1. In this case, R = (3 −√
5)/2 ≈ 0.38, 1/(1 +R) ≈ 0.72 and R/(1 +R) ≈ 0.28.
For characterization of the gate, we obtain the quadra-

tures x̂k or p̂k (k = 1, 2) by homodyne detection using a
local oscillator (LO). Generally, in the case that the LO
is a continuous coherent light, the detected homodyne
signal is also continuous. The quadrature of a quan-
tum state in a wave-packet mode gmode(t) is obtained
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FIG. 1. Experimental setup. (a) Decomposition of a QND
gate. (b) Peripheral systems for the input signal preparation
and the output measurements. Input optical signal is sent to
either Input-1 or Input-2. (c) Experimental setup of the QND
gate. Squeezing gate-A and B share an optical delay line in
orthogonal polarizations. SHG, second harmonic generator;
HD, homodyne detector.

from the original homodyne signal X̂k(t) by an integra-

tion x̂k =
∫
gmode(τ)X̂k(τ)dτ . On the other hand, when

a continuous signal X̂k(t) passes through a filter with a
response function gfilter(t), the resulting continuous sig-

nal becomes x̂k(t) =
∫
gfilter(t − τ)X̂k(τ)dτ . Therefore

we obtain quadrature values in real time just by in-
serting an electric filter, where the mode function that
corresponds to the quadrature value x̂k(t0) obtained at
time t0 is gmode,t0(t) = gfilter(t0 − t) [20]. Note that
real-time measurements are necessary for nonlinear feed-
forward operations in measurement-based quantum com-
putation [20]. We choose a low-pass filter (LPF) which
has a flat passband and a steep edge with a cutoff fre-
quency of 100 MHz in order to treat the bandwidth of
100 MHz equally. However, the QND gate itself can work
on arbitrary wave-packet modes for up to the bandwidth
of 100 MHz, enabling operations on non-Gaussian states.

As already noted, in order to show memoryless fea-
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tures of our gate, we use random white signals as inputs.
From the signal-to-noise ratio of this random signal, we
can evaluate the conventional QND quantities TS and
TP [37]. However, unlike previous experiments [7, 8, 17–
19], it may not be appropriate to evaluate TS and TP

just by transfer of signal powers. If the signal is modified
unexpectedly by irregular gate responses, a part of the
input signal is considered to be converted to noise at the
output, by which the effective TS and TP degrades. In
order to exclude such a possibility, we check the cancella-
tion of the output signals by using the input signal. The
setup is shown in Fig. 1(b). The random signal is split
into two; one is utilized for generating the input optical
signal, and the other is stored for reference. Here we set
the target of the QND measurement to the quadrature
amplitude produced by the random signal in the wave-
packet mode defined by the electric filters. This input
amplitude is directly stored by applying the same elec-
tric filters to the random signal before storage. Therefore,
we can cancel the produced output signals [(ii) and (iii)
in Fig. 1(b)] by using the stored signal [(i) in Fig. 1(b)]
with an appropriate shift of the time origin. This is also
a new achievement of this research.

III. EXPERIMENTAL SETUP

We use a continuous-wave (CW) Ti:Sa laser at a
wavelength of 860 nm. Input states of the QND gate
are vacuum states and coherent states. We generate a
random optical signal using a waveguide electro-optics
modulator (EOM) and an amplified Johnson electric
noise, which is applied to each of the input quadratures
(xin

1 , x
in
2 , p

in
1 , p

in
2 ). For the frequency characteristic of the

random signal and the scheme of generating the coherent
state, see Appendix A. The other three input quadratures
are at vacuum levels. This is sufficient to characterize the
gate-response matrix on the assumption of the linearity
of the gate.

The QND gate consists of a Mach-Zehnder interfer-
ometer containing two squeezing gates in it as shown
in Fig. 1(a). The squeezing gate has an optical delay
line to compensate the delay of electronic circuits for
feed-forward operations. In order to match the delays of
two squeezing gates, we implement a common delay line
(about 3 m) by utilizing the optical polarization degrees
of freedom as shown in Fig. 1(c). We insert a half-wave
plate (HWP) before a polarizing beam splitter (PBS) to
separate the two outputs, by which the latter beam split-
ter R/(1 + R) is implemented. The ancillary squeezed
vacua are generated from triangle-shaped optical para-
metric oscillators (OPOs) [38]. For the broadband spec-
tra of ancillary squeezed vacua and homodyne detectors,
see Appendix A.

We apply, in addition to the 100-MHz LPF mentioned
above, a high-pass filter (HPF) with a cutoff frequency
of 1 MHz to the output homodyne signals for rejection of
low-frequency noises. The mode function is mainly deter-
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FIG. 2. Time-domain traces for 300 ns. (a) The filtered input
white signals. (b) The filtered output homodyne signals. Red
(gray): x̂out

1 . Cyan (light gray): x̂out
2 . (c) Results of the

cancellation. Red (gray): x̂out
1 . Cyan (light gray): x̂out

2 . (d)
The filtered output homodyne signals for vacuum inputs. Red
(gray): x̂out

1 . Cyan (light gray): x̂out
2 . (e) The filtered output

homodyne signals for vacuum inputs. Red (gray): p̂out1 . Cyan
(light gray): p̂out2 .

mined by the LPF, and the deformation of it by the HPF
is negligible. We acquire the filtered homodyne signals,
together with the filtered input signal, by an oscilloscope
at the sampling rate of 1 GHz. For the QND quanti-
ties TS, TP and VS|P [37], we use 1,000 sets of sequential
10,000 data points. For the power spectra, we use 9,000
sets of sequential 1,024 data points.

IV. EXPERIMENTAL RESULTS

First, as an example, we show the time-domain traces
for the case where the white signal is applied to x̂in

1 . The
other three cases are shown in Appendix B. In Fig. 2,
we show typical time-domain traces of the filtered white
signals and the filtered homodyne signals for 300 ns. Fig-
ures 2(a) and (b) show the traces of the input white sig-
nal and the output quadratures x̂out

1 and x̂out
2 [(i), (ii),

and (iii) in Fig. 1(b)], respectively. We can see that the
output quadratures x̂out

1 and x̂out
2 follow the input white

signal with a time delay of 36 ns, which is shown by
gray backgrounds and dotted lines in Figs. 2(a) and (b).
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FIG. 3. Power spectra of output quadratures when a random signal is added to x̂in
1 . Black (bottom): shot noises. Red: results

of vacuum-state input. Dotted magenta: results of coherent-state input. Dashed green: cancellation of the random signal.

This means that the signal input x̂in
1 is transmitted non-

destructively to the signal output x̂out
1 , and simultane-

ously the signal information is copied to the probe out-
put x̂out

2 . Then we subtract the input white signal from
the output respective quadratures x̂out

1 and x̂out
2 with an

optimum gain and the time shift; the results are shown
in Fig. 2(c). As references, in Fig. 2(d), we also show
traces of x̂out

1 and x̂out
2 for the case of vacuum input. We

can see that the variances of the residual fluctuations in
Fig. 2(c) are comparable to those of the vacuum input
case in Fig. 2(d). The nice cancellation with a simple
time shift means that the gate converts the instant input
signals to the instant output signals without memory-like
effects in this time scale. Without the added random sig-
nals, there is still some positive correlation independent
of the input signal in x̂out

1 and x̂out
2 . On the other hand,

when we look at p̂out
1 and p̂out

2 in Fig. 2(e), there is a neg-
ative correlation. Figures 2(d) and (e) show the quantum
entanglement generated by the gate interaction.

Next, in order to evaluate the cancellation more pre-
cisely, we perform Fourier transform to the results, and
the resulting power spectra are shown in Fig. 3. The
spectra for the vacuum-state input, the coherent-state
input, the cancellation, and the homodyne shot noise as
a reference are colored in red, magenta, green, and black,
respectively. In the case of an ideal QND interaction of
vacuum inputs with G = 1, x̂out

1 and p̂out
2 are kept at

the shot-noise level, while x̂out
2 and p̂out

1 are increased by
3 dB from the shot-noise level, because a vacuum fluc-
tuation of x̂in

1 or p̂in
2 is added. Our results are in good

agreement with this, though there are some excess noise
increases due to finite squeezing of ancillary states. When
the input white signal is added to x̂in

1 , the powers of x̂out
1

and x̂out
2 increase by the same amount, showing the unity

gain of the QND interaction, while those of p̂out
1 and p̂out

2

do not increase, showing negligible crosstalk between x
and p quadratures. Comparing the vacuum-input (red)
trace and the signal-canceled (green) trace, we can see
that the cancellation is almost perfectly working for up
to about 100 MHz. Further discussions of the cancella-
tions by introducing response functions are included in
Appendix B.

Finally, we evaluate the QND quantities TS, TP, and
VS|P for both x̂ and p̂ quadratures [See Appendix C]. The
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FIG. 4. Spectra of the QND quantities. (a), (b) Transfer
coefficients when the random signal is added to x̂in

1 or p̂in2 ,
respectively. Red (top), blue (middle), and green (bottom)
traces are TS + TP, TS, and TP respectively. (c), (d) Con-
ditional variances for vacuum inputs, i.e., the variances of
x̂out
1 − gxx̂

out
2 and gpp̂

out
1 + p̂out2 at the gain gx = 0.41 and

gp = 0.39, respectively [See Appendix D], normalized by the
shot noise spectrum. Blue (bottom) and green (top) traces are
for the cases with and without the ancillary squeezed vacua,
respectively.

success of QND measurements is commonly verified by
the criteria [37]

1 < TS + TP, VS|P < 1. (3)

The experimentally determined values are TS + TP =
1.37 ± 0.03 > 1 and VS|P = 0.88 ± 0.01 < 1 for the x̂
quadratures, TS + TP = 1.37 ± 0.03 > 1 and VS|P =
0.88 ± 0.01 < 1 for the p̂ quadratures. Therefore, we
succeeded in construction of a QND gate that enables
real-time QND measurements for both conjugate quadra-
tures with the bandwidth of about 100 MHz. For a more
detailed analysis, we show the QND quantities at each
frequency in Fig. 4. All of TS, TP, and VS|P satisfy the
QND criteria up to about 100 MHz. As for VS|P, because
of the finite bandwidth of the ancillary squeezed vacua,
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the correlation degrades at higher frequencies, however,
there are still sub-shot-noise correlations for up to about
100 MHz. The two output modes are entangled, which
is described in Appendix D.

V. CONCLUSIONS

We experimentally demonstrated an optical two-mode
QND interaction gate that enables real-time QND mea-
surements on temporally fluctuating random signals. We
also showed that the interaction works on a broad spec-
trum, namely up to about 100 MHz in the frequency
domain. The capability of the gate to deal with instanta-
neous signals is confirmed by the cancellation of random
signals. The realization of a broadband QND gate paves
the way for achieving fault-tolerant universal quantum
computation with the time-domain multiplexing schemes
and many CV quantum protocols.
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Appendix A: Detailed experimental setup and
frequency spectra

1. Electric filters and response function

The homdyne signals for verification as well as the
white signals for the QND input are stored by an oscillo-
scope (DPO7054, Tektronix) after a low-pass filter (LPF)
and a high-pass filter (HPF). The LPF is a commercially
available filter whose cut-off frequency is 100 MHz (Mini-
Circuits, BLP-100+). We plot the frequency character-
istics of the LPF in Fig. 5. The HPF is a homemade
1st-order filter with a cutoff frequency of 1 MHz, which
is used in order to remove low-frequency noise around the
laser carrier frequency. We plot the frequency character-
istics of the HPF in Fig. 6. The mode function gmode(t)
is mainly determined by the LPF. The time-domain re-
sponse function gfilter(t) calculated from the gain and
phase in Fig. 5 is shown in Fig. 7. As mentioned in
the main text, the time-reversal response function with
time shifts is the effective mode function gmode(t) for the
QND measurements.

2. White signal source

Figure 8 shows the power spectrum of the white signal
used for the input of the QND gate. The white signal is

amplified thermal noises of resistors and operational am-
plifiers (OPA847, Texas Instruments). The trace in green
represents unfiltered signals, while the trace in blue rep-
resents filtered signals which corresponds to the signals
stored by the oscilloscope in the actual QND experiment.

3. Homodyne detectors

Figure 9 shows the optical shot-noise spectra with a
local oscillator (LO) power of 10 mW, together with the
detector dark noise spectra, of the four homodyne detec-
tors (two for feed-forward operations and two for QND
measurements). We show both the filtered and unfil-
tered cases. The shot-noise spectra are flat up to about
100 MHz for all of the four detectors. The clearance be-
tween the shot noise and the dark noise is more than
10 dB even at 100 MHz.

4. Ancillary squeezed vacua

Figure 10 shows the power spectra of the squeezed
and anti-squeezed quadratures of the ancillary squeezed
vacua normalized by the shot noise spectrum. The power
of the pump beam is 85 mW. Both of the two squeezed
vacua show about −5 dB of squeezing at low frequen-
cies and about −2 dB of squeezing at 100 MHz. These
spectra are in good agreement with the bandwidths of
the OPO cavities (about 150 MHz of full width at half
maximum).

5. Control of optical systems

In order to lock interference phases in the QND gate,
we use weak laser beams as phase references for each op-
tical paths. These reference beams are temporally turned
on and off by switching a pair of acousto-optic modula-
tors (AOMs). We control the optical systems by feedback
when the reference beams are on, while the system is held
and the QND gate is tested when they are off. The dura-
tion of ON time is 1400 µs and that of OFF time is 600 µs.
The QND measurement data are acquired within 10 µs
in the OFF time, during which the drift of the optical
system is negligible.

However, there are some beams which cannot be
turned off. Some are carrier beams to generate input ran-
dom signals by modulations, and others are carrier beams
for feed-forward operations in the squeezing gates. The
laser noises of these beams disturb the homodyne signals.
The noises by the input carrier beams are more significant
than those by the feed-forward carrier beams because of
the differences in optical path lengths. Since the input
beams pass through the optical delay line before inter-
ference with the LOs, the phase noises look larger in the
output homodyne signals. These noises are filtered out
by the HPF in Fig. 6 and thus they are not so significant



6

0 50 100150200250300
Frequency (MHz)

−100

−80

−60

−40

−20

0

20

G
ai

n 
(d

B
)

−180

−120

−60

0

60

120

180

P
ha

se
 (d

eg
re

e)

LPF-1

0 50 100150200250300
Frequency (MHz)

−100

−80

−60

−40

−20

0

20

G
ai

n 
(d

B
)

−180

−120

−60

0

60

120

180

P
ha

se
 (d

eg
re

e)

LPF-2

0 50 100150200250300
Frequency (MHz)

−100

−80

−60

−40

−20

0

20

G
ai

n 
(d

B
)

−180

−120

−60

0

60

120

180

P
ha

se
 (d

eg
re

e)

LPF-3

FIG. 5. Frequency characteristics of the LPFs, obtained by a network analyzer (Keysight, E5061B). Blue: gain. Dotted green:
phase.
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FIG. 6. Frequency characteristics of the HPFs, obtained by a network analyzer (Keysight, E5061B). Blue: gain. Dotted green:
phase.

problems, however, in order to further remove them, we
employ procedures as follows.

The optical setup for the input random signal is shown
in Fig. 11. For each of Input-1 and Input-2, three beams
are used. Beam-1 is the phase reference for the QND
gate. Beam-2 is the carrier beam to convert the ran-
dom electronic signals to optical signals by phase mod-
ulation. While Beam-1 is temporally turned off during
data acquisition, Beam-2 is always on. We use Beam-3,
which is always on, for canceling the carrier component
of Beam-2, leaving only the modulation sideband. Note
that only Beam-1 is used when we use vacuum states as
input states. The quadrature to add the random signal
is selected via the relative phase between Beam-1 and
Beam-2. For example, for Input-1, when Beam-1 and
Beam-2 are locked in phase, the random signal is added
to x̂in

1 . On the other hand, when Beam-1 and Beam-2
are locked 90-degree out of phase, the random signal is
added to pin

1 . Beam-3 is always locked to the opposite
phase with Beam-2, removing the carrier component of
Beam-2.

6. Feed-forward operation

The feed-forward operations in the squeezing gates
cancel the anti-squeezed noises of the ancillary squeezed
vacua. Here we explain this by using equations. In the
squeezing gate, first the input state (quadrature opera-
tors x̂in and p̂in) is coupled with an ancillary squeezed
state (quadrature operators x̂(0)e−r and p̂(0)er with a
squeezing parameter r) by a beam splitter with a reflec-
tivity R.

x̂int-1 =
√
Rx̂in +

√
1−Rx̂(0)e−r, (A1a)

p̂int-1 =
√
Rp̂in +

√
1−Rp̂(0)er, (A1b)

x̂int-2 =
√

1−Rx̂in −
√
Rx̂(0)e−r, (A1c)

p̂int-2 =
√

1−Rp̂in −
√
Rp̂(0)er. (A1d)

Next, as a feed-forward operation, the anti-squeezed
quadrature of a beam-splitter output p̂int-2 is measured
and used for cancellation of the anti-squeezed noise p̂(0)er

in the other output quadrature p̂int-1,

x̂out = x̂int-1 =
√
Rx̂in +

√
1−Rx̂(0)e−r, (A2a)

p̂out = p̂int-1 +

√
1−R
R

p̂int-2 =
1√
R
p̂in. (A2b)
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FIG. 7. Obtained response function of the LPF. Blue (top):
LPF-1. Green (middle): LPF-2. Red (bottom): LPF-3.
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FIG. 8. Power spectrum of the input white signal. Green
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(bottom): oscilloscope noise floor.

In the ideal limit of r →∞, the excess noise term x̂(0)e−r

vanishes, and Eq. (A2b) approaches the ideal squeezing
transformation where the squeezing degree is determined
by the reflectivity R.

For the cancellation of the anti-squeezed noises, unlike
the previous narrowband experiments [17, 18], the elec-
tronic signal for the feed-forward must be synchronized
with the optical signal, in other words, the phase lags
must be matched at all the frequencies. For this pur-
pose, we use high-speed homodyne detectors and ampli-
fiers with a flat gain and a linear dispersion, and the op-
tical delay line for the compensation of the electronic de-
lay. We confirmed the broadband cancellation by using a
network analyzer (MS4630B, ANRITSU), which is shown

in Figs. 12 and 13. Modulation signals are added by an
EOM before the OPOs to the ancillary quadratures to be
anti-squeezed, and they are canceled by the feed-forward.
Figures 12(a), 12(b), 13(a), and 13(b) are the gains and
phases of the modulated reference beams through the
optical delay line. The gains decrease at higher frequen-
cies due to the bandwidth of the OPO cavities. They
are used for calibration of the traces in the other figures
in Figs. 12 and 13. Figures 12(c), 12(d), 13(c), and
13(d) are the gains and phases through the feed-forward
electronic paths. The gains are flat and the phases are
opposite (180◦) for up to 100 MHz. Figures 12(e), 12(f),
13(e), and 13(f) are the residual modulation signals after
the cancellation. The extinction ratios of the modulated
signals are more than 20 dB for up to 100 MHz.

Appendix B: Response of the QND gate

1. General theory of response functions and
cancellation

We consider a linear and static system

y(t) =

∫
f(t− τ)w(τ)dτ + v(t), (B1)

where f(t) is a response function, w(t) is an input signal,
y(t) is an output signal, and v(t) is an excess noise which
is independent of w(t), i.e., the cross-correlation vanishes,

Rwv(t) = 〈w(τ)v(τ + t)〉 =

∫
w(τ)v(τ + t)dτ = 0.

(B2)

The response function f(t) is obtained by deconvolution
from the input-output cross-correlation. The autocorre-
lation Rww(t) and the cross-correlation Rwy(t) are,

Rww(t) =

∫
w(τ)w(τ + t)dτ, (B3a)

Rwy(t) =

∫
w(τ)y(τ + t)dτ,

=

∫∫
w(τ)w(τ ′)f(τ − τ ′ + t)dτdτ ′, (B3b)

or in the frequency domain,

Sww(ω) = |W (ω)|2, (B4a)

Swy(ω) = |W (ω)|2F (ω). (B4b)

Therefore, the response function is obtained in the fre-
quency domain by

F (ω) =
Swy(ω)

Sww(ω)
. (B5)
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FIG. 11. Experimental setup for input signal preparation.
Beam-2 is sent to either Input-1 or Input-2.

The obtained response function f(t) gives the optimal
cancellation of the input signal, i.e.,

〈[
y(t)−

∫
h(t− τ)w(τ)dτ

]2
〉

(B6)

=
〈
v2(t)

〉
+

〈{∫
[f(t− τ)− h(t− τ)]w(τ)dτ

}2
〉
,

which is minimized when h(t) = f(t). Note that the cross
terms vanish by using Eq. (B2).

2. Experimental response functions

If the QND gate is not working instantaneously, the
QND gate transformations in the time domain are gen-
erally in the form of

x̂out
1 (t) =

∫
fx1→1(t− τ)x̂in

1 (τ)dτ + (other noise terms), (B7a)

x̂out
2 (t) =

∫
fx1→2(t− τ)x̂in

1 (τ)dτ +

∫
fx2→2(t− τ)x̂in

2 (τ)dτ + (other noise terms), (B7b)

p̂out
1 (t) =

∫
fp1→1(t− τ)p̂in

1 (τ)dτ −
∫
fp2→1(t− τ)p̂in

2 (τ)dτ + (other noise terms), (B7c)

p̂out
2 (t) =

∫
fp2→2(t− τ)p̂in

2 (τ)dτ + (other noise terms). (B7d)
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FIG. 12. Cancellation of the modulated signal by the feed-forward in the squeezing gate-A. (a), (b) Gain and phase of the
reference beam in the squeezing gate-A, used for calibration of the other traces. (c), (d) Gain and phase of the feed-forward
beam in the squeezing gate-A. (e), (f) The results of the cancellation of the modulated signal.
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FIG. 13. Cancellation of the modulated signal by the feed-forward in the squeezing gate-B. (a), (b) Gain and phase of the
reference beam in the squeezing gate-B, used for calibration of the other traces. (c), (d) Gain and phase of the feed-forward
beam in the squeezing gate-B. (e), (f) The results of the cancellation of the modulated signal.

We want to apply the theory in Appendix B 1 to this
QND system. For the estimation of the response func-
tions, the random signals are used. As an example, we
consider the case where a random signal α(t) is added to

the vacuum fluctuation x̂
(0)
1 (t) as

x̂in
1 (t) = x̂

(0)
1 (t) + α(t), (B8)

and the other three quadratures are kept to vacuum lev-
els. In this case, in theory, by examining the transfer
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FIG. 14. Experimental input autocorrelation, input-output cross-correlation, and response function (fin→1 ∗ fx
1→1 ∗ f1→out)(t)

in the time domain (top panels) and in the frequency domain (bottom panels).

TABLE I. Inner products between all the response functions
(i)-(vii) in Fig. 15.

Response function (i) (ii) (iii) (iv) (v) (vi) (vii)

(i) 1 0.989 0.991 0.990 0.994 0.990 0.976
(ii) - 1 0.989 0.990 0.988 0.995 0.978
(iii) - - 1 0.985 0.986 0.990 0.972
(iv) - - - 1 0.992 0.991 0.982
(v) - - - - 1 0.989 0.982
(vi) - - - - - 1 0.981
(vii) - - - - - - 1

of the random signal α(t) to the two output quadra-
tures xout

1 (t) and xout
2 (t), response functions fx1→1(t) and

fx1→2(t) are obtained, respectively. Note that the vacuum
fluctuations, though they are white and random, can-
not be used for the estimation of the response functions.
As discussed in Appendix. B 1, the important thing is
that we know the input signal in order to obtain the
cross correlation. In reality, we cannot obtain the re-
sponse functions with the procedures in Appendix. B 1.
The actual response functions obtained experimentally
are (fin→k ∗ fx,pk→l ∗ fl→out)(t), where fin→k(t) is a re-
sponse function of a conversion from an electronic signal
to an optical signal, fl→out(t) is a response function of a
conversion from an optical signal to an electronic signal,
and ∗ denotes a convolution.

As an example, we show the autocorrelation, the cross-
correlation, and the obtained response function (fin→1 ∗
fx1→1 ∗ f1→out)(t) in Fig. 14. All the other experimen-
tally estimated response functions from the input elec-
tronic signals to output the electronic signals are shown
as traces (i)–(vi) in Fig. 15. All the response functions
have the same shape. Note that, although we use LPFs
and HPFs for output homodyne signals, the same fil-

ters are applied before the storage of the input signal as
shown in Fig. 1(b) in the main text and thus the effect of
the filters are canceled in the response functions. These
response functions improve the cancellation in Fig. 3 in
the main text. Figure 16 shows all the power spectra
of cancellation with and without the response functions
when the random signal is added to one of the four in-
put quadratures x̂in

1 , x̂in
2 , p̂in

1 , and p̂in
2 . Black, red, ma-

genta, blue, and green traces are the spectra for the shot
noises as references, the QND outputs with vacuum in-
puts, those with the random signal input, the cancel-
lation with the response functions, and the cancellation
without them, respectively. The signals are perfectly can-
celled when the response functions are used, which means
that the evolution of the signals through the QND gate
is completely predictable.

However, we note that over-150-MHz components of
the response functions do not actually represent the re-
sponse of the QND gate but are determined by other
reasons. For the frequencies higher than 150 MHz, the
homodyne signals are highly attenuated by the LPF and
thus electronic noises are dominant. While these elec-
tronic noises have a negligible cross-correlation between
channels, they contribute to the autocorrelation. Even
though we subtracted the background electronic noises
obtained without the optical LOs, there were still some
residual noises, by which the denominator becomes much
larger than the numerator in Eq. (B5) over 150 MHz. As
a result, the response functions look as if they have a
limited bandwidth of less than 150 MHz. The dull shape
of the response functions shown in Fig. 15 are because of
these situations.

In order to estimate the response function of the QND
gate itself fx,pk→l(t), we conducted the following experi-
ment. As references, we estimated the response functions
(fin→1∗f1→out)(t) for conversion of electric signals to op-
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FIG. 15. Estimated response functions, used for the can-
cellation in Fig. 16. (i) (fin→1 ∗ fx

1→1 ∗ f1→out)(t). (ii)
(fin→1 ∗ fx

1→2 ∗ f2→out)(t). (iii) (fin→2 ∗ fx
2→2 ∗ f2→out)(t).

(iv) (fin→1 ∗ fp
1→1 ∗ f1→out)(t). (v) (fin→2 ∗ fp

2→1 ∗ f1→out)(t).
(vi) (fin→2 ∗ fp

2→2 ∗ f2→out)(t). (vii) (fin→1 ∗ f1→out)(t).

tical signals and vice versa without the QND gate, and
obtained a trace (vii) in Fig. 15. Here, we assumed neg-
ligible differences among peripheral response functions
(fin→k ∗fl→out)(t). The trace (vii) has the same shape as
those of the traces (i)-(vi) with a time difference of 11 ns.
This time difference simply represents the difference of
the positions of the homodyne detectors, and does not
directly represent the QND gate latency of about 13 ns
corresponding to the optical path length of about 3.8 m.
The response functions of the QND gate are obtained by
the deconvolution of the traces (i)-(vi) by the trace (vii),
and the results in the frequency domain are shown in
Fig. 17. The obtained spectra are flat for up to 100 MHz,
and thus we conclude that the response functions of the
QND gate are like a delta function in the considered time
scale. Inner products of all the traces (i)–(vii) in Fig 15
with the time shift of 11 ns are summarized in Tab. I.

Appendix C: Transfer coefficients and conditional
variances

As discussed in Appendix. B 2, the response of the
QND gate is like a delta function in the considered time
scale. Therefore, we can apply the conventional QND cri-
teria [37] to the filtered quadrature values at each time,

without considering a complicated mixing of quadratures
at different times. Here, we summarize the QND criteria,
especially, the connections between the QND quantities
and the signal-to-noise ratios (SNRs).

General linear conversions of a signal observable ÂS

and a probe observable ÂP by a nonideal QND gate are

Âout
S = GS,SÂ

in
S +GS,PÂ

in
P +GS,NCN̂COM + N̂S, (C1a)

Âout
P = GP,SÂ

in
S +GP,PÂ

in
P +GP,NCN̂COM + N̂P,

(C1b)

where N̂COM is a correlated component, and N̂S and N̂P

are uncorrelated components, of excess noises of the gate.
The success criteria of the QND measurements are [37],

1 < TS + TP, VS|P < 1. (C2)

The transfer coefficients TS, TP and the conditional vari-
ance VS|P are defined as

TS = C2
Âin

S Â
out
S

=
| 〈Âin

S Â
out
S 〉 − 〈Âin

S 〉 〈Âout
S 〉 |2

VÂin
S
VÂout

S

, (C3a)

TP = C2
Âin

S Â
out
P

=
| 〈Âin

S Â
out
P 〉 − 〈Âin

S 〉 〈Âout
P 〉 |2

VÂin
S
VÂout

P

, (C3b)

VS|P = VÂout
S

(1− C2
Âout

S Âout
P

)

= VÂout
S

(
1−

VÂout
S Âout

P

VÂout
S
VÂout

P

)

= VÂout
S

(
1− | 〈Â

out
S Âout

P 〉 − 〈Âout
S 〉 〈Âout

P 〉 |2

VÂout
S
VÂout

P

)
,

(C3c)

where VX̂Ŷ , VX̂ , and CX̂Ŷ are a covariance, a variance,
and a correlation, respectively,

VX̂Ŷ = 〈X̂Ŷ 〉 − 〈X̂〉 〈Ŷ 〉 , (C4a)

VX̂ = VX̂X̂ , (C4b)

CX̂Ŷ =
VX̂Ŷ√
VX̂VŶ

, (C4c)

and the signal input state is assumed to be a coher-
ent state, VÂin

S
= 1, i.e., the latter part of Eq. (C2)

means that the signal observable is squeezed by the QND
measurement. Note that the transfer coefficients and
the conditional variance are TS = 1, TP = G/(1 + G),
and VS|P = 1/(1 + G2), for the ideal QND interaction,

Âout
S = Âin

S , Âout
P = GÂin

S + Âin
P , with a coherent-state

probe input VÂin
P

= 1. The excess noises of the gate

decrease the transfer coefficients and increase the condi-
tional variance. With the general linear conversions in
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FIG. 16. Power spectra of all the cases where a random signal is added to one of the input quadratures x̂in
1 , x̂in

2 , p̂in1 and
p̂in2 . Black (bottom): shot noises. Red: the QND outputs with vacuum-state inputs. Cyan (upper in left-end row): optical
random signal at the input. Dotted magenta: the QND outputs with the random signal input. Dashed green: cancellation of
the random signal without the response functions. Blue: cancellation of the random signal with the response functions, which
almost overlaps with red.
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FIG. 17. Response functions of the QND gate in the frequency domain. Blue: response function |Fin→1(ω)F1→out(ω)|. Dotted
green: response functions |Fin→1(ω)F x,p

k→l(ω)F1→out(ω)|. Red (bottom): response functions |F x,p
k→l(ω)|.

Eq. (C1), the transfer coefficients are

TS =
G2

S,SVÂin
S

G2
S,SVÂin

S
+G2

S,PVÂin
P

+G2
S,NCVN̂COM

+ VN̂S

,

(C5a)

TP =
G2

P,SVÂin
S

G2
P,SVÂin

S
+G2

P,PVÂin
P

+G2
P,NCVN̂COM

+ VN̂P

,

(C5b)

and the conditional variance is discussed later.
The transfer coefficients TS and TP are experimen-

tally obtained by examining the transfer of the SNRs.
For this purpose, we add a signal α to the signal input
Âin

S = δÂin
S +α, where δÂin

S is a vacuum noise fluctuation

〈δÂin
S 〉 = 0, VδÂin

S
= 1, and the power is compared with

that of the case without the input signal Âin
S = δÂin

S . The
SNR at the signal input is

SNRin
S =

α2

VÂin
S

=
〈(δÂin

S + α)2〉 − 〈(δÂin
S )2〉

〈(δÂin
S )2〉

, (C6)

and thus obtained experimentally from the powers of the
two cases 〈(δÂin

S + α)2〉 and 〈(δÂin
S )2〉. On the other

hand, the output signal and probe observables become
Âout

S = δÂout
S +GS,Sα and Âout

P = δÂout
P +GP,Sα, where

δÂout
S and δÂout

P are noise fluctuations without the input

signal α. We assume 〈δÂout
S 〉 = 〈δÂout

P 〉 = 0 without loss
of generality. The SNRs at the signal and probe outputs
are,

SNRout
S =

G2
S,Sα

2

VÂout
S

=
〈(δÂout

S +GS,Sα)2〉 − 〈(δÂout
S )2〉

〈(δÂout
S )2〉

=
G2

S,Sα
2

G2
S,SVÂin

S
+G2

S,PVÂin
P

+G2
S,NCVN̂COM

+ VN̂S

, (C7a)

SNRout
P =

G2
P,Sα

2

VÂout
P

=
〈(δÂout

P +GP,Sα)2〉 − 〈(δÂout
P )2〉

〈(δÂout
P )2〉

=
G2

P,Sα
2

G2
P,SVÂin

S
+G2

P,PVÂin
P

+G2
P,NCVN̂COM

+ VN̂S

, (C7b)

and thus obtained experimentally from the powers of the
two cases 〈(δÂout

S +GS,Sα)2〉, 〈(δÂout
P +GP,Sα)2〉, and

〈(δÂout
S )2〉, 〈(δÂout

P )2〉. By using Eqs. (C5)–(C7), we ob-
tain,

TS =
SNRout

S

SNRin
S

, TP =
SNRout

P

SNRin
S

. (C8)

Therefore, TS and TP represent the degradation of the
SNR when the signal input α is transferred to the signal
and probe outputs, respectively.

The conditional variance VS|P corresponds to the min-

imum variance of Âout
S − gÂout

P where the subtraction
gain g is an optimization parameter. The variance of
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TABLE II. Verification of transfer coefficients in the QND
gate. The coherent state amplitude is injected either to xin

1

or pin2 .

Coherent state input xin
1 pin2

TS 0.86±0.02 0.85±0.02
TP 0.51±0.01 0.52±0.01

TS + TP 1.37±0.03 1.37±0.03
VS|P 0.88±0.01 0.88±0.01
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FIG. 18. Normalized variances (dimensionless) of (a)
x̂out
1 − gxx̂

out
2 and (b) gpp̂

out
1 + p̂out2 . Cyan (upper) mark-

ers: experimental results when ancillary squeezed vacua are
not used. Red (lower) markers: experimental results when
ancillary squeezed vacua are used. Green (top) curves: theo-
retical variance when ancillary squeezed vacua are not used.
Magenta (middle) curves: theoretical variance when ancillary
squeezed vacua with −2.8 dB of squeezing are used. Blue
(bottom) curves: theoretical variance for the ideal QND in-
teraction with G = 1. Gray lines: entangled criterion.

Âout
S − gÂout

P is a quadratic polynomial in g,

VÂout
S −gÂout

P
= 〈(δÂout

S − gδÂout
P )2〉

=VÂout
P
g2 − 2VÂout

S Âout
P
g + VÂout

S

=VÂout
P

(
g −

VÂout
S Âout

P

VÂout
P

)2

+ VS|P, (C9)

which is minimized at g = VÂout
S Âout

P
/VÂout

P
.

The experimental values are summarized in Tab. II.
The variances 〈(x̂out

1 − gxx̂out
2 )2〉 and 〈(gpp̂out

1 + p̂out
2 )2〉

for various subtraction and addition gains are plotted in
Fig. 18.

Appendix D: Quantum Entanglement

The sub-shot-noise conditional variances VS|P < 1 in
both of the x̂ and p̂ quadratures are not a sufficient con-
dition for entanglement. A sufficient condition based on
the Duan-Simon criterion is [17, 39, 40],

∃g, 〈(x̂out
1 − gx̂out

2 )2〉+ 〈(gp̂out
1 + gp̂out

2 )2〉 < 4|g|.
(D1)

In Fig. 18, there are gray lines 〈(x̂out
1 − gx̂out

2 )2〉 = 2|g|
and 〈(gp̂out

1 + p̂out
2 )2〉 = 2|g|, and there is a region of

g where red markers are below the gray lines in both
quadratures. Therefore, the two output modes are en-
tangled for coherent-state inputs.
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