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We construct a quantum Markovian Master equation for a driven system coupled to a thermal
bath. The derivation utilizes an explicit solution of the propagator of the driven system. This enables
the validity of the Master equation to be extended beyond the adiabatic limit. The Non-Adiabatic
Master Equation (NAME) is derived employing the weak system-bath coupling limit. The NAME
is valid when a separation of timescales exists between the bath dynamics and the external driving.
In contrast to the adiabatic Master equation, the NAME leads to coupled equations of motion
for the population and coherence. We employ the NAME to solve the example of an open driven
time-dependent harmonic oscillator. For the harmonic oscillator the NAME predicts the emergence
of coherence associated with the dissipation term. As a result of the non-adiabatic driving the
thermalization rate is suppressed. The solution is compared with both numerical calculations and
the adiabatic Master equation.

I. INTRODUCTION

All physical systems in nature, small or large, are af-
fected to some extent by an external environment. The
theory of open quantum systems incorporates the influ-
ence of the environment on the dynamics of a quan-
tum system in a concise manner. In this framework
the aim is to find the reduced dynamical description of
the primary system while tracing out the environment.
The dynamical map describing the system’s evolution
is required to be completely positive and trace preserv-
ing (CPTP). This mathematical property is required to
allow a consistent physical interpretation of the quan-
tum dynamics. The most general form of a CPTP dy-
namical reduced description of divisible maps is given
by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
Markovian master equation [1–3]. There are several op-
tions for deriving the GKLS equations from first princi-
ples. In this study we will follow the path of the Born-
Markov weak system bath coupling derivation originally
derived by Davies [4].

The GKLS form fulfills the thermodynamical require-
ments such as the first and second laws of thermodynam-
ics. [8–11]. This Master equation is a template in many
fields, such as in quantum optics [12, 13], quantum mea-
surement [14], quantum information [65] and quantum
thermodynamics [9].

The original Davies construction assumes a static sys-
tem Hamiltonian leading to a Master equation, where
the environment is expressed through its second order
correlation functions and bath modes matching the sys-
tem’s intrinsic frequencies. This Davis approach has been
generalized for the dissipative dynamics of periodically
driven systems using the Floquet theory [16–20], and adi-
abatic driving [21–25]. Recently, Yamaguchi et al., gener-
alized the Master equation beyond the adiabatic regime
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[26], where the final form of the Master equation was
identical to the adiabatic equation of Albash et al. [22].
In this paper we derive a Non-Adiabatic Master Equation
(NAME) going beyond the approximations of Albash and
Yamaguchi.

In the derivation of the NAME a Lie algebraic struc-
ture of the driven system evolution operators is employed.
The outcome is a time-dependent GKLS operator struc-
ture with time-dependent decay rates. Unlike the case
of the adiabatic GKLS equation, the equations of mo-
tion of the population and coherence are coupled and
this leads to generation of coherence associated the dis-
sipative term.

One of the most well-studied examples of open quan-
tum systems is the Master equation of the quantum har-
monic oscillator. The same equation is employed in many
physical disciplines such as quantum optics, ions in a
Paul trap, opto-mechanical oscillators, and vibrational
modes of molecules in solution. We would like to ex-
tend such scenarios to processes with an explicit time
dependent Hamiltonian. A quantum harmonic oscilla-
tor with a varying frequency, coupled to a Bosonic bath,
is employed to demonstrate the NAME. The results for
this model predict non-vanishing coherence due to the
inhomogeneous terms in the equations of motion. These
terms define the instantaneous attractor which provides a
new insight of the relation between the system and bath
for non-adiabatic processes. The NAME construction
enables a thermodynamically consistent study of driven
systems coupled to the environment such as isothermal
strokes in a quantum Carnot engine [27], and quantum
control of open systems [28–30].

We begin by presenting in section II a general deriva-
tion of the NAME, study the asymptotic limits of the
equation (Sec. III) and present an analysis of the ap-
proximations in Sec. V. In section IV we study a specific
example of a driven harmonic oscillator and verify the
validity of the NAME by numerical methods (Sec. VI).
This paper is accompanied by detailed appendices that
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include the explicit derivation of the NAME and the nu-
merical simulation details.

II. DERIVATION OF THE GENERAL
NON-ADIABATIC MASTER EQUATION

The starting point of the derivation of the NAME is
a system coupled to a single bath. We assume that the
dynamics of the composite system is closed and follows
a unitary evolution generated by the composite Hamilto-
nian [33, 34]

Ĥ (t) = ĤS (t) + ĤB + ĤI . (1)

In (1) ĤS (t) and ĤB are the system and bath Hamilto-

nians and ĤI is the system-bath interaction term, which
can be expressed as

ĤI =
∑
k

gkÂk ⊗ B̂k . (2)

Here, Âk and B̂k are the Hermitian operators of the
system and bath, respectively, and gk are the coupling
strength parameters. Following the standard perturba-
tion expansion, the first step is a transformation to the
interaction picture with respect to the ĤS (t) and bath
Hamiltonians,

H̃ (t) = Û†S (t) Û†B (t) Ĥ (t) ÛB (t) ÛS (t) , (3)

where the free bath propagator is ÛB (t, 0) ≡
ÛB (t) = e−iĤBt/~, and ÛS (t, 0) ≡ ÛS (t) =

T exp
(
− i

~
∫ t

0
ĤS (t′) dt′

)
. Here, T is the time-ordering

operator and the tilde symbol is assigned to operators
in the interaction picture. The system propagator ÛS(t)
is the solution of the Schrödinger equation for a time-
dependent Hamiltonian

i~
∂ÛS (t)

∂t
= ĤS (t) ÛS (t) , ÛS (0) = I . (4)

In the interaction picture, the interaction Hamiltonian
takes the form:

H̃ (t) = H̃I (t) =
∑
k

gkÃk (t)⊗ B̃k (t) (5)

where the interaction picture operators of the bath and

system are B̃k (t) = eiĤBt/~B̂ke
−iĤBt/~ and Ãk (t) =

Û†S (t) ÂkÛS (t).
To obtain a Master equation of the GKLS form, the Li-

ouville von Neumann equation is expanded up to second
order in the coupling strength gk, relying on the weak
coupling limit. Furthermore, the Born-Markov approx-
imation is employed involving three main assumptions,
[34]:

1. The quantum system and the bath are uncorre-
lated, such that ρ̂ (t) = ρ̂S (t)⊗ ρ̂B .

2. The bath correlation functions decay much faster
than the system’s relaxation rate and internal dy-
namics.

3. The state of the bath is assumed to be a thermal
stationary state,

ρ̂B = e−βĤB/tr
(
e−βĤB

)
.

These assumptions with the second order perturbation
theory lead to the Markovian quantum master equation

d

dt
ρ̃S (t) =

− 1

~2

∫ ∞
0

dstrB

[
H̃ (t) ,

[
H̃ (t− s) , ρ̃S (t)⊗ ρ̃B

]]
.

(6)

This equation has also been derived using the time
convolution-less technique [35, 36].

To reduce Eq. (6) from an integro-differential to a dif-
ferential form we introduce the set of time-independent
eigenoperators, {F̃}, of the propagator ÛS (t). The eigen-
operators are defined by the equation,

F̃j (t) = Û†S (t) F̂j (0) ÛS (t) = λj (t) F̂j (0) , (7)

which is an eigenvalue equation in terms of operators,
where λj (t) = |λj (t) |eiφj(t) are complex eigenvalues.

The unitarity of ÛS (t) and the algebraic properties guar-

antee the existence of operators F̃j , see Appendix A. The

set {F̃} form a complete basis of the system’s Lie algebra,

allowing to expand Ãk (t) in terms of the eigenoperator
basis,

Ãk (t) =
∑
j

ξkj (t) eiθ
k
j (t)F̂j (0) (8)

where θkj (t) includes the time-dependent phase φj of

F̃j (t), and any phase associated with Ãk (t). Similarly ξkj
is a function of |λj (t) | and any explicit time dependence
of the system interaction operator. The time-dependent
coefficients satisfy ξkj (t), θkj (t) ∈ R and ξkj (t) > 0, see
Appendix B. In the following we omit the time depen-
dence of the eigenoperators at initial time, F̂j ≡ F̂j (0).

Inserting equation (8) in equation (6) we obtain after
some algebra

d

dt
ρ̃S (t) =

1

~2

∑
k,k′,j,j′

∫ ∞
0

ds ξk
′

j′ (t) ξkj (t− s)

× eiθ
k′
j′ (t)eiθ

k
j (t−s)gk′gk

(
F̂j ρ̃S (t) F̂j′ − F̂j′ F̂j ρ̃S (t)

)
× trB{B̃k′ (t) B̃k (t− s) ρ̂B}+ h.c. , (9)

where h.c. denotes the hermitian conjugated expression.
Equation (9) describes dynamics influenced by the

past history of the driving protocol, incorporated by
ξkj (t− s) and θkj (t− s). The analytical solution for such
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an integro-differential equation presents a challenge [37–
40], and is not guaranteed to be completely positive,
therefore further approximations are required. We as-
sume that the bath dynamics is fast compared to the
driving rate which determines the adiabatic parameter
µ. In general the adiabatic parameter is defined as,

µ = maxt,k,l

[
〈k (t)| ˙̂

HS |l (t)〉
|Ek (t)− El (t) |2

]
, (10)

where Ej(t) and |j(t)〉 are the instantaneous eigenen-

ergies and eigenstates of the Hamiltonian ĤS(t) [41]. A
slow change of the driving protocol relative to the bath
dynamics will lead to a slow change of ξkj (t) and θkj (t)
relative to the bath decay rate. This translates to a rela-
tion between the typical timescales: The bath correlation
decay time, τB , should be much shorter than the non-
adiabatic timescale, τd, an additional timescale which
emerges in the derivation, associated with the change in
the driving protocol, Cf. Sec V. For s ∈ [0, τB ] and
s � t, ξkj (t− s) can be approximated by a polynomial
expansion in orders of s,

ξkj (t− s) ≈ ξkj (t)− d

dt
ξkj (t) s . (11)

The amplitudes are influenced directly by the driving,
hence, it can be assumed that in the regime s ∼ τB and
s < τB (for slow change in the driving) the second term
on the RHS is negligible relative to the amplitude ξkj (t),

obtaining ξkj (t− s) ≈ ξkj (t). It is possible also to include
the first order terms in s, leading to a small correction of
the decay rates (see Appendix D on higher order correc-
tions).

For s > τB the bath correlation functions decay
rapidly, therefore the contribution to the integral can be
neglected.

A similar approximation is performed for the phases by
expanding θkj (t− s) around t up to first order, this order
is the dominant contribution to the dynamics, hence it
included in the derivation.

θkj (t− s) ≈ θkj (t)− d

dt
θkj (t) s = θkj (t) + αkj (t) s , (12)

where the second term in the expansion is defined as
αkj (t) ≡ − d

dtθ
k
j (t− s) |s=0. Inserting the expansions, Eq.

(12), into Eq. (9) leads to:

d

dt
ρ̃S (t) =

∑
k,k′,j,j′

gkgk′ξ
k
j (t) ξk

′

j′ (t) eiθ
k′
j′ (t)eiθ

k
j (t)

× Γ
(
αkj (t)

) (
F̂j ρ̃S (t) F̂j′ − F̂j′ F̂j ρ̃S (t)

)
+ h.c. (13)

where the Fourier transform of the instantaneous bath
correlation function is given by

Γkk′
(
αkj (t)

)
=

1

~2

∫ ∞
0

dseiα
k
j (t)strB{B̂k′ (t) B̂k (t− s) ρ̂B} .

(14)

To simplify, we decompose Γ to a real and pure imaginary
part,

Γkk′ (α) =
1

2
γkk′ (α) + iSkk′ (α) . (15)

Here, γkk′ (α) can be written as γkk′ (α) =
1
~2

∫∞
−∞ dseiαs〈B̂k (s) B̂k′ (0) ρB〉B , where Skk′ (α) =

1
2i (Γkk′ (α)− Γ∗k′k (α)), and 〈 〉B is the average over the
bath’s thermal state.

In order to obtain a Master equation in the GKLS form
the secular approximation is required. The approxima-
tion neglects fast oscillating terms in the Master equa-
tion, which average to zero in the time resolution of in-
terest. In such a regime, assuming no degeneracy in the
Bohr frequencies, the terms for which θk

′

j′ (t) 6= −θkj (t)
oscillate rapidly relative to the relaxation dynamics and
averages to zero.

Performing the secular approximation leads to the
non-adiabatic-master-equation (NAME) in the interac-
tion representation:

d

dt
ρ̃S (t) = − i

~

[
H̃LS (t) , ρ̃S (t)

]
+
∑
k,j

(
ξkj (t)

)2
g2
kγkk

(
αkj (t)

)
(
F̂j ρ̃S (t) F̂ †j −

1

2
{F̂ †j F̂j , ρ̃S (t)}

)
. (16)

Here, H̃LS (t) is the time-dependent Lamb-type shift

Hamiltonian in the interaction representation, H̃LS (t) =∑
k,j ~Skk

(
αkj (t)

)
F̂ †j F̂j , (F̂j ≡ F̂j (0)).

The decay rates in (16) are all positive, hence, the
equation has a GKLS form, guaranteeing a CPTP map
for the system’s state. Equation (16) has a very simi-
lar form to the Quantum Markovian Adiabatic equation
of Albash [22] and the generalization of Yamaguchi [26].
The differences which arise are the scalar rate coefficients
and the dissipative generator operators F̂j . As will be
shown in the next sections, these differences result in dif-
ferent qualitative and quantitative behavior.

III. ASYMPTOTIC LIMITS OF THE NAME

The stationary Master equation as well as the adiabatic
and periodically driven Master equations are asymptotic
limits of the NAME (16).

A. Periodic driving

The structure of the NAME, Eq.(16), also holds when
the system is driven by a periodic external field, see [18,
42]. The decomposition now reads

Ãk(t) =
∑
j

ξkj e
iθkj (t)F̂j , (17)
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where ξkj is time independent and θkj (t) = (ωj + mΩ)t.
The quasi-Bohar frequencies ωj are the Floquet modes,
Ω = 2π/τ with a period time τ , and m = 0,±1,±2, ....

In this case, the operator F̃j is the part of Ãk(t) that
rotates with frequency ωj + mΩ, and the summation in
Eq.(15) is replaced by

∑
j →

∑
m∈Z

∑
{ωj}.

B. Adiabatic limit

A quantum adiabatic process is such that an ini-
tial energy state, |εa (0)〉, follows the corresponding
time-dependent eigenstate, |εa (t)〉, of the instantaneous

Hamiltonian, ĤS (t),

ĤS (t) |εa (t)〉 = εa (t) |εa (t)〉 .

Following the derivation in [22], in the adiabatic limit,
the propagator can be represented in terms of the in-
stantaneous energy eigenstates,

ÛS (t, t′) ≈ Ûadi
S (t, t′) =

∑
a

|ε (t)〉 〈ε (t′)| e−iλa(t,t
′) .

(18)
The phase is given by λa (t, t′) =

~−1
∫ t
t′
dτ [εa (τ)− φa (τ)], where {εa (t)} are the

instantaneous energies and φa (t) = i〈εa (t) |ε̇a (t)〉 is the
Berry phase [44, 45].

The system operators in the interaction picture are
calculated using Uadi

S (t, t′):

Ãk (t) = Uadi†
S (t, 0) ÂkU

adi
S (t, 0)

=
∑
a,b

〈εa (t)| Âk |εb (t)〉 e−iλba(t,0) |εa (0)〉 〈εb (0)| .

(19)

We identify the expansion set operators as
F̂ba = |εa (0)〉 〈εb (0)|, the amplitude by ξkba (t) =

〈εa (t)| Âk |εb (t)〉, and the phases as:

θba (t, t′) = λba (t, t′) ≡ λb (t, t′)− λa (t, t′)

=
1

~

∫ t

t′
dτ [(εb (τ)− εa (τ))− (φb (τ)− φa (τ))] .

(20)

Here, the indices b, a can be replaced by a single index
j, reconstructing Eq. (8). Similarly to the derivation
in section II, we expand the phase, θba (t− s, 0) at the
vicinity of t. The first order term becomes

θba (t− s, 0) ≈ θba (t, 0)− d

dt
θba (t, 0) s

= θba (t, 0)− ωba (t) s+ (φb (t)− φa (t)) s , (21)

where ωba (t) = (εb (t)− εa (t)) /~ are the instantaneous
Bohr frequencies. The third term on the RHS is first
order in the adiabatic parameter µ (10). The frequency

φ is proportional to µ, therefore in the adiabatic limit
when µ � 1, φ can be neglected. The frequency αba (t)
becomes in this limit

αba = ωba (t) . (22)

Inserting Eq. (19) and (22) into Eq. (16) we obtain
the Quantum Adiabatic Master equation, Eq. (54) in
[22]. The static Master equation can be obtained for a

time-independent Hamiltonian, ĤS (t) = ĤS (0).

IV. THE NAME FOR THE DRIVEN
HARMONIC OSCILLATOR

Next, we study the validity of the NAME for the driven
harmonic oscillator coupled to a Bosonic bath. This
model is relevant for a wide range of applications, includ-
ing atomic, molecular and optical physics [31, 32]. Here
we employ the properties and structure of the SU(1,1)
Lie algebra [46, 47] to derive the NAME.

The system is represented by the Hamiltonian

ĤS =
P̂ 2

2m
+

1

2
mω2 (t) Q̂2 , (23)

where Q̂ and P̂ are the position and momentum opera-
tors, m and ω (t) are the mass and frequency of the sys-
tem. Closed form solutions of the free evolution of the
second order operators has been obtained for a constant
adiabatic parameter, µ = ω̇

ω2 = const [48], Appendix E.
In this case, the driving protocol of a time duration tf
between frequencies ω (0) and ω (tf ) is given by,

ω (t) =
ω (0)

1− µω (0) t
. (24)

The adiabatic parameter µ is uniquely determined by
ω (0), ω (tf ) and tf , obtaining finite values for bounded
frequencies. The evolution of the isolated system is pre-
sented in Appendix F, and is used to expand the inter-
action term, (5), in terms of the eigenoperators (7).

A. Coupling to the bath

The harmonic oscillator is coupled linearly to a Bosonic
thermal bath,

ĤI = Q̂⊗g
∑

p̂k = ig
∑
k

√
mωk

2
Q̂⊗

(
b̂†k − b̂k

)
, (25)

where pk is the k-th oscillator momentum operator and

b̂k, b̂†k are the corresponding annihilation and creation
operators. Other choices of linear system-bath coupling
are possible as in Ref. [43].

Following the derivation described in Section II, Q̃ (t) is
decomposed into the set of eigenoperators (see Appendix
F):
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Q̃ (t) = ξ (t)
∑
j=±

F̂je
iθj(t) , (26)

where F̂j ≡ F̂j (0) = F̃j (0).
The set of eigenoperators are a linear combination of the
position and momentum operators

F̂+ (t) = AQ̂ (t) +BP̂ (t) = F̂ †− (t) , (27)

where A = 1
2

(
iµκ + 1

)
and B = i 1

mω(0)κ . The amplitude

is given by ξ (t) =
√

1− µω (0) t and the phases:

θ± (t) = ∓κ
2

∫ t

0

ω (t′) dt′ = ± κ

2µ
log

(
ω (t)

ω (0)

)
, (28)

where κ =
√

4− µ2. Notice that (1− µω (0) t) is neces-
sarily positive for physical ω (t), Eq. (24), leading to a
real value for the accumulated phases.

In order to perform the secular approximation we ana-
lyze the time dependence of θ±(t). The approximation is
valid when |2θ+ (t) | oscillates rapidly relative to the de-
cay frequency, τ−1

R . This adds a restriction on the range
of θ± (t) and ω (t) with respect to the driving protocol,
leading to the inequality |θ± (t) | � 1 for t < τR. A full
analysis of the approximation and regime of validity are
presented in Sec. V.

Following the general derivation for a specific ξ (t), F̂j
and θj the correlations one-sided Fourier transforms, Γkk′
in Eq. (14), can be calculated, determining the dissipa-
tive rates in the NAME, Eq. (16).

By collecting equations (28), (26) and (16) the NAME
in the interaction representation becomes:

d

dt
ρ̃S (t) = − i

~

[
H̃LS (t) , ρ̃S (t)

]
+ |ξ (t) |2γ (α (t))

×

(
F̂+ρ̂S (t) F̂− −

1

2
{F̂−F̂+, ρ̃S (t)}

+ e−~α(t)/kBT

(
F̂−ρ̃S (t) F̂+ −

1

2
{F̂+F̂−, ρ̃S (t)}

))
,

(29)

where kB is the Boltzmann constant, T is the bath tem-
perature, α (t) = κ

2ω (t) and F̂+ ≡ F̂+ (0). The time-
dependent rate coefficient has the form,

γ (α (t)) =
mπ

~
α (t)J (α (t))

(
N̄ (α (t)) + 1

)
(30)

where J (α) is the spectral density function determined
by the density of bath states f (α) and the coupling
strength χ (α), J (α) = f (α)χ (α) [12] (Cf. Appendix
D). The factors N̄ (α) is the mean occupation number
given by the Bose-Einstein statistics and e−~α(t)/kBT is
the instantaneous Boltzmann factor related to the effec-
tive time-dependent frequency α (t).

B. Solution for the NAME

For a time-independent problem it is convenient to
transform to the Heisenberg picture, and obtain a set
of coupled linear differential equations for the operators,
[16, 48]. For Hilbert space of dimension N one obtains
N2 − 1 equations which can be solved analytically or by
standard numeric methods [51]. In contrast, the solution
is more complicated when the GKLS equation has an ex-
plicit time dependence. For such a case the solution for
the operator Ô is given by [34]:

d

dt
ÔH (t) = V † (t, 0) {L† (t) ÔH (t)} , (31)

subscript H designates operators in the Heisenberg pic-
ture. The adjoint propagator takes the form:

V † (t, t0) = T→ exp

∫ t

t0

dsL† (s) , (32)

where T→ is the anti-chronological time-ordering op-
erator and V † (t, t0) satisfies the differential equation
∂
∂tV

† (t, t0) = V † (t, t0)L† (t). In order to obtain an equa-

tion of motion for ÔH (t) (Eq. 31), one first needs to
apply the time-dependent adjoint generator at time t on
the operator at initial time, and then propagate the so-
lution in time with V † (t, 0). In general, this proves to
be difficult as a result of non-commutativity of L† (s) at
different times, requiring time-ordering in Eq. (32). To
circumvent the problem of time-ordering in the Heisen-
berg representation, we solve the dynamics of the density
matrix.

Solving the NAME in the interaction picture simplifies
the analysis. The equation is expressed in terms of nor-

malized creation and annihilation operators: b̂ =
√
cF̂+

and b̂† =
√
cF̂−, where c = (2~Im (A∗B))

−1
for A and

B introduced in Eq. (27) (b̂ ≡ b̂ (0)). These operators
satisfy the Bosonic annihilation and creation commuta-

tion relation
[
b̂, b̂†

]
= 1 , allowing to cast the NAME in

the simple form. Assuming that the Lamb-shift term is
negligible, we obtain,

d

dt
ρ̃S (t) = k↓ (t)

(
b̂ρ̃S (t) b̂† − 1

2
{b̂†b̂, ρ̃S (t)}

)
+ k↑ (t)

(
b̂†ρ̃S (t) b̂− 1

2
{b̂b̂†, ρ̃S (t)}

)
, (33)

where k↓ (t) = mπc
~ α (t)J (α (t))

(
N̄ (α (t)) + 1

)
and

k↑ (t) = mπc
~ α (t)J (α (t))

(
N̄ (α (t))

)
.

We assume an initial squeezed Gaussian state in terms

of the operator basis {b̂†b̂, b̂2, b̂†2, Î}, which is preserved
under the dynamics of the NAME, [61]:

ρ̃S (t) =
1

Z (t)
eγ(t)b̂2eβ(t)b̂†b̂eγ

∗(t)b̂†2 (34)
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where Z (t) is the partition function:

Z (t) ≡ Z (β, γ) =
e−β

(e−β − 1)
√

1− 4|γ|2
(e−β−1)2

. (35)

For the general case of a finite Lie algebra ρ̃S (t) can
be expressed in terms of a generalized Gibbs state (en-
semble) density operator [52, 59], the squeezed Gaussian
is a special case of such a state, see Appendix C.

Inserting Eq. (34) into Eq. (33) and multiplying
the equation of motion by ρ̃−1

S leads to
(
d
dt ρ̃S

)
ρ̃−1
S =

(Lρ̃S) ρ̃−1
S where L is the generator in the RHS of Eq.

(33). Utilizing the Baker-Housdorff relation the RHS is
decomposed to a linear combination of the algebra op-
erators. Comparing both sides of the equation, term by
term, we obtain two coupled differential equations for
γ (t) and β (t), (a detailed derivation appears in the Ap-
pendix G):

β̇ = k↓
(
eβ − 1

)
+ k↑

(
e−β − 1 + 4eβ |γ|2

)
(36)

γ̇ = (k↓ + k↑) γ − 2k↑γe
−β .

Notice that the rates k↓ and k↑ are in general time-
dependent, increasing the difficulty for obtaining an an-
alytical solution. Once β (t) and γ (t) are obtained the
expectation values of the set of operators can be retrieved
from Eq. (34), thus, circumventing the use of the Heisen-
berg representation. Eq. (36) was solved numerically us-
ing the Runge-Kutta-Fehlberg method and the solutions
of β (t) and γ (t) are utilized to calculate expectation val-
ues, see Appendix G.

In order to analyze the system dynamics we define two
additional time-dependent operators:

L̂ (t) =
P̂ 2

2m
−1

2
mω (t) Q̂2 and Ĉ (t) =

ω (t)

2

(
Q̂P̂ + P̂ Q̂

)
.

(37)

The operators L̂ (t) and Ĉ (t) together with ĤS (t) and
the identity constitute a closed Lie algebra. These three
operators define the state of the system, Appendix G [48].

L̂ is the difference between kinetic and potential energy
and Ĉ is the position-momentum correlation, defining
the squeezing of the state. Both expectation values van-
ish at thermal equilibrium. Since L̂ (t) and Ĉ (t) do not

commute with ĤS (t) they can be employed to define

the coherence: C ≡
√
〈L̂〉2+〈Ĉ〉2
~ω(t) [48]. These operators

can describe all thermodynamical equilibrium and out of
equilibrium properties and are employed to reconstruct
the generalized Gibbs state ρ̃S (t) [48].

Using the formulation above, the expectation values
of the operators 〈ĤS (t)〉, 〈L̂(t)〉 and 〈Ĉ(t)〉 are solved
as a function of time. Fig. 1 shows a comparison be-
tween the solution of the NAME for different system-bath
coupling strengths. The vanishing system-bath coupling
term g = 0 corresponds to the isolated case. For µ < 0
the oscillator frequency decreases with time leading to a
reduction of the system’s energy as seen in Appendix E.
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FIG. 1. System dynamics as generated from the NAME for
different coupling strengths g (g = 0 represents isolated dy-
namics). The left panel shows the expectation value of the
energy as a function of time and the right panel shows the
position momentum correlation, 〈Ĉ〉 as a function of time.
The chosen parameters are: µ = −0.1, ω (0) = 40 and
T = 20 where the initial conditions are β (0) = −1 and
γ (0) = 0.5. This corresponds to an initial state described

by 〈ĤS (0)〉 ≈ 55, 〈L̂ (0)〉 ≈ −20.5 and 〈Ĉ (0)〉 ≈ 3.7.
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0

2

4

6

8
NAME
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4 5 6
0

0.2

0.4

FIG. 2. The system dynamics generated from the NAME
(pink, dark gray) is compared to the isolated quantum sys-
tem (blue, dashed light gray) and the instantaneous attractor
(fixed point) of the adiabatic solution (green, dashed gray)
for a parametric harmonic oscillator. The dynamics are rep-
resented by the system variables 〈ĤS (t)〉, 〈L̂(t)〉 and 〈Ĉ(t)〉.
Here, the chosen parameters are: µ = −0.1, ω (0) = 40,
T = 20 and g = 1 where the initial conditions include no
coherence 〈ĤS〉 = 60, 〈L̂ (0)〉 = 〈Ĉ (0)〉 = 0.

The expectation value of 〈Ĉ(t)〉 shows damped oscilla-

tions, similarly 〈L̂(t)〉 oscillates with an opposite phase
difference. These oscillations arise due to coupling be-
tween population and coherence, Eq. (E1). When g > 0
the system energy increases due to energy flow from the
bath. The observables 〈L̂(t)〉 and 〈Ĉ(t)〉 are suppressed

at short time. At later times 〈L̂(t)〉 and 〈Ĉ(t)〉 increase
with the coupling strength g, beyond the isolated case
(see inset of Fig. 2).

Fig. 2 shows the dynamics for an initial state which is
diagonal in the energy eigenbasis (〈L̂ (0)〉 = 〈Ĉ (0)〉 = 0).
The analytical result of the NAME is compared to the
isolated dynamics and the adiabatic Master equation. In
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the adiabatic case the system remains diagonal in the
energy eigenbasis at all times, with no generation of co-
herence throughout the dynamics. While non-adiabatic
dynamics display a rise in coherence which oscillates in
time. The driving dresses the system’s state, leading to
a rise in coherence attributed to both the unitary dy-
namics as well as to the dissipative term. At short times
〈L̂(t)〉 and 〈Ĉ(t)〉 are suppressed by the system-bath in-
teraction as seen in Figure 2. However, at long times for
non-adiabatic driving, 〈Ĉ(t)〉 and 〈L̂(t)〉 converge to a
non-zero value. This is demonstrated in Figure 3, where
we plot the dynamics of the coherence.
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g=0

g=0.5

g=1

FIG. 3. The dynamics of the coherence, C ≡
√
〈L̂〉2+〈Ĉ〉2
~ω(t)

,

is presented for different system-bath coupling strengths. In-
creasing the system-bath coupling induces an increase in co-
herence, associated with the non-adiabatic driving. Model
parameters and initial conditions are identical to Fig. 2.

Figure 3 shows the increase of coherence at later times
for increasing bath coupling. The state of the system is
mapped towards a direction which deviates from a di-
rection defined by the instantaneous energy. This devi-
ation can be understood from the structure of the jump
operators F̂± (t). The non-adiabatic driving modifies the
jump operators, which differ from the instantaneous (adi-

abatic) jump-operators, â (t) =
√

mω(t)
2~ Q̂ + i√

2mω~(t)
P̂

and â (t)
†
. This deviation is a general consequence of

non-adiabatic driving, independent of the model. Such
generation of coherence, associated with the bath, is a
unique property of the NAME.

In the Schrödinger frame the contribution to the co-
herence from the system-bath interaction are associated
with the equations for the parameters β (t) and γ (t) (see
below).

C. Instantaneous attractor

The dynamics of the system, at each instant, can be
imagined as motion toward a moving target, denoted as
the instantaneous attractor. The instantaneous attractor
is defined as the local steady state, obtained by setting

the LHS of Eq. (36) to zero. This leads to:

γia = 0 and βia = log

(
k↑
k↓

)
= log

(
N (α (t))

N (α (t)) + 1

)
,

(38)
and

〈b̃†b̃〉ia = N (α (t)) . (39)

The instantaneous attractor is the temporal fixed point
of the map and is an unattainable target as the system
is continuously driven.
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FIG. 4. (a) The energy value of the instantaneous attrac-
tor as a function of time, for different values of the constant
adiabatic parameter µ. (b) The difference between the ini-
tial and the temporary value of the coherence of the instan-
taneous attractor, ∆〈Ĉia〉 = 〈Ĉia (τ)〉 − 〈Ĉia (0)〉. (c) The
time-dependent rate coefficient (atomic units are used). The
initial frequency is ω (0) = 40 and temperature of the bath

T = 20, with initial values 〈Ĥ (0)〉 ≈ {26.3, 26.2, 26.2} for

µ = {10−1, 10−2, 10−3} and similarly for 〈Ĉ (0)〉 = 1.31 ·
{1, 10−1, 10−2}.

The instantaneous attractor values for
{〈ĤS〉, 〈L̂〉, 〈Ĉ〉, 〈Î〉} are calculated by substituting
Eq. (38) in Eq. (34) and utilizing (39). We present the
results for the instantaneous attractor, in Fig. 4, for
different negative adiabatic parameters µ. The harmonic
oscillator’s frequency decreases for µ < 0 leading to a
decrease in the target energy 〈ĤS〉ia. Coherence emerges

via a non-vanishing 〈Ĉ〉ia arising from a finite driving
speed (non-adiabatic). Figure 4 shows that for vanishing
µ the results coincide with the adiabatic solution, where
the state follows the Hamiltonian and 〈Ĉ〉ia → 0.
Similar generation of coherence has been obtained for
a system coupled to a squeezed bath [54, 55]. The

instantaneous attractor solution for 〈L̂〉 vanishes due to
the independence of the steady state on γ. This result
is independent of the parameter choice.

The dynamics can be viewed as motion in a time-
dependent reference frame relative to a static bath. In
analogy to special relativity the bath observes a slowing
down of the system frequency as |µ| is increased. This
modifies the rates which depend on the Fourier transform
of the correlations, with the system’s frequency. In addi-
tion, the non-adiabaticity of the system is equivalent to
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a system coupled to a squeezed bath. In the adiabatic
limit (µ → 0) this effect vanishes and no coherence is
generated.

D. The asymptotic limit of the NAME

The adiabatic limit is obtained when µ → 0. In
this limit the operators F̂±, Eq. (27), converge to(
F̂+, F̂−

)
→
√

~
2ω(0)m

(
â, â†

)
while ξ (t)→ 1 and α (t)→

ω (t). Thus, in the adiabatic limit, Eq. (29) reproduces
the adiabatic Markovian Master equation as obtained by
Albash et al. [22],

d

dt
ρ̂S (t) =

(
Û (t) + γ (ω (t)) D̂ (t)

)
ρ̂S (t) (40)

where Û (t) σ̂ ≡ − i
~

[
Ĥ (t) , σ̂

]
and

D̂ (t) σ̂ ≡ â (t) σ̂a† (t)− 1

2
{â† (t) â (t) , σ̂}

+ e−~ω(t)/kBT

(
â† (t) σ̂ (t) â− 1

2
{â (t) â† (t) , σ̂}

)
.

When ω is constant Eq. (40) becomes the standard Mas-
ter equation of a thermalizing harmonic oscillator.

Comparing Eq. (33) to the adiabatic Master equation
(40) we notice two differences. First, the decay rate is
modified, the non-adiabatic and adiabatic decay rates are
related by

k↓ = kadi↓
J
(
κ
2ω (t)

) (
N
(
κ
2ω (t)

)
+ 1
)

J (ω (t)) (N (ω (t)) + 1)
(41)

k↑ = kadi↑
J
(
κ
2ω (t)

)
N
(
κ
2ω (t)

)
J (ω (t))N (ω (t))

.

For the case of Ohmic spectral density linear in the
frequency as well as higher powers, J(ω) ∝ ωn for n ≥ 1,
the non-adiabatic rate will be smaller than the adiabatic
rate, due to κ

2 ≤ 1. It is important to note that the solu-
tion is valid when |µ| < 2 and θ± ∈ R. The point |µ| = 2
is an exceptional point representing the transition from
damped to over-damped dynamics [56, 57]. Furthermore,
µ and ω (t) are restricted by the secular approximation.

The NAME also differs in the jump operators b̂, b̂† vs.
â, â†. In the adiabatic case:

â(t) =
√

mω(t)
2~ Q̂+ i 1√

2m~ω(t)
P̂ , and in the non-adiabatic

case

b̂ (t) =
√
c
(
AQ̂ (0) +BP̂ (0)

)
eiθ+(t) (42)

where A and B are defined below Eq. (27),
√
c is the fac-

tor relating b̂ and F̂+, and θ+ is given by Eq. (28). When
µ → 0 Eq. (42) converges to the standard annihilation
operator, â (t).

V. APPROXIMATION ANALYSIS AND
REGIME OF VALIDITY

We summarize the general derivation in section II, em-
phasizing the approximations performed and their range
of validity. The relevant parameters of the composite sys-
tem are the system-bath coupling strength g, the bath’s
spectral bandwidth ∆ν, the time-dependent quasi-Bohr
frequencies {ω (t)} of the system and the adiabatic pa-
rameter µ, Eq. (10) [41].

These four parameters determine four different
timescales:

1. The system’s typical timescale, τS = maxi

(
1

ωi(t)

)
,

where ωi are non-degenerate system Bohr frequen-
cies.

2. The timescale of the bath is defined by τB ∼ 1
∆ν .

3. The relaxation time of the system, τR, which is pro-
portional to the coupling strength τR ∝ g−2 [22].

4. The timescale characterizing the rate of change of
the system’s energies due to the external driving,
defined as τd, the non-adiabatic timescale.

The microscopic derivation holds in the weak coupling
limit, thus, terms of the order O (g)

3
and higher can be

neglected (practically, only the even powers of g will con-
tribute, giving a correction of the order O

(
g4
)

to the
derivation). The Markov approximation is valid when
the correlations decay rate is very fast relative to the
coupling strength, leading to:

gτB � 1 (43)

The next step is the secular approximation which neglects
the fast oscillating terms in Eq. (13). This approxima-
tion is valid for mint [θi (t) + θj (t)]� 1 when θi 6= −θj .

The non-adiabatic timescale τd, is restricted by the
timescale of the bath’s correlations decay τB . The
timescale in which the driving field is changing should
be slow relative to the bath’s dynamics, i.e., τB � τd. In
addition, the correlations decay fast relative to the sys-
tem dynamics, τS � τB . Here, τd can be evaluated by
expanding θj (t− τB) near the instantaneous time t , (Cf.
12):

θj (t− τB) ≈ θj (t)− θ′j (t) τB (44)

Higher order powers can be neglected if,

|θ(n+1)
j (t) | (τB)

n+1 � |θ(n)
j (t) |τnB , leading to

|θ′′j (t) |τB � |θ′j (t) |. The typical timescale of the
driving can be identified as

τd ≡ mini,t [θ′i (t) /θ′′i (t)] . (45)

A summery of the timescales is presented in Table I.
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TABLE I. Timescales
τS System intrinsic

timescale
maxωi (1/ωi (t))

τB Bath correlation
functions decay time

∼ 1/∆ν

τR Relaxation towards
equilibrium lifetime

∝ 1/g2

τd Non-adiabatic
timescale

mini,t [θ′i (t) /θ′′i (t)]

A. Approximation analysis for the harmonic
oscillator

For the harmonic oscillator example τS ∼ 1
ω(t) . In

this case, the adiabatic parameter becomes µ = ω̇
ω2 and

the non-adiabatic timescale is calculated with the help of
Eq. (45) and (28) giving, τd ∼ ω (t)/ω̇ (t) = (ω (t)µ)

−1
.

The adiabatic parameter and non-adiabatic timescale are
related, however, the two differ in their physical implica-
tions. In contrast to the adiabatic approximation, which
requires µ � 1, the constraint on the non-adiabatic
timescale, τd � τB is dependent on the dynamics of the
bath and allows for fast driving (large µ), beyond the
adiabatic regime.

The Born-Markov approximation conditions, τB � τS ,
τB � τR, leads to the following relations, ω (t)� ∆ν and
g � ∆ν. Furthermore, the secular approximation leads

to minω (t) � g2

∆ν and the driving protocol is restricted

by µ � min ∆ν
ω . Combining the inequalities above we

can conclude that the relevant system’s frequency regime
is

g2

∆ν
� ω (t)� ∆νmin

[
1, µ−1

]
. (46)

In the weak coupling limit for a bath with a constant
and unbounded spectrum (∆ν → ∞), the bath is delta
correlated and the Master equation holds for any finite
ω (t). Such a bath is hypothetical in practical scenar-
ios, the bath’s spectrum is finite and the validity regime
defined by Eq. (46).

VI. NUMERICAL ANALYSIS

We analyze the model by simulating numerically the
system and bath. The model is a driven harmonic oscil-
lator coupled to a Bosonic bath. The bath consists of N
oscillators with an identical mass m represented by the
Hamiltonian

ĤB =

N∑
i=1

(
p̂2
i

2m
+

1

2
mω2

i q̂
2
i

)
. (47)

A linear system bath coupling is employed

ĤI = ω (t) Q̂⊗
N∑
k=1

gkq̂k (48)
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FIG. 5. The energy as a function of time for different solu-
tions. The frequency decreases for a negative µ leading to a
decrease in the energy. The initial state is of a Gibbs form:

ρ̂S = exp
(
β (0) b̂†b̂

)
. The model parameters are shown in a

table in Appendix H 1.

and a flat spectral density J(ω) = const, in range
ω ∈ [ωmin, ωmax]. For the numerical compression we
choose a different linear interaction than that in the an-
alytical derivation, Eq. (25), which simplifies the numer-
ical calculations. The matching analytical derivation for
the new interaction is modified accordingly.

The combined system, Eq. (23), and bath form
a set of linear harmonic systems. Leading to closed
Heisenberg equations of motion for the set of operators
P̂ , Q̂, P̂ 2, Q̂2, P̂ Q̂ + Q̂P̂ and for all 1 ≤ i ≤ N :
p̂i, q̂i , p̂

2
i , q̂

2
i , p̂iq̂i + q̂ip̂i. We solve for the expectation

values of the operators and the solution for the system’s
variables is translated to the set of operators 〈ĤS (t)〉,
〈L̂ (t)〉 and 〈Ĉ (t)〉.

In the limit when the number of the bath modes di-
verge, N →∞, ωmax →∞, the numerical approximation
converges to the NAME’s solution. The equations of mo-
tion were solved for the second moments by a Dormand-
Prince Runge Kutta method (DP-RK4) with a constant
time step, see Appendix H for more details.

In Fig. 5, the energy as a function of time is com-
pared for the adiabatic, isolated, NAME and numerical
solutions. The results show a good match between the
NAME and the independent numerical approach, while
the adiabatic and isolated solutions deviate substantially
from the expected energy change. Hence, the numerical
result verifies the analytical derivation and solution for
the NAME. To see this effect in the numerical simulation
µω should be comparable to the decay rate. In contrast,
when µ is large the free propagation dominates.
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VII. CONCLUSION

Then Non-Adiabatic Master Equation (NAME) ad-
dresses the issue of the environment’s effect on the
dynamics of a driven quantum system. This Mas-
ter equation generates a Markovian reduced descrip-
tion for a driven quantum system going beyond the
adiabatic framework. The equation is cast into the
form of a time-dependent Gorini-Kossakowski-Lindblad-
Sudarshan equation (GKLS) where both the operators
and the kinetic coefficient are time-dependent.

A condition necessary to derive the NAME is a Lie
algebra of operators which span both the driven and
bare Hamiltonian and the system-bath coupling opera-
tors. This allows to obtain the free propagator and the
time-dependent jump operators. These are identified as
the eigenoperators of the propagator, Eq. (7). Further-
more, for the equation to be valid we require a timescale
separation between the system and driving timescales,
and the bath’s correlation time.

The NAME incorporates as limits, the time-
independent, periodically driven and the adiabatic Mas-
ter equations. In comparison with the adiabatic [22] or
post adiabatic [26] Master equations, the NAME mixes
population and coherence. The differences can be traced
to the form of the jump operators, Eq. (16), composing
the time-dependent GKLS equation. In the adiabatic
case the jump operators are eigenoperators of the instan-
taneous Hamiltonian, in contrast, in the NAME the jump
operators are eigenoperators of the free propagator.

Using the NAME we are able to explicitly solve the
problem of a time-dependent harmonic oscillator coupled
to a bath, Sec. IV. The solution is facilitated by choos-
ing a driving protocol dictated by a constant adiabatic
parameter µ. The SU(1,1) Lie algebra is employed to
derive the Master equation and to represent the system
as a generalized Gibbs state in the operators of the alge-
bra. This form is equivalent to a squeezed thermal state
and enables the explicit solution of the dynamics. Such
restriction of a constant µ can be uplifted by using a
piecewise approach, decomposing an arbitrary protocol
to small time intervals with a constant µ.

The driven harmonic oscillator model exhibts reduced
decay rates in the NAME compared to the rates obtained
from the adiabatic Master equation. The reason is an
effective reduction of the system frequency α (t) < ω (t)
as seen by the bath. The explicit solution demonstrates
the mixing of coherence and population in the equations
of motion. Furthermore, when solving the dynamics of
the NAME in the Schrödinger picture, the instantaneous
attractor can be identified. At each instant, the dynamics
directs the system towards the instantaneous attractor.
Coherence is generated since the instantaneous attractor
is not diagonal in the instantaneous energy basis.

The dynamics of the NAME is compared to a numeri-
cal simulation. The simulation converges to the analyti-
cal prediction of the NAME.

The NAME addresses the problem of a driven open

system within the Markovian approximation. In any con-
trol problem of open quantum systems this is the typical
scenario, [28–30]. Such a control problem appears abun-
dantly in annealing approaches to quantum computing
[58] and in quantum gates [62–65].
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Appendix A: Eigenoperators

We assume the system dynamics can be described by
a time-independent operator basis {Ĝ} including a finite
number of operators which are elements of a Lie algebra

[
Ĝj , Ĝi

]
=

N∑
k=1

cijk Ĝk , (A1)

where cijk are the structure constants.

If the Hamiltonian ĤS (t) at initial time is a linear

combination of the operators {Ĝ}, it is a member of the
algebra and can be expressed as:

ĤS (t) =

N∑
j=1

hj (t) Ĝj . (A2)

With the help of the identity Eq. (A2) and the Heisen-
berg Equation one concludes that the equations of motion
for the system operators are closed under the Lie algebra.
In addition, for any closed Lie algebra the time evolution
operator can be written as [49]:

ÛS (t) =

N∏
j

erj(t)Ĝj , (A3)

where rj (t) are time-dependent coefficients.
The eigenoperators can be found by representing the

dynamics in Liouville space (known also as Hilbert-
Schmidt space). Such Hilbert space is a state space of

system operators, {X̂}, endowed with an inner product

defined by,
(
X̂i, X̂j

)
≡ tr

(
X̂i
†
X̂j

)
[66, 67, 69].

In the Liouville representation, the system’s dynamics
are calculated in terms of a chosen basis of operators
spanning the Liouville space, (such as {Ĝ}). This basis of
operators construct a vector ~v (t) in observable space. For
example, the dynamics of a two-level-system is described
in the Bloch sphere where the basis is constructed from
the Pauli operators.
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Employing the Heisenberg equation of motion, the dy-
namics of ~v is given by,

d

dt
~v (t) =

(
i

~

[
Ĥ (t) , ·

]
+
∂

∂t

)
~v (t) (A4)

Here, we consider a finite basis of sizeN , which also forms
a closed Lie algebra. This guarantees that the Heisenberg
equations of motion (A4) can be solved within the basis
[49], implying that Eq. (A4) can be represented in a
vector matrix form,

d

dt
~v (t) = G (t)~v (t) , (A5)

where G (t) is an N by N matrix and ~v is a N -dimensional
vector. For a hermitian Hamiltonian the algebraic prop-
erties insure that G (t) is diagonalizable, see following

subsection. Let {~F (t)} be the eigenvector basis of G (t)

and ~Fj (t) ∈ {~F (t)}, then ~Fj (t) satisfies the instanta-
neous eigenvalue equation

G (t) ~Fj (t) = χj (t) ~Fj (t) , (A6)

where χj (t) ∈ C. Using Eq. (A6) into Eq. (A5) and

solving for ~Fj (t) leads to,

~Fj (t) = US (t) ~Fj (0) = eχj(t) ~Fj (0) , (A7)

where US (t) is the propagator in Liouville space. We
define λj (t) ≡ eχj(t) and represent Eq. (A7) in the wave-
function Hilbert space to obtain:

F̃j (t) = Û†S (t) F̂j (0) ÛS (t) = λj (t) F̂j (0) . (A8)

This is the eigenvalue equation for the eigenoperators
(identical to Eq. (7)).

1. Diagonalazability of G (t)

The dynamics of the density matrix is given

by the Liouville von-Neumann equation, dρ̂S(t)
dt =

− i
~

[
ĤS (t) , ρ̂S (t)

]
. By preforming a vec-ing procedure,

the density matrix ρ̂S (N by N matrix) is represents as
a N2 vector, ~r [67–69]. This is equivalent to choosing
the representation basis in Liouville space as the set of
matrices with all-zero entries, except one. Following the
derivation presented in [67], the Liouville von-Neumann
super-operator can be represented as a N2 ×N2 matrix
in Liouville space,

− i

~

[
ĤS (t) , ρ̂S (t)

]
→

− i

~

(
I ⊗ ĤS (t)− ĤS (t)

T ⊗ I
)
~r ≡ D (t)~r (A9)

where ⊗ is the Kronecker direct product. The Hamil-
tonian in the diagonal form, implying that the matrix

D (t) is diagonalizable. Transforming to a different ba-
sis (can be time-dependent) in Liouville space involves
transformation matrices. The transformation to a time-
dependent basis is only a change in the representation,
therefore we assume that also G (t) is diagonalizable.
Thus, the diagonalability property is invariant to the
change of basis.

As a product of diagonalizable matrices leads to a di-
agonalizable matrix, the generator G (t) in Eq. (A5) is
diagonalizable.

Appendix B: Expanding the interaction operator Ãk

using the Lie algebra structure

The jump operators are eigenoperators of the free evo-
lution obeying, Eq. (7). They form a complete basis
within the system’s algebra. Equation (A3) implies that
operators in the interaction representation are also closed
under the free propagation.

If the operator Âk (Eq. (2)) is also an element of the
Lie algebra, it can be expanded in the interaction repre-
sentation in terms of the set {F̃j (t)},

Ãk (t) =
∑
j

χkj (t) F̃j (t) . (B1)

The coefficients χkj (t) are in general complex, there-
fore, can be written in a polar representation leading

to the desired form: Ãk (t) =
∑
j ξ

k
j (t) eiθ

k
j (t)F̂j (0) (Eq.

(8)). Here, ξkj (t) = |χkj (t) · λj (t) | and θkj (t) = φj (t) +

arg (λj (t)). The amplitude ξkj (t) of a complex number
is necessarily positive, leading to positive decay rates in
the NAME (16).

Appendix C: Generalized Gibbs state

In section IV B the NAME is derived for the open sys-
tem dynamics of a parametric harmonic oscillator em-
ploying a solution that at all times can be described as
a squeezed Gaussian state (ensemble) [52, 59]. This so-
lution is a special case obtained when the system can be
described in terms of a Lie algebra of operators. In such
a case, the state of the system at all times is represented
as a generalized Gibbs state (GGS). The GGS is deter-
mined by maximum entropy with respect to the set of
observables {〈X̂〉} where the operators X̂ are members
of the Lie algebra .The state has the form:

ρ̂S (t) = e
∑
j λj(t)X̂j , (C1)

where λj are Lagrange multipliers.

To maintain this form, the set of operators {X̂} has to
be closed under the dynamics generated by the equation
of motion. Using the Lie algebra properties, the state
can written in a product form in terms of the set {X̂},



12

[48–50],

ρ̂S (t) =

N∏
i

edj(t)X̂j , (C2)

where dj (t) are time-dependent coefficients.

The squeezed Gaussian state, assumed in Sec. IV B is
a special case of a generalized Gibbs state. Accordingly,
a solution of the dynamics follows the derivation in IV B
obtaining a set of coupled differential equations similar to
Eq. (36) which can be solved by analytical or numerical
methods.

Appendix D: Derivation of the Master equation up
to first order in the bath’s correlations decay time

In section II the NAME, Eq. (16) is derived, assuming
the bath’s correlation decay timescale is shorter than the
system and driving timescale. The derivation involves
the lowest possible order which captures the effect of the
non-adiabatic driving and is exact for a delta-correlated
bath. However, in realistic scenarios the bath is char-
acterized by a finite spectral width and therefore has a
non-vanishing bath correlation time, τB , which defines
the range of validity. It is possible to go beyond the low-
est order correction introduced in Eq. (16), and include
higher order corrections in τB . In the following section
we present a derivation of the NAME for the harmonic
oscillator including the first higher order correction, an
extension for the general case is straightforward.

The starting point of the derivation of the NAME is the
Markovian quantum master equation, [34], (Eq. (3.118)
p.132):

d

dt
ρ̃S (t) =

− 1

~2

∫ ∞
0

ds trB

[
H̃ (t) ,

[
H̃ (t− s) , ρ̃S (t)⊗ ρ̂B

]]
.

(D1)

The Hamiltonian in the interaction picture is first decom-
posed in terms of the set of eigenoperator:

H̃ (t) = iξ (t)
∑
j=±

F̂je
iθj(t)

∑
k

gk

√
~mωk

2

×
(
b̂†ke

iωkt − b̂ke−iωkt
)
, (D2)

where F̂j ≡ F̂j (0). Equation (D1) includes terms of the

form trB

[
H̃ (t) H̃ (t− s) ρ̃S (t)⊗ ρ̂B

]
. Next, we demon-

strate how such a term is calculated explicitly using Eq.
(D1). Contribution of other terms to the Master equation
can be calculated in a similar manner.

trB

[
H̃ (t− s) (ρ̃S (t)⊗ ρ̂B) H̃ (t)

]
=

− ξ (t) ξ (t− s) ~m
2

∑
i,j

∑
k,k′

√
ωkωk′gkgk′ F̂iρ̃S (t) F̂j

× eiθi(t−s)eiθj(t)
∑
k

trB
[ (
b̂†ke

iωkt − b̂ke−iωkt
)

×
(
b̂†k′e

iωk′ (t−s) − b̂k′e−iωk′ (t−s)
)
ρ̂B
]
. (D3)

We proceed by expanding θi (t− s) near s = 0. In the
range of validity determined by the decay of the correla-
tion s ∼ τB or s < τB , allowing to approximate s2 ≈ τBs ,
then:

θi (t− s) ≈ θi (t)− θ′i (t) s+
θ′′i (t)

2
τBs . (D4)

We define ᾱ (t) ≡ −θ′i (t) +
θ′′i (t)

2 τB . The definition of
ᾱ (t) is similar to the definition in Eq. (12) for the first
order expansion in s.

Substituting Eq. (D4) into Eq. (D3) and perform-
ing the secular approximation terminates terms for which
θi (t) 6= −θj (t). In addition, for a Bosonic bath in ther-

mal equilibrium 〈b̂k b̂k〉 = 〈b̂†k b̂
†
k〉 = 0, 〈b̂k b̂k′〉 = δk,k′ , and

Eq. (D3) is simplified to the form

trB

[
H̃ (t− s) (ρ̃S (t)⊗ ρ̂B) H̃ (t)

]
=

~m
2
ξ (t) ξ (t− s)

∑
i=±

F̂iρ̃S (t) F̂ †i e
iᾱi(t)s×

∑
k

ωkg
2
k

(
〈b̂†k b̂k〉e

iωks + 〈b̂k b̂†k〉e
−iωks

)
. (D5)

The coefficients gk have units of inverse time. Thus, in
the continuum limit, the sum over g2

k can be replaced by
an integral:∑

k

g2
k →

∫ ∞
0

f (ωk)χ (ωk) dωk , (D6)

where f (ω) is the density of states, such that f (ω) dω
gives the number of oscillators with frequencies in the in-
terval [ω, ω + dω] [12], and χ (ω) is the coupling strength
function. On the LHS of Eq. (D6) the variable k is an
integer while on the RHS it designates the wave number
which is a continuous variable in the continuum limit.
The two functions define the spectral density function
J (ω) = f (ω)χ (ω), leading to:

trB

[
H̃ (t− s) (ρ̃S (t)⊗ ρ̂B) H̃ (t)

]
=

ξ (t) ξ (t− s)
∑
i=±

F̂iρ̃S (t) F̂ †i e
iᾱi(t)s×∫ ∞

0

dωkωkJ (ωk)
~m
2

(
〈b̂†k b̂k〉e

iωks + 〈b̂k b̂†k〉e
−iωks

)
+ similar terms . (D7)
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By inserting Eq. (D7) in the Markovian quantum master
equation we obtain the reduced dynamics

d

dt
ρ̃S (t) =

∑
i=±

F̂iρ̃S (t) F̂ †i

∫ ∞
0

dωkωkJ (ωk)
m

2~
ξ (t)×∫ ∞

0

dsξ (t− s) eiᾱi(t)s
(
〈b̂†k b̂k〉e

iωks + 〈b̂k b̂†k〉e
−iωks

)
+ similar terms . (D8)

Assuming the change in ξ is slow relative to the decay of
the bath correlation functions then

ξ (t− s) ≈ ξ (t)− ξ′ (t) τB . (D9)

We define

Γ̄ (t) ≡ m

2~

∫ ∞
0

dωkωkJ (ωk)×∫ ∞
0

dseiᾱi(t)s
(
〈b̂†k b̂k〉e

iωks + 〈b̂k b̂†k〉e
−iωks

)
. (D10)

Decomposing Γ̄ (t) to a real and pure imaginary part and
using the identity

∫∞
0
ds e−iεs = πδ (ε)− iP 1

ε (here δ (x)
is the Dirac delta function and P is the Cauchy principle
value we obtain

Γ̄ (t) ≡
(

1

2
γ (ᾱi (t)) + iS (ᾱi (t))

)
, (D11)

where

γ (ᾱi (t)) =
mπ

~
ᾱi (t)J (ᾱi (t))

(
N̄ (ᾱi (t)) + 1

)
, (D12)

and

S (ᾱi (t)) = P
[∫ ∞

0

dωk

[
1 + N̄ (ωk)

ᾱi (t)− ωk
+

N̄ (ωk)

ωk + ᾱi (t)

]]
.

(D13)
An identical derivation is carried out for the additional

terms in Eq. (D8). After some algebra the first order
correction to the NAME is obtained:

d

dt
ρ̃S (t) =

(
|ξ (t) |2 − ξ (t) ξ′ (t) τB

)
∑
i

γ (ᾱi (t))

(
F̂iρ̃S (t) F̂ †i −

1

2
{F̂ †i F̂i, ρ̃S (t)}

)
. (D14)

For the harmonic oscillator example, the derivatives of

θi can be calculated from Eq. (28) θ′± (t) = ∓κω(t)
2 and

θ′′± (t) = ∓κµω
2(t)

2 . Leading to:

ᾱ+ (t) ≡ κω (t)

2

(
1− µω (t)

2
τB

)
. (D15)

Notice here that this expression is the first order correc-
tion to α+ (t), (introduced for the general case in equa-
tion (12) and is derived for the harmonic oscillator from
θ+, Eq. (28)).

The harmonic oscillator NAME, in the interaction rep-
resentation, including the first order correction is of the
form

d

dt
ρ̃S (t) =

(
|ξ (t) |2 + µτBω (0)/2

)
γ (α+ (t))×(

F̂+ρ̃SF̂− −
1

2
{F̂−F̂+, ρ̃S (t)}

+ e−ᾱ+(t)/kBT

(
F̂−ρ̃SF̂+ −

1

2
{F̂+F̂−, ρ̃S}

))
.

(D16)

Two differences appear between Eq. (D16) and the
lower order derivation: First, there is a small correction
to the decay rate in the order of µτB ∼ ω (t) τBτd (where

τB � τd). The negligible correction justifies the approx-
imation performed in Eq. (13), in the main derivation,
where only the zeroth order of ξ (t− s) in s is kept. Sec-
ond, a memory-like correction arises due to the phase
higher order correction. The higher order term in ᾱ+,
Eq. (D15) is proportional to −µ, and therefore decreases
or increases ᾱ+ depending on the sign of µ. For spectral
density J ∝ ωr where r ≥ 1 this will lead to a decay rate
which is retarded in time. The effect can be understood
as a delay in the reaction of the bath to the system’s
change in time. This effect will increase when the corre-
lation time increases and vanishes for a delta correlated
bath.

Appendix E: Free propagation

The unitary dynamics of the operators {ĤS (t),

L̂ (t) , Ĉ (t)} are given by [48]:

US (t) =
1

κ2

ω (t)

ω (0)

 4− µ2c −µκs −2µ (c− 1) 0
−µκs κ2c −2κs 0

2µ (c− 1) 2κs 4c− µ2 0
0 0 0 1


(E1)

where κ =
√

4− µ2 and c = cos (κθ (t)), s = sin (κθ (t)).
The free propagation mixes coherence and populations
due to driving [48].

Appendix F: Expanding the interaction term for the
harmonic oscillator model in terms of eigenoperators

of the propagator

We define two new time-dependent operators, Q̄ (t) =√
ω (t)Q̂ and P̄ (t) = 1

m
√
ω(t)

P̂ , leading to equations of

motion which can be written in a matrix vector notation,

d

dt

[
Q̄
P̄

]
= ω (t)

[
µ
2 1
−1 −µ2

] [
Q̄
P̄

]
. (F1)
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Diagonalizing the constant matrix leads to eigenopera-
tors which are associated with the left eigenvectors of
the constant matrix,

û± =
1

2
(µ± iκ) Q̄+ P̄ , (F2)

which propagate in time as û± (t) = û± (0) eiθ± . Here,

θ± ≡ ±κ2
∫ t

0
dt′ω (t)

′
.

By defining F̂+ ≡ i
κω(0) û− (0), and utilizing equations

(F2) and the definition of Q̄ (t), we obtain the decompo-
sition,

Q̂ (t) =
√

1− µω (0) t
(
F̂−e

iθ− + F̂+e
iθ+
)

. (F3)

Defining ξ (t) ≡
√

1− µω (0) t leads to the desired
form.

Appendix G: Calculation of the expectation values
for ĤS (t), L̂ (t), Ĉ (t)

We define a vector in Liouville space ~v (t) =

{ĤS (t) , L̂ (t) , Ĉ (t) , Î}T similarly to the derivation in
[48].

The dynamics of the isolated system is given by:

~v (t) = US (t)~v (0) (G1)

where US (t) is given in Eq. (E1).
The operators of ~v (0) can be written in terms of the

basis ~b (0) = {b̂2 (0) , b̂†b̂ (0) , b̂†2 (0)}T , the transforma-
tion is summarized in the matrix form by

~v (0) =M~b (0) . (G2)

where M =M1 (M2)
−1

, M1,2 are given by:

M1 =


1
2mω

2 1
2m 0 0

− 1
2mω

2 1
2m 0 0

0 0 ω
2 0

0 0 0 1

 (G3)

M2 = c̃

 A2 B2 2Re (A∗B) 0
|A|2 |B|2 2Re (A∗B) 2Im (A∗B) i~
A∗2 B∗2 A∗B∗ 0
0 0 0 1


with c̃ = (2~Im (A∗B))

−1
.

Inserting Eq. (G2) into Eq. (G1) and defining T ≡
USM we obtain

~v (t) = T~b (0) (G4)

and for the expectation values

〈~v (t)〉 = T 〈~b (0)〉 . (G5)

The expectation values of the basis ~b (0) are calculated
using Eq. (34):

〈b̃†b̃〉 = tr
(
b̃†b̃ (0) ρ̃S (t)

)
=

(
e−2β − 4|γ|2 − 1

)
2
(

(e−β − 1)
2 − 4|γ|2

) − 1

2

(G6)
and

〈b̃2〉 =
(
〈b̃†2〉

)∗
=

2γ∗

(e−β − 1)
2 − 4|γ|2

. (G7)

Appendix H: Numeric Model

For a time-dependent oscillator coupled to N bath os-
cillators with an identical mass m, the composite Hamil-
tonian has the form:

Ĥ =
P̂ 2

2m
+

1

2
mω2 (t) Q̂2

+

N∑
i=1

(
p2
i

2m
+

1

2
mω2

i q̂
2
i

)
+ Q̂

N∑
i

gkq̂k (H1)

where p̂i, q̂i and ωi are momentum position and frequency
of the i’th bath oscillator. The Heisenberg equations of
motion are written in a vector-matrix form. For the vec-
tor ~v the set of coupled differential equations are given
by ~̇v (t) =M~v (t), where,

~v =
{
Q̂2, P̂ 2,

Q̂P̂ + P̂ Q̂

2
, Q̂q̂1, Q̂p̂1, P̂ q̂1,

P̂ p̂1, q̂
2
1 , p̂

2
1,
q̂1p̂1 + p̂1q̂1

2
, ...
}T

, (H2)

M =

0 0 2
m

0 0 0 0 0 0 0 · · ·
0 0 −2mω2 0 0 −2g1 0 0 0 0

−mω2 1
m

0 −g1 0 0 0 0 0 0

0 0 0 0 1
m

1
m

0 0 0 0

−gi 0 0 −mω2
1 0 0 1

m
0 0 0

0 0 0 −mω2 0 0 1
m

−g1 0 0

0 0 −g1 0 −mω2 −mω2
1 0 0 0 −g1

0 0 0 0 0 0 0 0 0 2
m

0 0 0 0 −2g1 0 0 0 0 −2mω2
1

0 0 0 −g1 0 0 0 −mω2
1

1
m

0

.

.

.

.
.
.


(H3)

The number of bath oscillators used to simulate the
bath was N = 103, which translates to ∼ 7·103 degrees of
freedom (defining generalized Gaussian states, equivalent
to the covariance matrix). This leads to a set of ∼ 7 ·103

coupled differential equations for the expectation values
of the operators of ~v (t), which describe the dynamics of
the composite system. The set of differential equations
are solved numerically using the Runge-Kutta-Fehlberg
method with a time step tstep = 5 · 10−4 (atomic units).
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TABLE II. Numerical values

µ −10−5

ω (0) 40

〈Ĥ (0)〉 1.0375 · 103

〈L̂ (0)〉 −5.625 · 102

〈Ĉ (0)〉 6 · 102

Bath’s spectral width ∆ν [0.6, 1000]
Number of oscillators 103

Oscillator mass m 2
Time step 5 · 10−4

Coupling strength g 2.5 · 10−2

Tbath 4

1. Numerical values

The table is given in atomic units.
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