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We present a numerical method to approximate the long-time asymptotic solution ρ∞(t) to the Lindblad mas-
ter equation for an open quantum system under the influence of an external drive. The proposed scheme uses
perturbation theory to rank individual drive terms according to their dynamical relevance, and adaptively deter-
mines an effective Hamiltonian. In the constructed rotating frame, ρ∞ is approximated by a time-independent,
nonequilibrium steady-state. This steady-state can be computed with much better numerical efficiency than
asymptotic long-time evolution of the system in the lab frame. We illustrate the use of this method by sim-
ulating recent transmission measurements of the heavy-fluxonium device, for which ordinary time-dependent
simulations are severely challenging due to the presence of metastable states with lifetimes of the order of
milliseconds.

I. INTRODUCTION

Recent advances in the design of quantum systems such as
superconducting qubits [1–8], trapped ions [9–11], and opti-
cal lattices [12, 13] have intensified the spotlight on the goal
of realizing a quantum computer. Essential to this goal is the
capability to control quantum systems coherently, while min-
imizing the influence of noise. Qubit control via an external
drive has been extensively studied both theoretically and ex-
perimentally, particularly for gate operations [14, 15], initial-
ization [16], and readout [17, 18].

Predictions of the nonequilibrium dynamics of driven open
quantum systems can often be based on framework of the
Lindblad master equation [19–21]. In most cases, solving
this equation has to rely on numerical methods and faces
multiple challenges, including Hilbert-space size and the re-
sulting memory requirements to store the density matrix as
well as Lindblad superoperators. A number of approximation
schemes have been developed over time geared towards re-
ducing this difficulty. Some schemes apply perturbation the-
ory [22–25] or semi-classical methods [26, 27] and are usu-
ally limited to specific parameter regimes. Interestingly, ex-
perimental achievements in increasing coherence times – by
as much as 6 orders of magnitude for superconducting qubits
over the last 20 years [7, 28] – further add to the numerical
challenges, especially in the context of predicting the long-
time asymptotic behavior of quantum systems of interest. For
decoherence times vastly exceeding characteristic dynamical
time scales associated, e.g., with the drive period, direct in-
tegration of the master equation can be both computationally
inefficient and vulnerable to numerical rounding errors using
standard differential equation solvers. This is especially true
for systems with a large Hilbert space [29].

One approach to obtain the long-time asymptotic solution
to the master equation is to employ the Floquet formalism
[30–32]. However, analytical solutions can usually only be
obtained in the adiabatic or high-frequency limit [33–37].
Furthermore, obtaining the required Floquet basis via matrix
diagonalization can be numerically expensive due to the large
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size of the extended Hilbert space. A method avoiding the
switch to the Floquet basis altogether was recently proposed
by Hartmann et al. [38]. It is based on constructing the Floquet
map, i.e., the single-period dissipative propagator of the sys-
tem, which can be numerically challenging in its own right.
By calculating the fixed point of this map, their method re-
solves the density matrix at stroboscopic instances of time.

For certain, simple cases of driven open systems, direct nu-
merical integration can be avoided by performing a rotating-
frame transformation that eliminates the oscillatory time de-
pendence in the Hamiltonian exactly. In the rotating frame,
one can then solve for the nonequilibrium steady-state ρs
which is independent of the initial conditions [39, 40] and
represents the long-time asymptotic behavior. Finding ρs
amounts to solving a linear system of equations Lρs = 0,
which is generally more efficient than evolving the ODE sys-
tem to long times, and is not vulnerable to numerical integra-
tion errors. However, the exact elimination of time depen-
dence is not possible for many systems of interest. One exam-
ple of interest is the system recently studied by Earnest et al.
[41]: a heavy-fluxonium qubit coupled to a resonator. Direct
numerical integration is especially challenging in this case, as
the device exhibits a metastable state with lifetimes of up to 8
ms, millions of times longer than the characteristic time scale
of the device.

In this paper we will address this issue by establishing an
effective time-independent formalism that approximates the
asymptotic solution to the master equation, ρ∞(t). By adap-
tively neglecting irrelevant drive terms, we can reduce the
system’s Hamiltonian to an approximate, effective Hamilto-
nian that becomes time-independent in an appropriate rotating
frame. Such an adaptive rotating-wave approximation (RWA)
scheme was previously applied to closed systems in work by
Whaley and Light [42] and by Einwohner, Wong, and Gar-
rison [43]. Here, we consider an external single-tone drive
acting on an open quantum system. We separate the drive into
individual terms in the eigenbasis of the system Hamiltonian
and rank each term according to its dynamical relevance. This
ranking is accomplished using an iterative scheme, adaptively
determining the form of the effective Hamiltonian.

The structure of our paper is as follows. In Sec. II,
we discuss the general circumstances under which a time-
independent description can be obtained in a rotating frame.
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In Sec. III we then present our iterative scheme which uses
perturbation theory to rank drive terms according to their rel-
evance. Sec. IV illustrates applications of the adaptive-RWA
scheme, including the simulation of single-tone transmission
in the fluxonium-resonator device by Earnest et al. [41]. Sec-
tion V discusses possible limitations of the adaptive-RWA ap-
proach. We conclude in Sect. VI and give an outlook on future
directions including the extension to multi-periodic Hamilto-
nians and simulation of two-tone spectroscopy data.

II. OBTAINING A TIME-INDEPENDENT HAMILTONIAN
IN A ROTATING FRAME

In a large variety of cases, coherently driven quantum sys-
tems are described by a generic time-dependent Hamiltonian
of the form

H(t) = H0 + (V eiωdt + h.c.). (1)

Here, H0 is the bare system Hamiltonian with eigenstates
{|n〉}, and V is a drive operator that couples to the external
drive. As part of the usual rotating-wave approximation (see,
e.g., Refs. 42, 44–46), we assume that the system operator V
may be limited to drive terms lowering the system state, i.e.,

V =
∑
n<m

Vnm |n〉〈m| . (2)

To account for the fact that the system couples to environ-
mental baths, we describe its open-system dynamics by the
standard time-dependent Lindblad master equation [19–21]:

dρ(t)

dt
= −i [H(t), ρ(t)] +

∑
l,ω

γl(ω)D[Al(ω)]ρ(t). (3)

It captures the interaction of the open system with its envi-
ronment through a set of collapse operators, Al(ω), and as-
sociated decoherence rates γl(ω). Here, l labels the various
decoherence channels and ω denotes differences in (discrete)
system eigenenergies. (See Ref. [21] for an in-depth dis-
cussion.) The dissipation superoperator has the usual form
D[A]ρ ≡ AρA† − 1

2{A†A, ρ}. Throughout our paper, we will
assume that the decoherence channels present are sufficient
to guarantee solutions of Eq. (3) to approach a unique, peri-
odic density matrix, independent of the initial state [38, 47].
This long-time asymptotic behavior or “Floquet steady-state”,
ρ∞(t), is the relevant quantity for the simulation of a number
of measurement protocols including transmission and spec-
troscopy experiments.

In certain situations, a rotating-frame transformation can
render the transformed Hamiltonian h (and Lindbladian) time-
independent. In this case, the long-time asymptote corre-
sponds to the steady-state solution, ρ∞ = ρs, obtained from
the equation

0 = −i[h, ρs] +
∑
l,ω

γl(ω)D[Al(ω)]ρs. (4)

Let us inspect under what conditions exact elimination of time
dependence can succeed. The rotating-frame transformation
is based on a time-dependent unitary matrix, U(t) = e−iΩt

with generator Ω yet to be determined. For the transforma-
tion to eliminate time-dependence in the Hamiltonian, and
not introduce time-dependence in the dissipators, we require
[Ω, H0] = 0. The Hamiltonian thus transforms according to:
H(t) → h(t) = H0 − Ω + U†(t)[V eiωdt + h.c.]U(t). Since
the collapse operators Al(ω) are eigenoperators of H0, i.e.,
[Al(ω), H0] = ωAl(ω) [21], the dissipator terms D[Al(ω)]ρs
remain invariant under this transformation. Plugging in Eq.
(2) for V and rewriting Ω in the eigenbasis of H0, Ω =∑
nΩn |n〉〈n|, we observe that the drive terms acquire phase

factors: |n〉〈m| → |n〉〈m| ei(Ωn−Ωm)t. As a result, the
rotating-frame Hamiltonian now reads

h(t) = H0−Ω +
( ∑
n<m

Vnm |n〉〈m| ei(Ωn−Ωm+ωd)t+ h.c.
)
.

For h(t) to be time-independent, the constraint

Ωm −Ωn = ωd

must be satisfied for all n < m with Vnm 6= 0. A general
way to solve this set of constraints is to choose the generator
parameters to be integer multiples of the drive frequency [42],
Ωn = knωd with kn ∈ Z. With this, we arrive at at the
equivalent integer constraint

km − kn = 1. (5)

In conclusion, the possibility to eliminate time dependence
exactly hinges upon whether we can assign integers kn to each
system state, such that the integer constraint (5) is satisfied for
all drive terms. Let us consider some concrete examples.

If the system is a driven harmonic oscillator, then an Ω
obeying the above integer constraint can be constructed quite
easily. The driven-oscillator Hamiltonian (1) is

H(t) = ωra
†a+ ζ(a eiωdt + h.c.), (6)

where a denotes the usual lowering operator for the os-
cillator with angular frequency ωr, and ζ is the drive
strength. Following the above notation, this implies V =∑∞
n=1 ζ

√
n |n− 1〉〈n|. Time dependence is eliminated by

setting Ω = ωda
†a = ωd

∑
n n |n〉〈n|, i.e., kn = n which ob-

viously satisfies the integer constraint for the non-zero drive
terms (here, only nearest-neighbor transitions). The trans-
formed Hamiltonian

h = (ωr − ωd)a†a+ ζ(a+ a†) (7)

is time-independent.
Another example of a system where time dependence can

be eliminated exactly is that of a transmon qubit coupled to
a resonator: in the limit EJ � EC only nearest-neighbor
qubit transitions appear in the coupling Hamiltonian [3]. The
system is modeled in terms of an extended Jaynes-Cummings
Hamiltonian:

H(t) =ωra
†a+

∑
j

ωj |j〉〈j|+
∑
j

gj(a |j + 1〉〈j|+ h.c.)

+ ζ(a eiωdt + h.c.). (8)
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Here, |j〉 denotes the bare transmon eigenstate with en-
ergy ωj . Due to the nearest-neighbor form of the coupling
between resonator and qubit in Eq. (8), time-dependence
can also be eliminated for this system using the generator
Ω = ωd(a

†a +
∑
j j |j〉〈j|). Expressed in terms of eigen-

states of the system Hamiltonian, this generator reads Ω =
ωd
∑
J,mJ

J |J,mJ〉〈J,mJ |, where J denotes the combined
excitation level of the transmon and resonator, J = j+n, and
mJ is an integer in the range 0 ≤ mJ ≤ J . Each integer (pre-
viously denoted kn) is thus given by the total excitation level J
for the corresponding dressed state |J,mJ〉. The transformed
time-independent Hamiltonian in the dressed basis is

h =
∑
J,mJ

(EJ,mJ
− J ωd) |J,mJ〉〈J,mJ |+ ζ(a+ a†), (9)

in which EJ,mJ
are the eigenenergies of the generalized JC

Hamiltonian.
For systems with a different structure of non-zero drive

terms Vnm (e.g., no selection rule limiting the system to
nearest-neighbor transitions), satisfying the km−kn = 1 con-
straint for all n < m may be impossible. This is certainly
true for systems consisting of a fluxonium qubit coupled to a
resonator, since fluxonium lacks simple selection rules. The
oscillatory time dependence in H(t) then cannot be elimi-
nated exactly, no matter the choice of kn. Nevertheless, in the
spirit of the RWA, a particular drive term Vnm |n〉〈m| may be
neglected if it does not significantly affect the system’s dy-
namics. For example, if Vnm is very small compared to other
drive-term coefficients, or if the drive frequency is far detuned
from the energy splitting between |n〉 and |m〉, then it may be
permissible to neglect the drive term Vnm |n〉〈m|.

We thus want to determine whether we are able to approxi-
mate the dynamics using an effective Hamiltonian in which a
subset of irrelevant drive terms has been neglected, and which
becomes time-independent in the appropriate rotating frame.
This adaptive RWA would then allow us to extract the long-
time asymptotic behavior from a nonequilibrium steady-state.

III. ADAPTIVE ROTATING-WAVE APPROXIMATION

We now develop a systematic scheme to determine whether
some of the drive terms can be neglected, and the problem be
reduced to a time-independent one. To assess the importance
of each particular drive term, we will consider its contribution
to the open-system dynamics as described by the master equa-
tion. One common situation leading to negligible influence of
a drive term is that of off-resonant driving. For instance, a
drive acting on a qubit with drive frequency tuned off reso-
nance relative to the qubit will typically be less effective in
inducing Rabi flopping. We will thus seek to distinguish be-
tween relevant and irrelevant drive terms, denoting the rele-
vant ones by V0. Once this distinction is established, we may
be able to employ an effective Hamiltonian

Heff(t) = H0 + (V0e
iωdt + h.c.), (10)

in which irrelevant terms are neglected. A key advantage is
gained if the remaining drive terms are so simple that a trans-

start:
ρs = e−βH0/Z

h = H0

rank drive terms
according to ‖∆ρ(t)‖F

incorporate maximal
set of terms into V0,

thus constructing new h

compute new ρs
rank drive terms

according to ‖∆ρ(t)‖F

adapt choice of hdid h change?

stop:
keep ρs

yes

no

FIG. 1. Flowchart for the adaptive-RWA scheme. In this iterative
scheme, drive terms are ranked by estimating relevance from magni-
tude of perturbative corrections to the density matrix. Based on the
ranking, a maximal set of drive terms is incorporated into the effec-
tive Hamiltonian, allowing for the computation of an approximate
time-independent steady-state ρs in an appropriate rotating frame.

formation into an appropriate rotating frame eliminates time
dependence altogether.

Any method for separating relevant from irrelevant drive
terms has to meet two challenges. First, relevance cannot
merely be based on energetic resonance conditions, but must
also take into account drive strengths, transition matrix ele-
ments, as well as the question whether one of the two states
involved in a drive term is occupied to begin with. Here, oc-
cupation of excited states may arise from other active terms
in the drive or be induced thermally. Second, neglecting sub-
dominant drive terms only leads to a substantial simplification
if it opens up the possibility of a time-independent description
by a rotating-frame Hamiltonian

h = H0 − Ω + (V0 + h.c.). (11)

To address these challenges, we pursue the following strat-
egy (see Fig. 1 for a flowchart summary). We construct V0

by attempting to treat each drive term perturbatively. Specifi-
cally, we calculate the perturbative shift of the density matrix
induced by individual terms and, thus, establish a relevance
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ranking among drive terms. Based on this ranking and the
goal to enable a time-independent description, a maximal set
of terms will be incorporated into V0. Since the relevance
of one drive term may depend on the effect of another drive
term, we perform multiple iterations of these steps, adaptively
changing the terms incorporated into V0 until convergence is
reached.

A. First iteration (bootstrapping)

To jump-start our iterative scheme, we will initially rank
drive terms according to their capacity for steering the system
away from the thermal-equilibrium state. In other words, we
express the asymptotic solution to the Lindblad master equa-
tion (3) in the form

ρ∞(t) = ρs + ∆ρ(t), (12)

where ρs = e−βH0/Z is the equilibrium state reached in the
complete absence of a drive,

0 = −i [H0, ρs] +
∑
l,ω

γl(ω)D[Al(ω)]ρs. (13)

The quantities β and Z denote inverse temperature and the
partition function, respectively. The correction ∆ρ(t) reflects
the deviation of the system state from equilibrium due to a
single drive term, Vnmeiωdt |n〉〈m|+h.c. Note that ∆ρ(t) de-
pends on the individual drive term choice. For simplicity, we
suppress this dependence on indices n, m in our notation. We
will take the Frobenius norm of the correction,

‖∆ρ‖F ≡
(∑
i,j

|∆ρij |2
) 1

2
, (14)

which we will use to rank drive term relevance. This is a con-
venient measure because the time dependence in ∆ρ(t) will
drop out after taking its norm, as we will see below.

Next, we calculate the corrections ∆ρ(t) due to each in-
dividual drive term in first-order perturbation theory. Upon
plugging Eq. (12) and H = H0 + (Vnme

iωdt |n〉〈m| + h.c.)
into the master equation (3), we can expand in the perturbation
Vnm. The resulting first-order correction obeys the equation

d

dt
∆ρ(t) =− i [H0,∆ρ(t)] +

∑
l,ω

γl(ω)D[Al(ω)]∆ρ(t)

− i
[
(Vnm |n〉〈m| eiωdt + h.c.), ρs

]
. (15)

Note this equation has both a homogeneous solution that de-
pends on initial conditions and a particular solution that de-
pends on the drive term. The asymptotic density matrix, Eq.
(12), does not depend on the initial state, so we seek only the
particular solution to this equation. We will solve it by Fourier
expanding ∆ρ(t) =

∑
κ∈Z %κe

iκωdt. Plugging this into Eq.
(15), we obtain equations for the Fourier coefficients %κ. Due
to the time-dependent phase factors only the coefficients with

TABLE I. Drive terms ordered according to the magnitude of the
corresponding relevance parameter [Eqs. (16)-(18)].

rank relevance parameter drive term
1 (highest) ∆n1m1 Vn1m1 |n1〉〈m1|+ h.c.

2 ∆n2m2 Vn2m2 |n2〉〈m2|+ h.c.
...

...
...

κ = ±1 are non-zero:

−ωd %1 = [H0, %1] + i
∑
l,ω

γl(ω)D[Al(ω)]%1

+ [Vnm |n〉〈m| , ρs],

and %−1 = %†1. The only non-zero matrix element of the
upper-triangular matrix %1 is

〈n|%1|m〉 =
Vnm(pm − pn)

ωmn − ωd + i(Γn + Γm)/2
. (16)

Here, ωmn = Em−En is the difference between the mth and
nth eigenenergy of H0, pn = e−βEn/Z is the thermal occu-
pation probability of eigenstate n, and Γn =

∑
l,n′ γl(ωnn′)

the total decoherence rate of state n. The norm ‖∆ρ(t)‖F is
re-expressed in terms of the component %1 as

‖∆ρ(t)‖F =
√

2‖%1‖F =
√

2|〈n|%1|m〉|, (17)

in which, indeed, all time-dependence drops out. For given
drive indices n, m, we thus define the relevance parameter as

∆nm ≡ ‖∆ρ(t)‖F . (18)

The relevance parameter ∆nm characterizes the ability of the
drive term to establish coherent oscillations between states
n, m. Inspection of Eq. (16) reveals that multiple factors in-
crease relevance: (i) large transition matrix elements |Vnm|;
(ii) the drive being close to resonance, ωmn ≈ ωd; (iii) large
differences in occupation probabilities between the two in-
volved states n, m. If both eigenstate populations are ther-
mally suppressed or if they both have similar populations, then
the drive term is not as effective at inducing coherent oscilla-
tions between the two states and thus the relevance parameter
decreases.

All nonzero relevance parameters are now ordered accord-
ing to magnitude, ∆n1m1

≥ ∆n2m2
≥ · · · > 0, into a set

C = {∆n1m1
,∆n2m2

, . . .} which provides us with a ranking
of the drive terms, see Table I. Based on this, we will next
attempt to construct a rotating frame in which the resulting
effective Hamiltonian is time-independent and a new steady-
state can be obtained.

B. Determination of the Effective Hamiltonian

Our goal is to incorporate the maximal set of relevant drive
terms into the effective Hamiltonian, making use of the rank-
ing C and imposing the integer constraints km−kn = 1 to con-
struct a rotating frame where time dependence is eliminated.



5

To facilitate this, we employ an algorithm similar to the one
by Einwohner et al. [43]. We represent the drive Hamiltonian
as a weighted graph which encodes V0 as its maximal zero-
cyclic subgraph. While Einwohner et al. exclusively consider
near-resonant drive terms, we do incorporate lower-ranked
off-resonant drive terms whenever possible. The constructed
graphs also enable us to read off the selected rotating-frame
generator Ω.

Each nonzero drive term Vnm |n〉〈m| (where m > n) is
graphically depicted by a directed edge connecting the two
vertices for states |n〉 and |m〉 from left to right. The weight
of each edge is set by the corresponding relevance parameter
∆nm. Since we wish to track integer constraints (5) through-
out the graph, we assign integer labels kn, km to the vertices.
Graph edges and vertices are added sequentially, starting with
the highest ranked drive term. For a given edge connecting
n, m, there are three possible scenarios for graph construc-
tion: (i) neither vertex has been incorporated into the graph
yet; (ii) only one has been previously incorporated; (iii) both
vertices have already been incorporated. For case (i), we as-
sign the integers kn = 0 and km = 1 to the vertices:

0

|n〉

1

|m〉

∆nm

Recall that these integers characterize the generator Ω =
ωd
∑
j kj |j〉〈j| and by choosing kn = 0 and km = 1 here

ensures the corresponding drive term does not carry a time-
dependent phase factor in this rotating frame. For case (ii),
we assign an integer to the new vertex, adhering to the integer
constraint:

kn

|n〉

kn+1

|m〉

∆nm

For case (iii), there are two sub-scenarios. In the first sub-
scenario, the two vertices have already been included in the
graph, but are in two disjoint graph components. Then, the
integer of one vertex, along with all other vertices sharing its
graph component, must be shifted by some integer k to adhere
to the constraint. A concrete example showing how to merge
two disconnected graph components is provided in Appendix
A. While the merging can be accomplished in multiple ways,
we show in in Appendix B that the resulting graphs only differ
by a global integer shift and hence lead to equivalent results.

In the second sub-scenario, both vertices have already been
included in the same component. In this case, the edge
weighted with ∆nm completes a graph cycle (see Appendix
A for more details). If this edge connects two vertices with
km 6= kn+1, then we cannot include this drive term in the ef-
fective Hamiltonian and we mark the edge by a dashed arrow:

kn

|n〉

km

|m〉

∆nm

Drive terms marked in this way are neglected in our approxi-
mation. (Whether this approximation is good or not depends
on whether dashed edges appear for terms with large relevance
parameters or are limited to terms with small ∆nm.)

The above rules are employed iteratively until the full graph
has been constructed. The drive terms V0 that will be incorpo-
rated in the effective Hamiltonian h = H0 − Ω + (V0 + h.c.)
are represented by the subgraph spanned by solid edges (the
maximal zero-cyclic subgraph [43]). In this subgraph, the in-
teger constraint km = kn + 1 is satisfied by construction. As
a result, the obtained effective rotating-frame Hamiltonian h
is time-independent.

To give a concrete illustration of this scheme, we consider
the simplest example where a cycle appears: a driven three-
level system with three nonzero drive terms. If the ranking is
C = {∆01,∆02,∆12}, then the graph is given by

0

|0〉

1

|1〉

1

|2〉

∆01 ∆12

∆02

The terms given by solid edges, V01 |0〉〈1| and V02 |0〉〈2|, are
incorporated into the effective Hamiltonian, while the term
V12 |1〉〈2| is neglected. By assigning integers for terms in the
order determined by the weights in C, we ensure the effective
Hamiltonian includes the terms associated with the largest rel-
evance parameters.

C. Subsequent Iterations

Employing the constructed effective Hamiltonian h, we
compute the new steady-state ρs from the master equation

0 = −i [h, ρs] +
∑
l,ω

γl(ω)D[Al(ω)]ρs. (19)

Since bootstrapping bases the relevance of drive terms on the
thermal-equilibrium state, the resulting ρs may not be a good
approximation yet. In subsequent iterations of the adaptive
scheme, relevance parameters are re-evaluated based on this
new ρs, thus accounting for the possibility that relevance of
drive terms can develop interdependences, especially in cases
of multiple (near-)resonant terms.

As before, we consider the effect of each individual drive
term∼Vnm on the long-time asymptotic behavior of ρ∞(t) =
ρs + ∆ρ(t). Relevance is based on the magnitude of the devi-
ation from the new steady-state, ∆nm = ‖∆ρ(t)‖F . In the ro-
tating frame, each drive term acquires an additional phase fac-
tor, Vnm |n〉〈m| eiknmωdt+h.c., where knm ≡ (kn−km+1),
and kn are the previously assigned integers. We solve for
∆ρ(t) perturbatively, after plugging ρ∞(t) and H = h ±
(Vnm |n〉〈m| eiknmωdt + h.c.) into the master equation (3).
Note that the perturbation is added or subtracted, depending
on whether it is already part of the current h, thus allowing for



6

the possibility that included drive terms may lose relevance in
subsequent iterations.

The first-order correction obeys an equation analogous to
Eq. (15),

d

dt
∆ρ(t) = −i [h,∆ρ(t)] +

∑
l,ω

γl(ω)D[Al(ω)]∆ρ(t) (20)

∓ i
[
(Vnm |n〉〈m| eiknmωdt + h.c.), ρs

]
.

We obtain the particular solution to this equation by Fourier
expanding ∆ρ(t) =

∑
κ %κe

iκωdt. Calculating the Fourier
components, we find that only the components with κ =
±knm are non-zero:

−knm ωd %knm
= [h, %knm

] + i
∑
l,ω

γl(ω)D[Al(ω)]%knm

± [Vnm |n〉〈m| , ρs] (21)

and %−knm
= %†knm

. Solving Eq. (21) for %knm
is not as easy

as with Eq. (16) in the first iteration, since h and ρs are now
generally non-diagonal matrices. We rewrite Eq. (21) more
compactly as

(L0 − iknmωd11)%knm = ∓Lnm ρs, (22)

where the superoperators are defined via L0ρ = −i[h, ρ] +∑
l,ω γl(ω)D[Al(ω)]ρ and Lnmρ = −i[Vnm |n〉〈m| , ρ], re-

spectively. Equation (22) is an inhomogeneous system of lin-
ear equations for the D2 components of %knm

.
In solving Eq. (22), we distinguish two different cases: if

knm 6= 0, then the superoperator L0− i knmωd11 is invertible;
if knm = 0, then it is not invertible. To see this, note that,
by assumption, L0 has no purely imaginary eigenvalues. [Re-
call that we are requiring decoherence channels sufficient to
guarantee a unique steady-state given by Eq. (19), L0ρs = 0.]
Since det(L0 − i knmωd11) = 0 if and only if i knmωd is an
eigenvalue of L0, we can invert L0 − i knmωd11 for knm 6= 0.
For knm = 0 the superoperator L0 − i knmωd11 = L0 is sin-
gular. In this case there is an infinite number of solutions,
obtained by shifting %knm

by some multiple c of the steady-
state, %knm

→ %knm
+ c ρs. We can compute %knm

utilizing
the Moore-Penrose pseudoinverse L+

0 [48] and shifting the re-
sult to render it traceless. Since the pseudoinverse reduces to
the standard inverse when the matrix is invertible, we can ex-
press the solution in general as

%knm = ∓(L0 − i knmωd11)+ Lnm ρs. (23)

Instead of computing the pseudoinverse, one may alterna-
tively employ an efficient least-squares method in which the
norm ‖(L0 − i knmωd11)%knm

± Lnm ρs‖F is minimized.
As before, we find that application of the Frobenius norm

renders the relevance parameter time-independent:

∆nm = ‖∆ρ(t)‖F =
√

2‖%knm
‖F . (24)

The updated relevance parameters are next employed in the
graphical scheme of Section III B to identify the maximal

zero-cyclic subgraph, yielding another new effective Hamil-
tonian h. This iterative scheme is repeated for as long as re-
evaluating relevance parameters causes h to change (or until a
maximum iteration number is exceeded, indicating rare cases
when the method breaks down),

ρ(0)
s = e−βH0/Z → ρ(1)

s → ρ(2)
s → · · · → ρs (25)

h(0) = H0 → h(1) → h(2) → · · · → h.

Here, superscripts enumerate the iterative steps (suppressed in
our notation above).

In summary, this iterative scheme adaptively incorporates
the most relevant drive terms, and takes into account the max-
imal set of sub-dominant drive terms. In the next sections we
will illustrate the power of the method by applying it to single-
tone transmission spectroscopy in a system with metastability,
and discuss possible limitations based on a simple three-level
system example.

IV. APPLICATION: SINGLE-TONE SPECTROSCOPY

We illustrate application of the adaptive-RWA method to
the calculation of single-tone transmission data for two differ-
ent circuit-QED systems. First, we show that the scheme re-
produces the exact steady-state solution for the simple system
of a transmon qubit coupled to a resonator. Second, we simu-
late recent transmission measurements of a heavy-fluxonium
circuit-QED device [41], in which the presence of long-lived
metastable states makes ordinary time-dependent simulations
particularly challenging.

In conventional single-tone experiments, transmission of
a coherent drive tone through the resonator is probed and
utilized to determine the dispersively shifted resonator fre-
quency, or detect the vacuum Rabi splitting, depending on
whether the qubit is tuned out of or into resonance. Trans-
mission data for the oscillatory voltage signal is typically av-
eraged over many periods, after transients have died out. In
terms of the field quadratures I = Vp〈a + a†〉 and Q =
Vp i〈a† − a〉, where Vp is the peak voltage, we express the
transmission amplitude as

A(t) = Vp
√
I2 +Q2 = 2Vp |〈a〉| = 2Vp |Tr[aρ(t)]|. (26)

The averaged transmitted power is thus proportional to
|〈a〉|2 ≡ T 2 where time-averaging is performed on the long-
time asymptote ρ∞(t). The adaptive-RWA scheme allows
us to calculate resonator transmission based on an effective
rotating-frame steady state, T = |Tr(aρs)|, instead of calcu-
lating ρ∞(t) numerically by integrating the master equation
up to sufficiently long times.

A. Transmon Qubit Coupled to Resonator

We first confirm that the adaptive-RWA calculation returns
exact results whenever time-dependence can be fully elimi-
nated in an appropriate rotating frame. This situation is real-
ized for the simple example of a system consisting of a trans-
mon and a resonator, as discussed in Sec. II. Recall that the
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FIG. 2. Adaptive-RWA calculation of transmission T vs. drive frequency in driven transmon-resonator system. (a) Adaptively obtained graph
for weak drive at ωd = ωr . Absence of dashed edges confirms that all drive terms are incorporated, hence the result is exact. (b) Comparison
of exact transmission with results from adaptive RWA, showing excellent agreement. Since transmon and resonator are set to resonance, T
exhibits the usual vacuum Rabi peaks, arising from transitions between |0, 0〉 and |1,±〉. (c) For a ten-fold increase in drive power, each Rabi
peak supersplits [49]. Exact solution and adaptive-RWA results continue to match perfectly.

transmon states form a weakly anharmonic ladder in which the
resonator coupling only allows for transitions among nearest-
neighbor transmon levels. We expect the adaptive scheme to
find the appropriate rotating frame and yield transmission data
identical to those from the exact solution.

Previously, we expressed the dressed transmon-resonator
eigenstates as |J,mJ〉 where J is the total excitation level and
mJ is an integer in the range 0 ≤ mJ ≤ J . To implement
adaptive RWA we express the Hamiltonian of the driven sys-
tem in the dressed basis

H(t) =
∑
J,mJ

EJ,mJ
|J,mJ〉〈J,mJ |+ ζ

∑
J,mJ ,mJ+1

(
aJ,mJ ,mJ+1

|J,mJ〉〈J + 1,mJ+1| eiωdt + h.c.
)
, (27)

separating the annihilation operator into individual drive
terms, where aJ,mJ ,mJ+1

are matrix elements of a in this
basis. If the drive strength is not too strong, we can ap-
proximate the transmon as a two-level system, and if the
qubit and resonator are on-resonance, we can find expres-
sions for the dressed states in terms of the bare states |n, j〉
with n and j as the resonator and transmon levels respec-
tively. These expressions are |J,±〉 = (|n = J, j = 0〉 ±
|n = J − 1, j = 1〉)/

√
2 [49], hence the generator is given

as Ω = ωd
∑
J,± J |J,±〉〈J,±| (note that there are only two

possible values for mJ here). Applying our adaptive scheme
for arbitrary drive frequency, we expect a graph consistent
with this Ω, and an effective Hamiltonian that is composed
of every non-zero drive term. In Fig. 2(a) we show the graph
the adaptive scheme converges to. For the example of driving
at the resonator frequency, ωd = ωr, the ranking for the first

few terms is

C = {∆01,∆02,∆24,∆13,∆46,∆35, . . .}, (28)

where the subscripts indicate the energy level of each dressed
state [see Fig. 2(a)]. We emphasize that the adaptive scheme
does not neglect any drive terms in this special case.

Figure 2 compares between transmission results obtained
from the adaptive-RWA scheme and those calculated from the
time-dependent master equation after averaging. Since the
transmon is placed on resonance, the transmission curve ex-
hibits the characteristic vacuum-Rabi peaks [Fig. 2(a)]. For
increased drive strength, each vacuum-Rabi peak supersplits
[Fig. 2(c)] [49]. Exact results (here obtained from averaging
the lab-frame time-dependent solution) and results from the
adaptive scheme are in perfect agreement. This confirms that
the scheme correctly selects the relevant drive terms and de-
tects the rotating frame in which the effective Hamiltonian is
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FIG. 3. Heavy-fluxonium spectrum and comparison between experimental transmission data and adaptive-RWA calculation. (a) Relevant
heavy-fluxonium states and corresponding transitions (Φ = 0.35Φ0). Transition I is a plasmon (intra-well) transition between fluxonium
states |0〉 ↔ |2〉. Plasmon transition II between |1〉 ↔ |3〉 only occurs if one of these states is thermally excited, e.g., through fluxon
transition III. (b) Overview of dressed energy levels and transitions. Up to photon dressing, transitions (i)–(iii) correspond to the ones in (a).
(c) Experimental transmission amplitude normalized to high powers (in decibels) in the single-tone spectroscopy experiment [41]. The labeled
resonances correspond to the transitions defined in (b). (d) Transmission amplitudes T = |Tr(aρs)| obtained from the adaptive-RWA scheme
showing excellent agreement with the experimental data.

time independent.

B. Heavy-Fluxonium Qubit Coupled to Resonator

The adaptive-RWA scheme is most useful in situations
where time dependence cannot be eliminated exactly. We will
demonstrate this for a quite recent and promising addition to
the family of circuit-QED devices: a heavy-fluxonium qubit
coupled to a resonator. Again, we focus on the transmission
amplitude when a drive is acting on the resonator, and employ
the adaptive-RWA algorithm. The Hamiltonian of this system

is given by

H(t) = ωr a
†a+

∑
j

Ej |j〉〈j| (29)

+ g
∑
j,j′

(
〈j|N |j′〉 |j〉〈j′| a+ h.c.

)
+ ζ(a eiωdt + h.c.)

see, e.g., Ref. [50]. Here, bare fluxonium states have energies
Ej and are denoted by |j〉,N is the fluxonium charge operator,
and ζ the drive strength. This generalized Jaynes-Cummings
Hamiltonian differs from the analogous Eq. (8): as opposed
to the transmon case, fluxonium charge matrix elements are
not subject to nearest-neighbor selection rules, so 〈j|N |j′〉 are
generally nonzero for all j, j′. Accordingly, time-dependence
cannot be removed exactly by any rotating-frame transforma-
tion.

To apply adaptive RWA, we first re-express Eq. (29) in
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1

FIG. 4. Graph for the driven fluxonium-resonator system (Φ =
0.35Φ0, ωd = ω31). Adaptive selection of relevant drive terms de-
pends on Φ and ωd, and is critical for accurate computation of trans-
mission peaks. Dashed edges mark neglected drive terms with very
small relevance parameters due to exponential suppression of charge
matrix elements and/or drive detuning.

terms of eigenstates of the generalized JC Hamiltonian. The
resulting Hamiltonian then reads

H(t) =
∑
n

λn |φn〉〈φn| (30)

+ ζ
( ∑
n<m

anm |φn〉〈φm| eiωdt + h.c.
)
,

where λn are dressed energies and states |φn〉 are hybridiza-
tions of bare fluxonium-resonator states. Adaptive RWA will
then select a set of drive terms ζanm |φn〉〈φm| to neglect and
find an effective Hamiltonian.

The experiment by Earnest et al. [41] uses the heavy flux-
onium to realize a Λ system with a metastable state featuring
lifetimes of up to 8 ms. Figure 3(a) depicts the fluxonium
wave functions and potential-well structure for a select mag-
netic flux of Φ = 0.35Φ0. Device parameters in the exper-
iment were tuned such that the intra-well (plasmon) energy
splitting, E2−E0 ≡ ω20, was nearly degenerate with the res-
onator frequency ωr. This results in strong hybridization of
resonator and plasmon modes, rendering the single-tone trans-
mission data richer than usual. In addition, the long dwell-
times in the metastable state render rare thermal-excitation
processes relevant for the device’s long-time dynamics. In-
deed, fingerprints of this interplay between metastability and
thermal excitations are observed in the form of anomalous
peaks in the transmission data which we will discuss in de-
tail next.

Figures 3(c) and (d) show experimental data and adaptive-
RWA calculations of the transmission (color-coded) as a func-
tion of external magnetic flux Φ and frequency ωd/2π of the
applied drive. The selected frequency range spans the region
near ωr and ω20 to capture the transmission peaks arising from
photon excitations of the resonator, transition (iv), and dressed
plasmon oscillations, transition (i) [see Fig. 3(b) for labeling
of dressed-state transitions]. The latter plasmon resonance is
ordinarily not visible in single-tone transmission experiments
when the qubit is coupled dispersively, but can be observed
here because the left plasmon transition I, |0〉 ↔ |2〉, is only
weakly detuned from the resonator, ω20 − ωr ∼ g. Insets in
Figs. 3(c) and (d) display the more intricate structure of res-
onances and avoided crossings in the region near half-integer
flux, and confirm the very good agreement between experi-
mental data and our adaptive-RWA results.

While thermal excitation events populating the metastable
state |1〉 remain rare at a temperature of 30 mK consistent

Hilbert space dimension
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FIG. 5. Comparison of computation times using either direct numer-
ical integration of the master equation or the adaptive-RWA scheme,
for the example of the heavy fluxonium-resonator system. Computa-
tion time using the adaptive-RWA algorithm is orders of magnitudes
shorter for moderate Hilbert space dimensions. (Truncation at di-
mension 15 was sufficient for our chosen parameters of T = 30 mK,
Φ = 0.35Φ0, ωd/2π = 5.039 GHz, and ζ/2π = 100 kHz.)

0
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1

|1〉

2

|2〉

∆01 ∆12

∆02

FIG. 6. Graph for the three-level system with identical level splittings
when driven on resonance, ωd ≈ ω0. Since the |0〉 → |2〉 transition
is off-resonant, ∆02 will typically be much smaller than the other
relevance parameters, and the adaptive-RWA scheme succeeds.

with experimental conditions, the occupation probability for
|1〉 can nonetheless become significant due to its exceedingly
long lifetime. This gives rise to an anomalous transmission
peak associated with the dressed transition (ii), visible in both
experimental data and simulation. As seen in the graph of
Fig. 4, for a drive frequency ωd = ω31 the adaptive-RWA
algorithm properly includes those drive terms which induce
the dressed-plasmon transitions (ii) in the right potential well,
capturing their relevance due to thermal excitations. The
time scales for multiple competing thermal-excitation chan-
nels vary between milliseconds and seconds, the latter apply-
ing to the direct |0〉 → |1〉 transition. The resulting vast span
of time scales, ranging the from the nanosecond drive period
to millisecond excitation times, makes brute-force time evo-
lution and averaging a disadvantageous strategy for numerical
simulation.

It is worth noting that numerical integration of the lab-
frame master equation does not merely face computational ef-
ficiency issues with the excessive integration time in the case
of long-lived qubit states, but can also run into serious diffi-
culties due to accumulation of numerical errors. Using stan-
dard integrators, we encountered such issues that prevented us
from obtaining reliable transmission values from a brute-force
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FIG. 7. Success and breakdown of the adaptive-RWA scheme in the driven three-level system. (a) Comparison of V = |Tr(Vρs)| with
the numerically exact result obtained by time-averaging the long-time dynamics. For drive terms Vmn of equal magnitude, the off-resonant
drive term V02 |0〉〈2| has low relevance and can be neglected, thus leading to good agreement between approximation and exact solution. (b)
The time-dependent signal for (a) at the frequency 1.95 GHz, plotted for two different initial conditions. The long-time asymptotes are seen
to match the adaptive-RWA result. (c) When V02 is tripled in magnitude, this drive term becomes relevant despite being off-resonant and
deviations between adaptive-RWA and exact solution become visible. (d) The equivalent time-dependent signal as in (b), with V02 tripled.

time evolution. The adaptive-RWA scheme eliminates this
challenge and successfully reproduces the thermally-activated
transmission resonances.

A comparison of the required computation time clearly
shows the advantage of the adaptive-RWA scheme over the
direct numerical integration of the master equation [Fig. 5].
We estimate the computation time for direct numerical inte-
gration by extrapolation: the master equation was first inte-
grated numerically over a time interval of 0.5µs, and the re-
quired computation time then scaled up for the intended time
interval of 5 ms – an appropriate time given the relevance of
rare thermal excitations and lifetimes of the metastable state.
Figure 5 illustrates how the adaptive-RWA scheme cuts down
computation time by a factor of 103 or more in this exam-
ple. (See App. C for a computational-cost comparison with
the Floquet-map method [38].)

V. LIMITATIONS OF THE ADAPTIVE-RWA SCHEME

The adaptive-RWA scheme is applicable to a broad range of
driven open quantum systems. The scheme may fail, however,

in special situations where multiple drive terms are similarly
relevant and prevent construction of a zero-cyclic graph. In
the following, we discuss this limitation of the adaptive-RWA
scheme in the simplest possible context: a driven three-level
system in which all drive terms have comparable relevance
parameters.

The HamiltonianH(t) = H0+(V eiωdt+h.c.) of the driven
three-level system consists of H0 =

∑2
n=0En |n〉〈n| for the

three eigenstates and

V = V01 |0〉〈1|+ V02 |0〉〈2|+ V12 |1〉〈2| (31)

describing the drive terms. The adaptive RWA will succeed,
here, if one of these drive terms has low relevance compared
to the other two and can be neglected.

For example, suppose that the the energy-level splittings are
nearly identical, E1−E0 ≈ E2−E1 ≡ ω0, and that the drive
matrix elements Vmn all have the same order of magnitude.
If the system is resonantly driven with frequency ωd ≈ ω0,
then the dynamics will be dominated by transitions induced
by the drive terms V01 |0〉〈1| and V12 |1〉〈2|. The adaptive-
RWA scheme will yield the graph shown in Fig. 6, based on
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the ranking ∆01 ≈ ∆12 � ∆02. Here, V02 |0〉〈2| has sig-
nificantly lower relevance since the |0〉 → |2〉 transition is
off-resonant. The resulting effective Hamiltonian in the ap-
propriate rotating frame determined from the graph is given
by

h = H0 − ωd(|1〉〈1|+ 2|2〉〈2|) (32)
+ (V01 |0〉〈1|+ V12 |1〉〈2|+ h.c.).

Here, adaptive-RWA results are good approximations to the
asymptotic long-time behavior ρ∞(t) of the system.

As an example observable, we calculate V ≡ |Tr(V ρs)| for
drive frequencies near ω0 – a quantity similar to the transmis-
sion signal T calculated in the previous section. As expected,
Fig. 7(a) shows a supersplit resonance peak, and adaptive-
RWA results are in good agreement with the exact solution
based on time-averaging |Tr[V ρ∞(t)]|. This time-dependent
signal is shown explicitly in Fig. 7(b) for two different initial
states – illustrating how the system first passes through a tran-
sient phase and then reaches its asymptotic behavior, whose
time-average is in agreement with the adaptive-RWA solution.

Breakdown of the adaptive RWA occurs if we raise the rel-
evance of the V02 drive term: as ∆02 approaches the mag-
nitude of the other relevance parameters, the corresponding
drive term cannot be safely neglected. Indeed, if we triple
the magnitude of V02, then deviations between the adaptive-
RWA solution and the exact result become clearly visible [see
Fig. 7(c)].These deviations are likewise reflected in Fig. 7(d),
showing that the adaptive-RWA solution does not accurately
match the actual long-time asymptotics. As expected, devi-
ations from the exact solution diminish for drive frequencies
around ω0/2π = 2 GHz, i.e., when the system is driven on
resonance. In a particular pathological case, ∆02 could be-
come so large that the iterative scheme would not converge.
In our experience, such cases are rare and do not naturally
occur in common driven circuit-QED systems.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the adaptive-RWA scheme:
a numerical method for driven open quantum systems that ap-
proximates the asymptotic long-time solution to the master
equation by a nonequilibrium steady-state in an adaptively se-
lected rotating frame. By iteratively determining which drive
terms in the Hamiltonian are most relevant to the dynamics,
the algorithm chooses an effective Hamiltonian including a
maximal set of relevant drive terms. Each iteration involves
solving an inhomogeneous set of linear equations, and avoids
the need to numerically solve the system of ODEs tracking the
system dynamics. Adaptive-RWA computations can dramat-
ically improve efficiency over direct numerical integration,
particularly when decoherence time scales are as long as those
achieved in recent circuit-QED experiments.

We have illustrated applications of the adaptive-RWA
scheme to coupled transmon-resonator and fluxonium-
resonator systems. We have seen that the adaptive-RWA re-
sults reproduce transmission observed in single-tone spec-
troscopy experiments for heavy-fluxonium done by Earnest

et al. [41], including the appearance of anomalous, thermally-
activated transmission resonances. In general, the adaptive-
RWA method is useful for a wide class of driven open quan-
tum systems that do not allow for exact elimination of time
dependence within some appropriate rotating frame. The
adaptive-RWA scheme proves particularly beneficial in sys-
tems with large T1 and T2 times which make explicit numeri-
cal calculation of the long-time asymptotic behavior challeng-
ing.

In the future, we plan to extend this adaptive scheme
to multi-tone drives, enabling the simulation of two-tone
spectroscopy experiments. In the multi-tone case, addi-
tional care must be taken when considering the rotating-frame
transformation and the effective Hamiltonian due to addi-
tional constraints for eliminating time dependence and graph-
construction rules. Investigation of multi-tone driving with the
adaptive-RWA method offers exciting prospects for studying
future experimental systems. Finally, we note that the cal-
culation of relevance parameters from first-order perturbation
theory does not account for the occurrence of two-photon tran-
sitions. Extending the scheme to higher orders will therefore
prove fruitful in situations with larger drive strengths.
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Appendix A: Graph Construction Algorithm

This appendix details graph construction for an example
system that requires merging of two graph components, as
previously mentioned in Sec. III B.

Suppose the ranking for this example is given by

C = {∆01,∆23,∆45,∆04,∆13,∆24,∆34}. (A1)

Following this ranking, graph construction starts by establish-
ing edges for V01 |0〉〈1|, V23 |2〉〈3|, and V45 |4〉〈5|, leading to
three disconnected graph components:

0

|0〉

1

|1〉

0

|2〉

1

|3〉

0

|4〉

1

|5〉

∆01 ∆23 ∆45

The relevance ranking prompts for inclusion of V04 |0〉〈4|,
next, connecting states |0〉 and |4〉. This requires merging of
two separate graph components, done by shifting all integers
in one component such that the two states in question, here
|0〉 and |4〉, can be linked by a solid edge satisfying the in-
teger constraint k4 − k0 = 1. We have the choice of either
down-shifting the component containing |0〉, or up-shifting
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the component containing |4〉. As shown in App. B, the re-
sulting graphs are always equivalent. Choosing to up-shift the
right-most graph component by +1, we obtain

0

|0〉

1

|1〉

0

|2〉

1

|3〉

1

|4〉

2

|5〉
∆01 ∆23 ∆45

∆04

The next term to be incorporated, V13 |1〉〈3|, likewise requires
merging of graph components, yielding (weights not shown
from hereon):

0

|0〉

1

|1〉

1

|2〉

2

|3〉

1

|4〉

2

|5〉

The remaining two drive terms would violate the integer con-
straint and hence cannot be included,

0

|0〉

1

|1〉

1

|2〉

2

|3〉

1

|4〉

2

|5〉

Such dashed edges appear when graph cycles emerge that do
not adhere to the requirement of zero-cyclicity [43] which can
be understood as follows. Consider a clockwise traversal of a
graph cycle. Let P denote the number of edges in the cycle
where the final state has a higher index than the initial state,
andQ the corresponding number of edges where the final state
has the lower index. If P −Q 6= 0, then a dashed edge cannot
be avoided. This will always be the case for a cycle with an
odd number of edges, such as for a three-level system.

Appendix B: Equivalence of Graph Merging Choices

In this appendix, we show that the freedom in how to merge
two graph components leads to equivalent graphs. We en-
countered an example of this in App. A, where merging of
two disconnected graph components could either be achieved
by up-shifting integers in one component, or down-shifting
them in the other. We will show that both choices lead to
equivalent effective Hamiltonians, differing only in an irrele-
vant global energy shift.

Let us denote the integers associated with a graph com-
ponent (set of vertices connected by edges) as a vector,
(k1, k2, k3, . . .), so that kn is the integer chosen for the nth

eigenstate (vertex) in the graph component. For the issue
of merging, we now consider integers associated with two
graph components, ~a and ~b. Since the two graph components
are separate before merging, the vectors ~a and ~b are spanned
by disjoint sets of Cartesian basis vectors. In particular, if

~a ∈ ZN and~b ∈ ZM , then the merged graph’s integers simply
form a vector in ZN ⊕ ZM .

The freedom in merging consists of either up-shifting one
component by some integer k ∈ Z, or down-shifting the other
by −k. Up-shifting component ~a by k amounts to ~a → ~a′ ≡
~a + ~kN , with ~kN = k(1, 1, . . . ) ∈ ZN . The merged graph
vector representation is then

~a′ ⊕~b = (a1 + k, a2 + k, . . . , b1, b2, . . .).

On the other hand, merging the graph components by down-
shifting ~b yields ~b → ~b′ ≡ ~b − ~kM with the merged-graph
representation

~a⊕~b′ = (a1, a2, . . . , b1 − k, b2 − k, . . .).

Subtracting these two vectors gives

~a′ ⊕~b− ~a⊕~b′ = ~kN+M = k(1, 1, . . . , 1, 1, . . . ).

Therefore, the only difference between these two merge
choices is a global shift of every state’s integer by k. Ac-
cordingly, the two rotating-frame generators only differ by
Ω → Ω + k11, and the resulting effective Hamiltonians are
the same up to an irrelevant global shift, h → h − k ωd11. In
conclusion, the two graph-merging choices lead to physically
fully equivalent descriptions of the system.

Appendix C: Comments on Computational and Memory
Efficiency

We briefly discuss the efficiency of the adaptive-RWA
method and the Floquet-map method proposed by Hartmann
et al. [38]. The adaptive RWA is an iterative scheme, where
each iteration involves solving a set of D(D − 1)/2 inho-
mogeneous matrix equations (22) (corresponding to the given
drive terms). For dense matrices, the computation time for
solving Eq. (22) scales as D6 using a direct method such as
LU decomposition, so the total computation time τ scales
as τ ∼ ND8, where N is the needed number of itera-
tions. The superoperator in Eq. (22) is typically sparse, so
the scaling can be improved using an iterative method such as
least-squares minimization. Calculation of the Floquet map,
i.e., the single-period dissipative propagator, involves time-
evolving the D(D + 1)/2 Hubbard operators |n〉〈m| over
one drive period T . The corresponding computation time
additionally depends on the time-step size ∆t used by the
ODE solver. The scaling in D of each time-step depends
on whether an implicit or explicit ODE solver is used (D6 or
D4, respectively). This results in the scaling τ ∼ (T/∆t)D8

[or (T/∆t)D6]. The scaling of τ with D will generally be
somewhat more favorable for both methods, since the super-
operators involved usually are not dense. While it is dif-
ficult to make general statements comparing the computa-
tional efficiency of the two methods, for the concrete exam-
ple of the heavy fluxonium-resonator system we found the
adaptive-RWA method to be more efficient than the Floquet-
map method.
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Memory requirements also scale differently for the two
methods. Adaptive RWA requires storage of the sparse super-
operator L0−i knmωd11 in Eq. (22). The Floquet map method,

on the other hand, requires storage of the single-period prop-
agator, which is generally a dense D2 ×D2 matrix, posing a
possible memory bottleneck as Hilbert-space size increases.
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