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A Bacon-Shor code is a subsystem quantum error-correcting code on an L× L lattice where the
2(L−1) weight-2L stabilizers are usually inferred from the measurements of 2L(L−1) weight-2 gauge
operators. Here we show that the stabilizers can be measured directly and fault tolerantly with bare
ancillary qubits by constructing circuits that follow the pattern of gauge operators. We then examine
the implications of this method for small quantum error-correcting codes by comparing distance 3
versions of the rotated surface code and the Bacon-Shor code with the standard depolarizing model
and in the context of a trapped ion quantum computer. We find that for a simple circuit of prepare,
error correct and measure the Bacon-Shor code outperforms the surface code by requiring fewer
qubits, taking less time, and having a lower error rate.

Quantum information experiments are approaching
the number of qubits and operational fidelity necessary
for quantum error correction to improve performance [1–
3]. Classical error correction on quantum devices have
already shown the ability to suppress introduced errors
and increase memory times [4–8]. Two promising quan-
tum error-correcting codes for data qubits arranged on
an L × L lattice are the surface code [9–11] and the
Bacon-Shor code [12–14]. Numerical simulation of the
surface code shows a high memory threshold of 1% error
per operation for increasing L and for distance 3 codes
a pseudothreshold of 0.3% error per operation for a de-
polarizing error model [11]. The Bacon-Shor code is a
subsystem code and has no threshold as L grows [15] but
promising performance for small distance codes with a
pseudothreshold of 0.2% for a depolarizing error model
[14] and a fault-tolerant protocol for implementing uni-
versal gates without distillation [16]. The rotated surface
code has L2 − 1 check operators with (L− 1)2 checks of
weight 4 in the bulk and 2(L − 1) checks of weight 2
on the boundary [10]. The advantage of the Bacon-Shor
code comes from using 2L(L− 1) weight-2 gauge opera-
tors to determine the weight-2L check operators and the
lack of threshold is a result of having only 2(L−1) checks
[12, 14, 15].

In this Letter, we first describe the relationship be-
tween the Bacon-Shor and surface codes with the com-
pass model. We then use the gauge operators defined
by the compass model to generate circuits that fault-
tolerantly measure the weight-2L Bacon-Shor stabilizers
and the weight-4 surface code stabilizers using bare ancil-
lary qubits. We then compare state preparation for the
L×L Bacon-Shor and surface codes. Finally, we examine
how these general results lead to a practical advantage
for the Bacon-Shor code over the surface code on a 3× 3
lattice under a generic error model and a more specific
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ion trap error model.

In condensed matter physics the compass model is used
to describe a family of lattice models involving inter-
acting quantum degrees of freedom [17]. The relation-
ship between compass model and topological quantum
computing is also well-studied, e.g, Kitaev’s honeycomb
model [18]. Fig. 1a shows a 9-qubit compass model
on a square lattice. Subsystem error-correcting codes
arise naturally from the compass model, where the in-
teractions between neighboring qubits can be viewed as
weight-2 gauge operators [12]. The compass model also
has a 90◦ rotation symmetry, so that X and Z Pauli
errors are treated symmetrically. Examining Fig. 1 we
see that the stabilizer generators of the rotated surface
code and the Bacon-Shor code can be considered as dif-
ferent constraints on the parity of products of gauge op-
erators. This process of choosing constraints is referred
to as gauge fixing. For the surface code, each weight-2
stabilizer is exactly a gauge operator of the corresponding
type, and each weight-4 stabilizer is equivalent to fixing
the parity of the product of two gauge operators on the
same face; for the Bacon-Shor code, each weight-L sta-
bilizer is equivalent to fixing the parity of the product of
L gauge operators in the same double row or column of
qubits.

A challenge for constructing fault-tolerant syndrome
measurement circuits is the propagation of errors from
the ancillary qubits used for measurement to the data
qubits that hold the information. This type of error is
commonly referred to as a hook error, a generalization
of the definition in Ref. [19]. A k-fault-tolerant proce-
dure yields the correct result if k or less errors happen.
For a quantum error correcting code of distance d, the
code is bd/2c-fault-tolerant to single qubit errors when
syndrome measurements are perfect. In order to main-
tain a bd/2c-fault-tolerant procedure for noisy syndrome
circuits, the syndromes must be measured multiple times
and the measurement circuit must not generate uncon-
trolled errors on data qubits. The original approach of
fault-tolerant syndrome measurement uses verified multi-
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FIG. 1: The compass model with ZZ bonds along the vertical axis and XX bonds along the horizontal axis.
Choices of gauge on a 3× 3 lattice lead to two well-known stabilizer codes: [[9,1,3]] surface code and [[9,1,3]]
Bacon-Shor code . The underlying bonds of the compass model are a guide for how to fault tolerantly measure
surface code and Bacon-Shor code stabilizers with bare ancillary qubits. Measuring stabilizers in order of gauge
operators can help suppress hook errors on two-qubit gates in the stabilizer measurement circuit. The blue arrows
show the circuit order for measuring an X-type stabilizer for both codes.

qubit ancillary states to ensure each faulty gate in the
syndrome circuit could produce only one error on the
data [20–22]. A second approach allows multiple errors
to propagate to the data, but uses ancillary qubit mea-
surements to inform the decoder of these errors [23–25].
The third approach notes that some multi-qubit errors
can be tolerated as if they were single-qubit errors [11].

The surface code is considered a promising candidate
for fault-tolerant quantum computing [26–28]. It is also
a popular choice for implementing error correction on
near-term small quantum devices [2, 11, 29, 30] due to
its ability to restrict all stabilizer measurements as local
operations. Fault-tolerant syndrome measurement with a
bare ancillary qubit per check operator relies on a proper
choice of circuit for implementing syndrome measure-
ment, as illustrated in Fig.1b. This choice has been pre-
viously described as directing the hook errors away from
the direction of the logical error [11], but when viewed
from the perspective of the compass code the measure-
ment circuits are determined by the underlying gauge
operators.

The two-dimensional Bacon-Shor code has L − 1 X
stabilizers that correspond to a double column of Xs and
the L − 1 Z stabilizers that correspond to a double row
of Zs. The logical X operators are X⊗L acting on all
qubits in the same column, and logical Z operators are
Z⊗L acting on all qubits in the same row. Bacon-Shor
is a subsystem code and the extra degrees of freedom
result in gauge operators acting trivially on the encoded
information [14]. We use these gauge degrees of freedom
to fault-tolerantly and directly measure each stabilizer
using a single bare ancillary qubit.

The challenge of fault-tolerant 2L-weight stabilizer
measurement is that errors on the ancillary qubit can
generate hook errors of weight b(L− 1)/2c on the data.
By measuring the stabilizers following the structure of
the gauge operators, the hook errors are simply prod-
ucts of gauge operators and a single qubit error. There-
fore, hook errors are equivalent to single qubit errors and

bd/2c-fault-tolerance is preserved for the code. Topolog-
ically one can consider the sequential product of gauge
errors as a string with both ends attached to the same
boundary and is therefore a trivial operator. This is in
contrast to logical operators where the strings connect
opposite boundaries [9].

For the X stabilizers, the circuit consists of prepar-
ing the ancillary qubits in |+〉 = X |+〉 and then per-
forming 2L controlled-not gates with each data qubit as
the target and the ancillary qubit as the control, fol-
lowed by measurement in the X basis. We order the
controlled-not gates such that the target qubits come
in pairs that follows the XX gauge operators. The
stabilizer Si,x =

∏
j=1,LXj,iXj,i+1, where Xj,iXj,i+1

is the gauge operator on the qubits in row j and
columns i and i + 1, yields the sequence of controlled-
nots

∏
j=1,L CNOT(ai, di,j)CNOT(ai, di+1,j) where the

target qubits d are paired by the gauge operator and
controlled by the ancilla a. (Fig. 1c). A similar or-
der holds for the Z stabilizers, where now the ancilla is
prepared and measured in the Z basis and the controlled-
nots target the ancilla qubits. This circuit has already
been implemented experimentally in trapped ions and su-
perconducting qubits for the L = 2 Bacon-Shor quantum
error detection code [31, 32].

In addition to syndrome measurement, preparation of
logical states is also an essential part of quantum error
correction. For the surface code, to encode logical |0〉
we prepare all the data qubits in the physical |0〉 state,
measure X type stabilizers L times and perform correc-
tion based on the syndrome. This procedure measures
(L2− 1)/2 X stabilizers L times and requires 2L2(L− 1)
two-qubit gates. For Bacon-Shor, to encode logical |0〉
we prepare L L-qubit GHZ states in the X basis along
the rows without verification. Generating the L GHZ
states only requires L(L−1) two-qubit gates, significantly
fewer gates than preparation by projecting onto the sta-
bilizers. We note that this deterministic preparation is
fault-tolerant for Bacon-Shor codes, since each row fails
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independently and dL/2e rows must fail for the prepara-
tion to yield an incorrect logical measurement. Like the
Bacon-Shor code itself, this preparation has no threshold
and for fixed qubit error rate, there will be an optimal L
for state preparation.

We now consider the smallest Bacon-Shor code on the
3 × 3 lattice. We need one ancillary qubit per stabilizer
to perform fault-tolerant syndrome measurement of the
[[9,1,3]] Bacon-Shor code, yielding a total of 13 qubits.
We refer to this choice as Bacon-Shor-13 following the
notation of Tomita and Svore where the [[9,1,3]] surface
code with 8 ancilla is referred to as Surface-17 [11].

To compare the performance of Bacon-Shor-13 and
Surface-17 we focus on simulating a circuit with 3 ele-
ments: logical state encoding, quantum error correction,
and measurement of the individual data qubits. We refer
to this circuit as the simple circuit. Using the measure-
ment results, we determine the outcome of the logical
circuit and the probability that the circuit fails.

To perform error correction using Surface-17 and
Bacon-Shor-13, we designed a two-step lookup table de-
coders for both codes. The details of the Surface-17
decoder can be found at [2]. For any two-step de-
coder, in the first step if the syndrome shows no er-
rors then no correction is performed; if the syndrome
shows errors, then a second syndrome is measured and
correction is applied based on the second syndrome.
All simulations are performed using the stabilizer sim-
ulation program CHP [33] inside an importance sam-
pling routine [2, 34]. State preparation of Bacon-Shor
determinstically constructs the logical state, |0〉L =⊗2

i=0
1√
2
(|+ + +〉+ |− − −〉)0+i,3+i,6+i while Surface-17

requires 2 or 3 rounds of X stabilizer measurement due
to the inherent projection noise of the measurements [2].

We consider two error models: a standard depolarizing
error model and an ion trap inspired error model. We
assume arbitrarily connected qubits for both cases, but
for the ion trap error model the duration of two-qubit
gates depends on ion distance [2]. Here we describe the
error model in terms of Kraus operators.

Standard Error Model: The one- and two-qubit Kraus
channels are of the form

E1 = {
√

1− pI,
√
p

3
X,

√
p

3
Y,

√
p

3
Z},

E2 = {
√

1− pII,
√

p

15
IX, . . . ,

√
p

15
ZZ},

(1)

where p is the error rate of the error channel. For each
gate in the circuit, an element from the one-qubit (two-
qubit) Pauli group is sampled and applied after the gate
(before for measurements) to serve as an error.

Ion Trap Error Model: Quantum error correction cir-
cuits are constructed from Mølmer-Sørensen entangling
gates, exp(−i(θ/2)XX), and single qubit rotations, RX
and RY [2, 35, 36]. The error model assumes that the
main source of error comes from fluctuations in the con-
trol strength. The Kraus channels for the control errors
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FIG. 2: Comparison of Bacon-Shor-13 and Surface-17 in
a simple circuit simulation. (a) With one round of error
correction Bacon-Shor-13 shows a pseudothreshold of
0.9% and Surface-17 shows a pseudothreshold of 0.1%.
The difference is mainly due to the difference in logical
state preparation. (b) At a physical error rate of 10−3,
Surface-17 starts to outperform Bacon-Shor-13 in more
than 9 rounds of error correction.

associated with these gates are

EXX = {
√

1− pXXII,
√
pXXXX},

ERX = {
√

1− pRXI,
√
pRXX},

ERY = {
√

1− pRY I,
√
pRY Y },

(2)

where in our simulation pXX is the Mølmer-Sørensen
control error rate and PXX = 10 pRX = 10 pRY . The
Mølmer-Sørensen gate couples ions through the collec-
tive ion motion and an error can occur due to heating
of the motion during the gate. We can add a motional
mode heating error with the Kraus channel

Eheating = {
√

1− phII,
√
phXX}, (3)

where ph = ˙̄n/2k × tMS , where ˙̄n is the heating rate, k
is the number of phase space loops of the motion during
the gate, and tMS is the duration of the corresponding
entangling Mølmer-Sørensen gate. This error model fol-
lows Ref. [37].
During one and two-qubit gates, uncontrolled Stark shifts
can also lead to a gate-induced dephasing error modeled
with the single-qubit Kraus channel

Edephasing = {
√

1− pdI,
√
pdZ}, (4)

where pd = rd× tg, rd is the dephasing rate and tg is the
time of the applied gate.

The results of the standard depolarizing error model
are shown in Fig.2. The logical error of the simple circuit
scales quadratically with the physical error rate show-
ing that both protocols are 1-fault-tolerant as expected
(Fig.2a). The higher logical error of Surface-17 is due
primarily to the overhead of state preparation. When
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Code Prep QEC Measure Total

Surface-17 2400-3600 4900-9800 100 7400-13500
Bacon-Shor-13 1670 4310-8620 100 6080-10390

TABLE I: Time required (in µs) to execute a simple
circuit in an ion trap model (see [2] and Supplementary
Material). The times can vary as the rounds of
stabilizer measurements depends on the results of
syndrome measurements.

multiple rounds of error correction are executed, Surface-
17’s advantage in error correction starts to dominate. As
shown in Fig. 2b, Surface-17 starts to outperform Bacon-
Shor-13 in a simple circuit with more than 9 rounds of er-
ror correction when the physical error rate is 10−3. Each
round of error correction allows for a logical gate and
the performance of 9 rounds of error correction should
be compared to the error of performing 9 physical gates
≈ 9×10−3. The Bacon-Shor-13 logical error shows more
variation around the trend line for odd rounds of error
correction. We suspect this is due to the subsystem na-
ture of the code but have not found a clear reason.

To simulate the performance of error-correcting codes
in trapped-ion system we map the codes onto a linear
ion chain and compile controlled-not gates from Mølmer-
Sørensen gates [36, 38]. The linear chain can be split
apart to allow measurement of ancillary qubits without
affecting the data and then rejoined for further quan-
tum operations Ref. [2]. Us- ing a simulated annealing
algorithm, we searched for ion chain arrangements that
minimized total time for quan- tum error correction or
average two-qubit gate time (see Supplementary Mate-
rial). In our ion trap error model gate error scales with
two-qubit gate time and minimizing average two-qubit
gate time minimizes the error due to ion heating and de-
phasing. Times required to execute the simple circuit
when the ions are arranged to minimize the average two-
qubit gate time are shown in TABLE I. Bacon-Shor-13
has shorter circuit execution time. These reported times
are not fundamental and can be improved by changes in
gate and measurement schemes [1, 39] but for all proto-
cols, Bacon-Shor-13 will maintain the time advantage.

In Fig. 3 we present the results of comparing Bacon-
Shor-13 and Surface-17 in a simple circuit with one round
of error correction under the influence of different ion trap
error sources. Here we assume the error rate for single-
qubit gates and measurements is 1

10 of two-qubit gates
in order to match realistic error rates in experiments.
All results are computed for an optimization of ion chain
arrangement that minimizes average 2-qubit gate times
for both codes independently.

From Fig. 3 we notice that for all error sources and
strengths Bacon-Shor-13 outperforms Surface-17. For
both codes, the simulated simple circuit would outper-
form a single two-qubit gate assuming only Mølmer-
Sørensen control errors with rate below 10−3. The heat-
ing rate and gate-induced dephasing error both raise the

effective two-qubit error rate and this further separates
the performance between Bacon-Shor-13 and Surface-17
for this circuit. These results indicate that a total two-
qubit gate error rate of 10−3 should clearly demonstrate
that an encoded circuit outperforms the unencoded cir-
cuit.
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FIG. 3: Comparison of Bacon-Shor-13 and Surface-17
with a simple circuit under the influence of an ion trap
error model (see text). Logical error is plotted as a
function of a control error in the Mølmer-Sørensen gate.
Each plot includes an additional error due to ion
heating ( ˙̄n) or gate-induced dephasing (T2) that
depends on gate time.

In conclusion, we have found that for subsystem and
subspace codes derived from the compass model the
gauge operators prescribe a method for fault-tolerant
stabilizer measurement. This yields the ability to fault-
tolerantly measure large stabilizer operators with single
ancillary qubits and provides insight into previous work
on small surface codes. These results does require in-
creasing qubit connectivity and becomes impractical for
local architectures as the stabilizer size grows. We have
also noted that for any size Bacon-Shor code state prepa-
ration can be performed in a deterministic fault toler-
ant manner compared to the project and error correct
method commonly proposed for state preparation.

These general results have practical implications for
near term quantum devices. Specifically we have shown
that Bacon-Shor-13 outperforms Surface-17 in all mea-
sures for a simple circuit: time, logical error rate, and
number of qubits. The key advantage of Bacon-Shor-13
over Surface-17 comes from its greatly simplified state
preparation. In addition, the lower qubit count makes
Bacon-Shor-13 a more immediate target for near-term
quantum error correction in systems where non-nearest
neighbor gates are possible, such as trapped ions. How-
ever as Surface-17 holds advantage over Bacon-Shor-13
in terms of error correction, multiple rounds of error cor-
rection will begin to favor Surface-17.

We note that the compass model code on an L × L
lattice allows for a family of codes defined by how the
gauge operators are fixed and the Bacon-Shor and ro-
tated surface code are two extremes of this family. We
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are currently studying this family of codes to determine
what choice of gauges would yield a threshold, as the
codes transition from Bacon-Shor to surface code [40].
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1415461, and the Alexander von Humboldt Foundation.

Appendix A: Ion trap operation times
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FIG. 4: Qubit labeling for the [[9,1,3]] surface code and
Bacon-Shor code. Data qubits, ancillary qubits for X
type stabilizers, and ancillary qubits for Z type
stabilizers are shown in black, blue, and orange circles,
respectively.

Here we present some results on trap operation times
for ion arrangements optimized according to different pa-
rameters. More details of the ion trap model and justifi-
cation for the parameters are available in Ref. [2]. The
optimization takes into account that although 2-qubit
gates can occur between any pair of ions, the gate time
will depend on the ion distance. It also assumes that
before the ancillary qubits are measured they must be
physically displaced from the data qubits. If the data
qubits and ancillary qubits are separated in the chain,
the number of joining and splitting steps is reduced at
the cost of longer logical gate times. We note that nei-
ther limit is fundamental. It is possible to make 2-qubit
gates where there is no time dependence on ion distance
by adjusting laser power [39] and that ancillary qubits do
not need to be separated when two ion species are used
[1].

The optimization was done using a simulated anneal-
ing algorithm with an objective function adjusted for
different optimization parameters, total time assuming
two parallel gates (T) or average 2-qubit gate time (A),
and different constraints, mixed (M) or separated (S)
data and ancillary qubits. For each optimization label
we calculate times for operations performed in both

serial and parallel. Parallel operations allow for two
simultaneous two-qubit gates exciting the independent
x and y radial modes and fully parallel single-ion
operations. We assume single-qubit gates, parallel
measurement/state preparation, and shuttling between
operation and measurement zones require 10 µs, 100 µs,
and 100 µs, respectively. The shuttling operation
includes the time to split and join ion chains. The
results in the paper are for the MA optimization, which
minimizes error for the error correction step. In Ref. [2],
the reported results for Surface-17 are for MT.

Code Opt. Logic Shuttle Meas. Total

Surface-17
SA 7240 (3920) 200 100 7950 (4220)
MA 2300 (1170) 1800 800 4900 (3770)
MT 4300 (2320) 700 300 5300 (3320)

Bacon-Shor-13
SA 5580 (3270) 200 100 5880 (3570)
MA 2910 (1490) 1000 400 4310 (2890)
MT 3580 (1860) 400 100 4080 (2360)

TABLE III: Trap operation times (in µs) for one round
of error correction calculated according to ion
arrangements optimized for an array of parameters (see
text). All values are reported in µs and the numbers in
parentheses refer to the gate time when two 2-qubit
operations are performed in parallel.

Code Opt. Prep Time

Surface-17
SA 7880-11820 (4460-6690)
MA 2400-3600 (1200-1800)
MT 3800-5700 (2100-3150)

Bacon-Shor-13
SA 670 (450)
MA 1670 (1040)
MT 1480 (970)

TABLE IV: Trap operation times (in µs) for logical
state preparation calculated according to ion
arrangements optimized for an array of parameters (see
text). The time for Surface-17 can vary as it is a
probabilistic circuit of syndrome extraction.
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Code Opt. Ion Arrangement

Surface-17
SA 0 2 6 8 1 4 3 7 5 11 12 10 15 13 14 9 16
MA 2 9 1 12 5 15 8 14 4 11 0 10 3 13 7 16 6
MT 10 15 9 5 0 1 11 12 14 7 4 3 8 2 6 13 16

Bacon-Shor-13
SA 0 2 6 8 1 3 7 5 4 11 10 12 9
MA 8 2 12 1 5 9 4 10 7 3 11 0 6
MT 2 1 5 4 9 12 10 11 7 3 0 8 6

TABLE II: Ion arrangements optimized for an array of parameters (see text). Numbers in bold face represent
ancillary qubits.
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