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Geometric phases have been shown to be feasible in implementing quantum gates to perform
quantum information processing. For all the realistic applications, the environmental influence on
the geometric phase and decoherence such as memory effects must be properly considered in order
to achieve the required precision in geometric quantum computation. In this paper, we study the
geometric phase for a generic open quantum system based on a microscopic model. A remarkable
feature of the open system’s geometric phase obtained from our theoretical formulation is that the
geometric phase can be obtained regardless of the existence of the master equations, while the
environmental noise features such as memory effects are fully accounted for. We demonstrate that
the geometric phases for a general open quantum system can be fundamentally modified by its
non-Markovian environments.

PACS numbers: 03.65.Yz, 42.50.Lc

I. INTRODUCTION

As a quantum state slowly evolves, it will acquire a
global phase, which contains a geometric contribution
that is only dependent on the path transversed by the sys-
tem. This phenomenon was extensively studied by Berry
in a seminal paper [1] and was later generalized to non-
adiabatic evolutions [2] and non-cyclic evolutions [3, 4].
Over the last decades, the geometric phase has been
studied in various situations such as nuclear resonance
[5], quantum Hall effects [6] and quantum phase tran-
sitions [7]. Recent growing interest in quantum infor-
mation and quantum computing [8] has contributed to
a crucial realization that the geometric phase can be an
important resource in implementing quantum gates in ge-
ometric quantum computation. One of the major advan-
tages of realizing universal quantum computation with
geometric phase is its intrinsic resilience against errors
and perturbations [9].
In quantum information processing (QIP), however,

the quantum systems used as information carriers are in-
evitably coupled to the surrounding environments caus-
ing decoherence and dissipation, hence, any realistic ap-
plications in QIP must take the open-system effects into
account. While the geometric phase for a quantum open
system can be studied by using either the Markov quan-
tum jump approach [10], Markov quantum state diffu-
sion (QSD) equations [11, 12] or by using quantum state
purification approach [13], the geometric phase for a
general quantum system has still not been properly ad-
dressed due to the lack of efficient analytical approach to
recovering density operator and the mathematical com-
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plexity arising from the environmental memory effects.
In this paper, we report a generic approach to the geo-
metric phase of quantum open systems through the non-
Markovian diffusive trajectories that unravel the open
system dynamics [14–16]. Our approach directly explores
the geometric phase on a single quantum process level
and fully accounts for the memory effect of the environ-
ment without using the explicit master equations, which
are typically not available for general open systems.

More precisely, we will consider the geometric phase for
quantum trajectories generated by the exact stochastic
Schrödinger called non-Markovian QSD equation, which
describes non-unitary and non-cyclic evolutions without
any approximations. The ensemble mean of generated
quantum trajectories will crucially recover the density
matrix of the open system under consideration. Notably,
the geometric phase of a generic open system can be
computed without the information of the (exact) master
equations that are typically difficult to obtain except for
a few special cases including the Born-Markov approx-
imation [17–19]. Our general formalism is exemplified
with two exactly solvable models exhibiting several new
features of the geometric phase when the memory effect
caused by the environment cannot be ignored. We em-
phasize that our approach to the open system geomet-
ric phase is generic and expands our understanding of
the power of quantum geometric phase in a new domain
where the environment can be much more realistic. In
the light of quantum computing application, besides the
numerical advantage in tracking real-time information of
the geometric phase, our formalism has recovered an im-
portant geometric phase correction due to the memory
effects that has been missing in all the standard Born-
Markov approximations [10, 19].
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II. GEOMETRIC PHASE IN AN OPEN
QUANTUM SYSTEM: GENERAL DEFINITION

Consider a generic quantum system described by Hsys

that is embedded in a multi-mode bosonic bath, which is
generally referred as an environment in this paper, and
the total system consisting of the system of interest and
its environment initially prepared in a pure product state
|Ψ(0)〉 = |ψsys(0)〉⊗ |ϕenv(0)〉 where the environment ini-
tial state is a vacuum |ϕenv(0)〉 = |0〉. The Hamiltonian
of the total system is given by

Htot = Hsys +
∑

k

(

gkLb
†
k + g∗kL

†bk

)

+
∑

k

ωkb
†
kbk, (1)

where L is the coupling operator called Lindblad opera-

tor, b†k (bk) is the kth mode creation (annihilation) oper-
ators of the bosonic bath with frequency ωk . Here gk de-
notes the coupling strength between the system and the
bosonic bath. The pure state of the total system |Ψ(t)〉 is
governed by the standard Schrödinger equation, and the
reduced density operator ρ for the system of interest only
is obtained by tracing out the environmental degrees of
freedom ρ(t) = Trenv[|Ψ(t)〉〈Ψ(t)|]. Due to the coupling
between the system and its environment, the reduced
state of the open system is typically a mixed state. Sev-
eral attempts have been made to calculate the geometric
phase associated with this non-unitary evolution process
including state purification [13] and quantum jump ap-
proach [10]. Notably, when the environment memory can
be ignored, the quantum jump approach takes on the
problem by calculating the phase of Markov stochastic
quantum trajectories |ψj〉 for the reduced density oper-
ator ρ =

∑

j pj |ψj〉〈ψj |, and the state purification ap-
proach generalizes on the parallel transport condition to
find a geometric phase associated with an enlarged sys-
tem whose partial trace reproduces the reduced density
operator for the system of interest. For a generic quan-
tum open system described by (1), however, the master
equation governing the reduced density operator may be
not approximated by a Markov equation, and the general
non-Markovian master equations are not available. An
important feature of our approach is that the geometric
phase is directly associated with a single physical process
for an arbitrary open system depicted in (1) regardless of
the existence of the exact or approximate master equa-
tions. Moreover, the quantum trajectory based quantum
geometric phase may offer an effective feedback control
mechanism that gives rise to robust realizations of the
geometric quantum information processing.
The non-Markovian QSD is obtained from Eq. (1)

through specifying the bath state by a set of complex
numbers {zk} labeling the Bargmann coherent state of all
bath modes and projecting the quantum state |Ψtot(t)〉
of the total system into the bath state |z〉 ≡

∏

k |zk〉, we
have |ψz∗(t)〉 = 〈z|Ψtot(t)〉, which is called a quantum
trajectory and obeys a linear QSD equation [14]

∂

∂t
|ψz∗(t)〉 =

[

−iHsys + Lz∗t − L†Ō(t, z∗)
]

|ψz∗(t)〉, (2)

where z∗t ≡ −i
∑

k g
∗
kz

∗
ke

iωkt, O is an operator defined by

the functional derivative δ
δz∗

s
|ψz∗(t)〉 = O(t, s, z∗)|ψz∗(t)〉

and Ō(t, z∗) =
∫ t

0 α(t, s)O(t, s, z
∗)ds. Note that the ef-

fect of the bath is characterized by the correlation func-
tion α(t, s) =

∑

k |gk|
2e−iωk(t−s). One can interpret

zk as a Gaussian random variable and z∗t becomes a
random process with its statistical mean given by the
bath correlation function, i.e., M[ztz

∗
s ] = α(t, s), where

M[F ] = 1
π

∫

d2ze−|z|2F represents the ensemble average
over noise.

A normalized quantum trajectory is defined by
|ψ̃z∗(t)〉 = |ψz∗(t)〉/

√

〈ψz(t)|ψz∗(t)〉. To calculate the
geometric phase associated with this trajectory, we may
discretize the wave function as |ψj〉 = |ψ̃z∗(j∆t)〉, where
j = 0, 1, . . .N and ∆t = t/N is the time step length. For
this chain of pure states, the geometric phase γG is given
by the well-known Pancharatnam formula [10, 20],

γG = − arg [〈ψ0|ψ1〉〈ψ1|ψ2〉 . . . 〈ψN−1|ψN 〉〈ψN |ψ0〉] ,
(3)

where the last term − arg[〈ψN |ψ0〉] represents the total
phase γtot and the rest constitutes the dynamical phase
γdyn. It can be readily shown that this definition co-
incides with the definition using the fiber bundle ref-
erence section [4] through |χ(t)〉 = ξ(t)|ψ̃z∗(t)〉, where

ξ(t) = 〈ψ̃z(t)|ψ̃z∗(0)〉/|〈ψ̃z(t)|ψ̃z∗(0)〉|, and the geometric
phase is given by

γG = i

∫

〈χ(t)|∂t|χ(t)〉dt

= i

∫

ξ̇(t)ξ∗(t)dt+ i〈ψ̃z(t)|∂t|ψ̃z∗(t)〉dt, (4)

where ∂t represents the derivative with respect to time,
and the first term is the total phase, and the second term
is the dynamical phase (up to a minus sign), and the inte-
gral runs along the path traced by the quantum state for
the open system. We may further close the path by the
geodesic that connects the two ends of the path, and then
convert the line integral to a surface integral. Obviously,
one can always compute the geometric phase by using the
trajectories generated from the linear QSD with Eq. (3)
which greatly simplify the calculations.

The ensemble average for the trajectories may
be obtained by using the Bargmann coherent basis
1
π

∫

d2ze−|z|2|z〉〈z| = 1. Accordingly, the reduced
density operator of the system is given by ρ(t) =
TrE [1 · |Ψtot(t)〉〈Ψtot(t)|] = M [|ψz∗(t)〉〈ψz(t)|]. Next,
we show that the geometric phase for the open system can
be obtained by the ensemble average based on Eq. (3). To
calculate the average dynamical phase γ̄dyn, we first note
that 〈ψz [j∆t]|ψz∗ [(j + 1)∆t]〉 = 〈ψz(j∆t)|ψz∗(j∆t)〉 +
dt〈ψz(j∆t)|∂t|ψz∗(j∆t)〉. Using Eq. (2) and taking the
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continuous time limit ∆t→ 0, γ̄dyn is given by

γ̄dyn = −i

∫ t

0

dτM [〈ψz(τ)|∂t|ψz∗(τ)〉]

= −i

∫ t

0

dτM [〈ψz(τ)|h(τ)|ψz∗ (τ)〉] , (5)

where h(τ) = −iHsys + Lz∗τ − L†Ō(τ, z∗), and we have
used the relation M[〈ψz(t)|ψz∗(t)〉] = Tr[ρ(t)] = 1,
which also implies M[〈ψz(t)|∂t|ψz∗(t)〉] is pure imag-
inary. The total average phase is simply γ̄tot =
arg [M (〈ψz(0)|ψz∗(t)〉)]. This total phase for the non-
cyclic evolution may be measured by an interferome-
ter [21], where the input (initial) state goes through one
arm and |ψz∗(t)〉 goes through another. The pure state
|ψz∗(t)〉 can be obtained by a measurement on the bath
at time t, with an outcome labeled z∗ [22].
The ensemble average for the dynamical phase may

be carried out with Novikov’s theorem [14] M[Ptzt] =
∫ t

0 dsM[ztz
∗
s ]M[ δPt

δz∗

s
] =

∫ t

0 dsα(t, s)M[ δPt

δz∗

s
]. The average

geometric phase is then given by γ̄G = γ̄tot − γ̄dyn. It’s
worth pointing out that in our definition of the geomet-
ric phase, the form of the system Hamiltonian Hsys and
the system-bath coupling operator L are entirely gen-
eral. Moreover, no assumptions including weak coupling
or Markov approximations have been assumed. Hence,
the formulation of the geometric phase has incorporated
all the information about the environment without using
an explicit master equation. Interestingly, when the Ō
operator itself is noise independent, we have

γ̄dyn = −

∫ t

0

dτTr [Hsysρ(τ)]+2ImTr
[

L†Ō(τ)ρ(τ)
]

, (6)

where ρ(τ) is the reduced density operator of the sys-
tem at time τ . Again, using the Novikov’s theorem [15],
this dynamical phase can still be expressed in terms of
the density operator for the system when the Ō oper-
ator is noise-dependent following a similar approach in
the derivation of master equations from QSD [23]. Since
both the total and dynamical phases are in principle mea-
surable, our definition represents an operational formula-
tion of the geometric phase under general non-Markovian
open system dynamics. It is also worth pointing out that
this definition is independent of the unraveling chosen
(see Appendix A for details) and one is free to choose
other types of projection [22] than the coherent state used
here.

III. EXAMPLES

The general definition of the geometric phase of a non-
Markovian open system will be illustrated by two phys-
ically interesting models that will allow the explicit an-
alytical solutions. More general case will inevitably re-
quire numerical simulations, which prove to be partic-
ularly efficient when the quantum trajectories are em-
ployed [15, 16, 24]. The models to be considered are

FIG. 1. The geometric phase γG for a single trajectory in the
dissipative model as a function of time t, with ω = λ = 1 and
θ = 1. The solid line is calculated from the Pantcharatnam
formula Eq. (3) and the dots are calculated as half the solid
angle enclosed by the closed path formed by the QSD trajec-
tory whose ends are joined by a geodesic. Inset: Bloch sphere
representation of the normalized path generated by the QSD
(blue) whose ends are joined by a geodesic (red) to form a
closed path.

FIG. 2. The geometric phase γ̄G for the dissipative model as a
function of the initial state parameter θ for different γ’s: from
top to bottom, γ = 0.1, 0.5, 1.2, 100, with λ = 1, Γ = 1,
Ω = 0 and t = 2π/ω.

the dissipative spin-boson model and dephasing two-level
system. In each case, the general non-Markovian geo-
metric phase is explicitly calculated, giving rise to an
important geometric phase that is not found in the case
of Markov limit. To be more specific, we prepare the
two-level system in a pure state characterized by a Bloch
vector (sin θ, 0, cos θ). For the dissipative two-level sys-
tem described by the system Hamiltonian Hsys = ωσz/2
and the coupling operator L = λσ−, the exact solution
may be obtained [14] (see Appendix B for more details),
and the Ō operator is explicitly given by Ō(t) = F (t)σ−
where the function F (t) can be analytically obtained.
Note that here, although our formulation is valid for
an arbitrary correlation function, however, for simplic-
ity, we have assumed the spectrum of the bath to be of
the Lorentzian form, and the correlation function is ac-
cordingly given by α(t, s) = Γγ exp[−γ|t−s|−iΩ(t−s)]/2
at zero temperature. This spectrum is particularly con-
venient for studying non-Markovian/Markov transition
as γ → ∞ corresponds to the Markov limit. Throughout
this example, we set Γ = 1,Ω = 0. By definition, the geo-
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metric phase acquired by the quantum trajectory will be
dependent on the path transversed by the state only. For
the two-level system it should be equal to half the solid
angle enclosed by the closed path formed by joining the
open ends with a geodesic. Here, we plot one realization
of the non-Markovian QSD trajectory with its associated
geometric phase in Fig. 1 using Eq. (3), where we see
that the geometric phase exactly coincides with half the
solid angle enclosed. Since this model is analytically solv-
able, we have an exact and analytical expression for the
geometric phase (see Eq. (B4) in Appendix B). When
θ = π, the wave function for the total system becomes
|Ψ(0)〉 = | ↓〉⊗

∏

k |0〉k, which is an eigenstate of the total
system. Since the total Hamiltonian is time-independent
in this case, this state acquires zero geometric phase, as
expected. At t = 2π/ω in the Markov limit, the expres-
sion for γ̄G simplifies to

ω [cos θ + 1]
(

1− e−
2πλ2

ω

)

2λ2
.

Further taking the weak-coupling limit, we have γ̄G ≈

γ
(M)
G = π [cos θ + 1], which reduces to the geometric

phase of an isolated system. A remarkable feature of
this model is that when the system is interacting with
a memory-less bath, the maximally attainable geometric
phase is reduced by a factor of (taking ω = 1)

1− e−2πλ2

2πλ2
. (7)

Therefore, as the coupling strength ratio λ increase, the
range of possible geometric phase acquired by the state
is reduced, which is consistent with the weak-coupling
limit. On the other hand, the environmental memory
can increase the controllable range of attainable geomet-
ric phase. To see this, we analytically calculated the
geometric phase in the small γ limit, i.e. strong bath
memory regime, and the geometric phase is given by

γ̄G = γ
(M)
G

[

1−
γΓλ2

2

]

,

Therefore, the system-environment may be engineered to
give rise to a correlation parameter γ that will generate
a memory-assisted geometric phase, where the range of
attainable phase can be improved with the help of envi-
ronmental memory. Using Eq. (B4) in the Appendix B,
we display an example in Fig. 2, where the red line cor-
responds to the memory-less case where the range of at-
tainable geometric phase is greatly reduced, and the blue
curve corresponds to the case where the full range [0, 2π]
is almost recovered with the help of environment memory
effect. The example has clearly demonstrated that the
environmental memory can fundamentally change the ge-
ometric phase for the open quantum systems. Our analy-
sis shows that when quantum systems are engaged by the
noises with memory, the geometric phase is not predicted
by the well-known Markov behavior that is familiar from

FIG. 3. The geometric phase γ̄G for the dephasing model as
a function of the initial state parameter θ for different γ’s:
from top to bottom, γ = 100, 7, 0.3, 0.7, with λ = 1, Γ = 1,
Ω = ω and t = 2π/ω.

the quantum theory of Markov open systems or closed
systems.
Our exact analysis on the non-Markovian geometric

phase can also be extended to the pure dephasing model.
By employing this simple quantum open system model,
we can clearly show how the environmental memory af-
fects the onset of the geometric phase. The total Hamil-
tonian (1) takes the following form: The system Hamil-
tonian of the model is given by Hsys = ωσz/2 and the
coupling to the bath is described by L = λσz . The
Ō operator of this model is exactly given by Ō(t) =

λ
∫ t

0 dsα(t, s)dsσz . We can analytically solve the QSD
equation and derive the corresponding geometric phase
after taking the average. Remarkably, when Ω = 0, the
geometric phase at time t = 2π/ω is γ̄G = π (cos θ − 1),
which the same as a closed systemH = ωσz/2, indicating
that the geometric phase in this case is robust against de-
phasing. This agrees with the geometric phase obtained
in the Markov case via quantum jumps [10], since the dy-
namics is actually Markov when Ω = 0. When Ω 6= 0, the
geometric phase is a complex but analytical function (see
Eq. (C2) in Appendix C). We can expand the geometric
phase in powers of 1/γ as

γ̄G = γ
(M)
G −

πΓλ2Ω

γω
+

Γλ2Ω

γ2
+O

[

1

γ3

]

,

where γ
(M)
G = π (cos θ − 1) is the geometric phase in the

Markov limit, which also coincides with the closed system
case. Taking Ω = ω and t = 2π/ω, the geometric phase
can be simplified as

γ̄G = γ
(M)
G −

γΓλ2
[

π
(

γ2 + ω2
)

+ γω
(

e−
2πγ
ω − 1

)]

(γ2 + ω2)2
,

(8)

i.e. the geometric phase is subject to a shift which is in-
dependent of the initial state parameter θ, and the range
of attainable geometric phase is unaffected. This shift is
maximized when γ ≈ Ω, at about 1.32.
Using Eq. (8), we plot the exact geometric phase γ̄G for

the dephasing model as a function of the bath memory
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parameter γ = 1/τ (τ is the memory time) and initial
state parameter θ with λ = 1, Γ = 1, Ω = ω and t =
2π/ω in Fig. 3. As γ increases, the geometric phase first
decreases then increases asymptotically to the Markov
limit.
We emphasize again that the non-Markovian quantum

phase can always be calculated from the general QSD
equation without assuming the exact solvability, and the
geometric phase defined here can be used whenever the
QSD approach is applicable, for example with finite tem-
perature bath [25], fermionic bath [26] and other types
of bath correlation functions. [27]. In this case, the exist-
ing perturbation technique [15] or numerical algorithms
for the QSD equation [28] can be readily employed, such
that the geometric phase can still be obtained under gen-
eral non-Markovian open system dynamics. Specifically,
the geometric phase for a bosonic bath may be calculated
with

I = M [〈ψz(0)|ψz∗(∆t)〉] ×M [〈ψz(∆t)|ψz∗(2∆t)〉]

× . . .×M [〈ψz(T −∆t)|ψz∗(T )〉]×M [〈ψz(T )|ψz∗(0)〉] ,

γ̄G = − arg(I), (9)

where T is the final evolution time under consideration.
We have verified the results using the generic algorithm
in [28] and found a perfect agreement between the nu-
merical result and the analytical results presented above.

IV. CONCLUSION

In this paper we introduced a generic formulation of
non-Markovian geometric phase for quantum open sys-
tems by means of a set of non-Markovian quantum tra-
jectories. This approach represents a systematic and
computable way to study the geometric phase in gen-
eral non-Markovian open systems without relying on the
existence of a master equation or purification while at the
same time fully accounting for the memory effect of the

bath. Additionally, this approach can give a hierarchical
approximation of the geometric phase with respect to the
degree of bath memory effects, starting with a Markov
case, followed by a post-Markov analysis [15], all the way
up a full non-Markovian treatment. This generic formal-
ism of the geometric phase places no restriction on the
system Hamiltonian, the system-bath coupling operator
L or the bath correlation function, ensuring its wide ap-
plication domain. By examining the temporal behavior
of quantum trajectories under the influence of the envi-
ronments with memories, we demonstrated the onset of a
new geometric phase of open quantum systems not pre-
viously encountered in the Markov limit or in the case
of closed quantum systems. This new geometric phase
will arise, for example, in a quantum information pro-
cessing device, where the environment cannot be approxi-
mated by a Markov noise such as in the case of structured
medium or strong coupling regimes. As demonstrated
in this paper, the environmental memory can produce a
wide adjustable range for the geometric phase, which is
of fundamental importance in realizing universal geomet-
ric quantum computation. We also showed that in any
implementation of the geometric phase for quantum in-
formation processing, the environmental effects must be
properly taken into account to maximize the accuracy of
the quantum gate operations.
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Appendix A: Geometric nature for the ensemble average geometric phase

Here we show that the ensemble average γ̄G is also geometric in nature. Consider the composite total wave function
for the system and bath |Ψ(t)〉, which we can also discretize as |Ψj〉 = |Ψ(j∆t)〉, where j = 0, 1, . . .N and ∆t = t/N
is the time step length. Since the total wave function describing the system plus bath state remains pure during
evolution, we can also use the standard Pancharatnam approach to ensure the geometric nature for geometric phase
associated this composite pure state wave function. Explicitly, the ensemble average geometric phase can be written
as

γ̄G = − arg [〈Ψ0|Ψ1〉〈Ψ1|Ψ2〉 . . . 〈ΨN−1|ΨN〉〈ΨN |Ψ0〉] .

To calculate each of the inner product above, we insert the identity operator 1 = 1
π

∫

d2ze−|z|2|z〉〈z|. Under the QSD
approach, the inner product can be written in terms of the ensemble average of the trajectories since

〈Ψi|Ψj〉 =
1

π

∫

d2ze−|z|2〈Ψi|z〉〈z|Ψj〉

= M [〈ψz(i∆t)|ψz∗(j∆t)〉] = M [〈ψi|ψj〉] .
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This gives us a possible way to carry out the ensemble average for the geometric phase in non-Markovian open systems
that’s also a geometric entity. Since we only insert a identity operator above, this way to calculate the inner product
is also independent of how we write the identity operator (for example, other than using coherent states), which
corresponds to other types of open system unraveling.

Appendix B: Calculation details for the geometric phase in the dissipative spin-boson model

For the first example in the main text described by the system Hamiltonian Hsys = ωσz/2 and the coupling operator
L = λσ−, the O-operator does not contain noise terms and can be exactly given [14]. Denote

O(t, s) = f(t, s)σ−, (B1)

we have

∂tf(t, s) = [iω + λF (t)] f(t, s), (B2)

where F (t) =
∫ t

0
dsα(t, s)f(t, s). For simplicity, we have assumed the spectrum of the bath to be Lorentzian, and the

correlation function is accordingly given by α(t, s) = Γγ exp[−γ|t− s|− iΩ(t− s)]/2 at zero temperature. In this case,
F (t) may be analytically obtained,

F (t) =
γ − Ωp tan

[

−
Ωpt
2 + tan−1

(

γ−i(ω−Ω)
Ωp

)]

− i(ω − Ω)

2λ
, (B3)

where

Ωp =
√

−γ2 + 2γ [λ2 + i(ω − Ω)] + (ω − Ω)2.

Using the ensemble average of Eq. (5), we arrive at the analytical form for the geometric phase in the dissipative
spin-boson model γ̄g = γ̄tot − γ̄dyn, where

γ̄tot = − arg
{

e−iωt/2 [1− cos θ + exp[iωt− λg∗(t)](1 + cos θ)]
}

,

γ̄dyn =

∫ t

0

ω

2
− exp[−2λRe{g(s)}] cos2(θ/2) [ω + 2λIm{F (s)}] ds, (B4)

and g(t) =
∫ t

0
F (s)ds.

Appendix C: Calculation details for the geometric phase in the pure dephasing model

The second example in the main text also admits an exact analytical solution. Assuming an Lorentzian spectrum
for the bath at zero temperature as example 1. Using the ensemble average of Eq. (5), the geometric phase for the
non-Markovian pure dephasing model is given by

γ̄g = arg

[

(

cos θ + 1− (cos θ − 1)eiωt
)

exp

(

−
γΓλ2

(

(γ + iΩ)t+ e−(γ+iΩ)t − 1
)

2(γ + iΩ)2
−
iωt

2

)]

−
e−γt

[

2γΓλ2
(

Ωeγt
(

γ(γt− 2) + Ω2t
)

+ (γ2 − Ω2) sinΩt+ 2γΩcosΩt
)

− ωt
(

γ2 +Ω2
)2

cos θeγt
]

2 (γ2 +Ω2)
2 . (C1)

At t = 2π/ω, we have

γ̄g =
e−

2πγ
ω

2ω (γ2 +Ω2)
2 ×

[

2e
2πγ
ω

(

−π
(

γ2 +Ω2
) (

γ2ω + γΓλ2Ω + ωΩ2
)

+ γ2Γλ2ωΩ+ πω
(

γ2 +Ω2
)2

cos θ
)

+γΓλ2ω

(

(

Ω2 − γ2
)

sin
2πΩ

ω
− 2γΩcos

2πΩ

ω

)]

(C2)

With Ω = ω, it simplifies to Eq. (9) in the main text.
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