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Recently, an exponentially decaying waveform (the time-dependence of detection probability) of a 
Mössbauer γ-ray photon was transformed into a regular sequence of short pulses in a sinusoidally vibrat-
ing recoilless resonant absorber [Nature, 508, 80-83 (2014)]. In the present paper, we show that the peak 
amplitude of the pulses can be considerably increased via joint adjustment of optical depth of the absorber 
and the initial phase of its vibration. This is due to reduction of the photoelectric absorption and maximiz-
ing the constructive temporal interference of spectral content of the single-photon wave packet in optical-
ly deep absorber. The ultimate capabilities for transforming a waveform of 14.4 keV photon from 57Co 
radioactive source into a regular train of pulses in a harmonically vibrating 57Fe recoilless resonant ab-
sorber are discussed. We show that the shortest pulse duration, produced by this technique, is limited by 
the highest available vibration frequency of a piezo-transducer and at present can be as short as 7.7 ps. 
The maximum achievable detection probability of the transformed photon at the experimentally feasible 
conditions is more than two times higher than peak detection probability of the photon emitted by the 
source and nearly 5.5 times higher than obtained in the above reference. 
 
I. INTRODUCTION 
 

Hard x-ray/γ-ray optics is an attractive and rapidly growing branch of physics, which gives 
rise to numerous applications in material science, chemistry, biology, medicine and modern 
technologies. Extremely short wavelengths of hard x-ray/γ-ray photons allow investigating mate-
rial structure at atomic scales, while narrow bandwidth of Mössbauer radiation (for example, a 
bandwidth of emission of 57Co radioactive source with photon energy 14.4 keV is ~ 1 MHz, 
which corresponds to 3´10-12 of its carrier frequency) permits precise measurements of local 
electric and magnetic fields, energy structure and hyperfine interactions in solids and on their 
surfaces. 

In recent years, a growing interest to these studies was motivated by penetration of con-
cepts and ideas of coherent and quantum optics into x-ray range of electromagnetic spectrum. 
Earlier experimental achievements in this field include demonstrations of the Autler-Townes ef-
fect [1], γ-ray echo via abrupt shift of a nuclear absorber [2], controllable storage and release of 
nuclear excitation by switch of the magnetic field direction [3], electromagnetically induced 
transparency (EIT) via a nuclear level anti-crossing [4], slowing down of γ-photon in a nuclear 
absorber with a split line [5] and other effects discussed in the review [6]. Recent experimental 
advances include demonstration of parametric down-conversion in the Langevin regime [7], cav-



ity electromagnetically induced transparency [8], collective Lamb shift [9], vacuum-assisted 
generation of atomic coherences [10], single-photon revival in nuclear absorbing sandwiches 
[11], phase-sensitive measurements characterizing the quantum state of a nuclei at hard x-ray 
energies [12], and group velocity control for 14.4 keV-energy photons [13], spectral enhance-
ment of x-ray radiation via a moving absorber [14] and demonstration of a strong coupling be-
tween two nuclear polariton modes [15]. Also, a number of important effects were theoretically 
predicted recently including dynamical control of x-ray polarization qubits by nuclear Mössbauer 
resonance [16], heralded entanglement between two crystal-hosted macroscopic nuclear ensem-
bles [17], as well as mapping and storing x-ray pulses in a thin-film planar x-ray cavity with em-
bedded resonant nuclear medium [18]. 

Recently, a possibility for coherent manipulation of the waveform (the time-dependence of 
detection probability) of Mössbauer γ-ray photon in a harmonically vibrating recoilless resonant 
absorber was shown both theoretically and experimentally [19]. In particular, (i) transformation 
of the exponentially decaying waveform of an incident 14.4 keV photon into a regular sequence 
of nanosecond pulses, and (ii) splitting of a single γ-ray photon into double-spike pulse were 
shown. However, in the proof-of-principle experiment [19] neither the absorber optical depth, 
nor the initial phase of its vibration (the phase of vibration at the moment, when the front of the 
single-photon wave packet enters the medium) were optimized. 

Further development of this approach was presented in [20], where an analytical solution 
was derived for the waveform of a γ-ray photon transmitted through the vibrating recoilless res-
onant absorber under the conditions realized in [19]. It was shown that bunches of predetermined 
number of pulses can be produced, and the possibilities for using them in quantum information 
processing were discussed. The theoretical results were confirmed experimentally. 

In the following papers [21] and [22], transformation of a continuous flow of γ-ray photons 
emitted by a high-activity source into a periodic pulse train was considered. In those papers, the 
possibilities to improve the peak intensity, duration and shape of pulses with respect to the proof-
of-principle experiment [19] were discussed. It was proposed (i) to increase an optical depth of 
the resonant absorber [22], and (ii) to use several sequentially placed resonant absorbers [21]. In 
particular, a possibility to increase the pulse peak intensity due to phase-matching of the vibra-
tional sidebands of γ-radiation via the absorber dispersion was discussed [21, 22]. 

Nevertheless, the optimal conditions for transformation of a single-photon waveform into a 
train of pulses taking into account propagation effects in optically deep medium were not ana-
lyzed yet. At the same time, it is well known that in optically deep absorber the exponentially 
decaying waveform of a photon transforms into a sequence of dips and humps, which is called 
"dynamical beats", and originates from spectrally-selective interaction of the photon field with 
the resonant nuclei [23]. With increasing absorber optical depth the dynamical beats shrink to-
wards the front of the photon waveform (the dips and humps alternate faster). If the absorber vi-
brates under the conditions realized in [19], the produced pulses interfere with the dynamical 
beats. As a result, some of the pulses can be enhanced or suppressed. As shown in [19], the ini-
tial phase of absorber’s vibration determines position of the pulses in respect to the front of the 
waveform, and hence to the dynamical beats. Therefore, tuning both the initial phase of vibration 
and the optical depth of absorber allows matching one or several pulses arisen due to vibration 
with dynamical beats. As shown below, such a constructive interference can noticeably enlarge 
the pulse height. 

In the present paper we study the possibilities to improve characteristics of pulses, which 
are produced from a single-photon waveform in a vibrating recoilless resonant absorber, via joint 



optimization of (i) the optical depth of absorber responsible for the dynamical beats, and (ii) the 
initial phase of vibration determining position of the produced pulses with respect to dynamical 
beats. We also consider the possibility to use resonant dispersion of the absorber for increasing 
the pulse intensity in the single-photon regime. 

The paper is organized as follows. In Section II we present the theoretical model. In Sec. 
III we derive an analytical solution for this model describing transformation of the exponentially 
decaying waveform of a Mössbauer photon into a regular sequence of short pulses taking into 
account propagation effects in optically deep recoilless resonant absorber. On the basis of this 
solution we discuss physical mechanisms which allow increasing the pulse height. In Sec. IV we 
find analytically and numerically the optimal parameter values for maximizing the peak detec-
tion probability of the photon for feasible experimental conditions, including conditions for pro-
ducing the shortest pulses and conditions of the proof-of-principle experiment [19]. In Sec. V we 
discuss another physical mechanisms leading to enhancement in the temporal detection probabil-
ity. In Sec. VI we summarize the results. 

 
 

II. THEORETICAL MODEL 
 

Let us consider transformation of a 14.4 keV photon, emitted by 57Co Mössbauer radioac-
tive source, in a recoilless 57Fe resonant absorber, oscillating along the direction of propagation 
of Mössbauer radiation. The relevant energy levels of the source are shown in a left side of 
Fig.1a. The 57Co radioactive nuclide decays via electron capture producing a 57Fe nucleus in the 
state |cñ which decays with lifetime  to the state |bñ, emitting a 122 keV γ-ray photon. 

Subsequently, the state |bñ decays with lifetime  to the ground state |añ, emitting a 
14.4 keV photon. Detection of 122 keV photon determines the instant of formation of the state 
|bñ. It is chosen to be a time origin, t0=0, for the time dependence of probability for detecting the 
14.4 keV photon, , that is proportional to the coincidence count rate of the 14.4 keV pho-
tons emitted from the source, 

, (1) 

where  is the unit step function and  is the decay time of the state |bñ. After pass through a 

diaphragm, viewed in a small solid angle, the electric field of the photon can be represented in 
the form [23-27] (Fig.1b, upper part): 

, (2) 

where  is the field amplitude,  is the local time in the laboratory reference 

frame,  is the coordinate along the direction of the field propagation in the laboratory refer-

ence frame,  is the radiation bandwidth (for 57Fe nuclide ,  is 

the carrier frequency of the field corresponding to the wavelength Å,  is the random 
initial phase of the field, and c.c. stands for complex conjugation. In Eq. (2) we neglected (i) the 
value  (where  is the coordinate of the emitting nucleus that can be moved with 

constant velocity Vs, Fig. 1b) in the argument of unit step function and (ii) the value  in 
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the exponent of the exponential function. Both approximations are valid at the propagation dis-
tances  (in the case of 57Fe,  84.5 m). 

Let us consider propagation of the photon through the resonant absorber. The absorber 
constitutes a foil of stainless steel enriched by the resonant 57Fe nuclei (Fig.1a right side), fixed 
on a piezoelectric plate and vibrating piston-like with frequency  along the direction of the 
photon propagation (Fig.1b). The thickness of the film, L, satisfies the inequality 

, where  is the speed of sound in stainless steel. Consequently, the absorb-
er vibrates as a whole according to 

, (3) 
where  is the coordinate in the vibrating reference frame,  is the amplitude and  is the ini-
tial phase of absorber’s vibration. The absorber’s motion is nonrelativistic,  (where c is 
the speed of light in vacuum), therefore time in the vibrating reference frame is the same as in 
the laboratory reference frame. Substituting (3) into (2) allows one to write the electric field of 
emitted photon in the vibrating reference frame as a frequency-modulated field, 

, (4) 

where  is the local time in the vibrating reference frame, and  is the in-
dex of modulation of the resonant transition frequency. In Eq. (4) we neglected both sinusoidal 
term in step function and amplitude modulation of the photon field, because of nonrelativistic 
motion of the absorber. According to (4), in the reference frame of the vibrating absorber the 
field of the incident photon acquires harmonic frequency modulation with a modulation frequen-
cy . We assume that there is no reflection of the field from the absorber's surface since the die-
lectric permittivity of the absorber's material in the γ-ray range is very close to unity. Therefore 
in the vibrating reference frame at the entrance to the absorber, , the frequency-modulated 
photon field coincides with the emitted field (4) and can be represented in the form  

,  (5a) 

, (5b) 

where  is the slowly-varying complex amplitude of the incident field, 

. Using the Jacobi-Anger expansion, the incident field can be considered as 

a single-photon wave packet composed of a set of the exponentially decaying spectral compo-
nents with equidistant carrier frequencies (Fig.1b, lower part),  

, (5c) 

where  is the Bessel function of the first kind of order n. Applying Fourier transform to 

equation (5b), , one gets complex amplitude of a monochromatic 

frequency constituent of the single-photon wave packet: 

, (5d) 
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As follows from (5d), in the reference frame of the vibrating absorber the quasi-monochromatic 
incident field (2) can be considered as a comb of equidistant spectral components separated by 
the frequency of vibration. The nth component has the central frequency , relative 

amplitude , and Lorentz shape with bandwidth Gs. The phase at its central frequency, 

, at  will be referred below as the central phase of the nth spectral component. For a 
fixed value of modulation index, p, there are approximately 2p+1 spectral components with con-
siderably nonzero amplitudes. 

Interaction of the photon with a resonant nuclear transition from the ground state, |1ñ, to the 
excited state, |2ñ, of 57Fe nuclei of the absorber (Fig.1a, right side) can be described by a master 
equation for the quantum coherence between these states, , [19, 25-27]  

, (6) 

where  is the frequency of the resonant transition |1ñ↔|2ñ, which can differ from the central 

frequency of the source, , due to isomeric shift or Doppler shift produced by a motion of the 

absorber relative to the source with a constant velocity  (Fig.1b),  is the half-width of spec-

tral line of the resonant transition,  is the population difference between the states 

|1ñ and |2ñ,  is the dipole moment of the resonant transition , E is the electric field of the pho-

ton inside the medium, and  is the Plank's constant. Excitation of the quantum coherence, , 
results in resonant macroscopic polarization of the medium, 

, (7) 
where  is the Lamb-Mössbauer factor (probability of Mössbauer effect) in the absorber's ma-

terial, N is the concentration of the resonant nuclei, and . In its turn, the resonant polari-
zation of the medium, P, leads to transformation of the photon field, E, in accordance with the 
wave equation 

, (8a) 

where  is the nonresonant dielectric permittivity of the absorber's material,  is the 
speed of light in the medium, and  is the photoelectric absorption coefficient. 

Let us change the independent variables from  to , where . In 

such a case, wave equation (8a) takes the form 

, (8b) 

while equation for the quantum coherence (6) retains its form except for the replacement . 
Let us further use approximation of the slowly-varying complex amplitude: 
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 (9) 

where , and  stands for , , and . This approximation is 

well satisfied in the considered case, since . Under this approximation the wave 
equation (8b) takes the form 

, (10) 

where we took into account that . Eq. (6) takes the form 

, (11) 

which also implies the rotating-wave approximation, , while relation between the 

amplitudes of quantum coherence and macroscopic polarization (7) is given by 
. (12) 

Let us seek for a solution of the system (10)-(12) in the form 

, (13a) 

where  stands for , , and ; and further 

. (13b) 
Eqs. (10)-(13) give us 

. (14) 

In its turn, the value of  is determined from the boundary condition at the front edge of the 

medium, , which is , where  is determined by Eq. (5d). Conse-
quently, we find the slowly-varying amplitude of the single-photon wave packet inside the medi-
um in the form 

. (15) 

Its intensity behind the absorber is  where  in (15) is replaced with 

. 
Let us return to the laboratory reference frame and look for the field of the photon behind 

the absorber in the form 

, (16) 
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where , and  is the slowly-varying amplitude of the output field. The substitu-

tion , and use of the boundary condition in the form  re-
sults in 

, (17) 

where . and . 

The time-dependent probability of the photon detection behind the absorber can be de-

scribed in terms of intensity of the output field, . From 

Eq. (17) we get 

, (18) 

where  is the peak intensity of the field of incident photon (5a)-(5d) before transfor-

mation in the medium, and  is the exponent factor of photoelectric absorption. Thus, in 
the case under consideration, the optical depth of the resonant absorber at frequency  is the 
sum of the resonant attenuation factor, , specific for each frequency constituent, and 

the factor of photoelectric absorption, , identical to all the constituents.  
Let us note, that an intensity of the field of outgoing photon (the photon's waveform) in 

the laboratory reference frame (18) is the same as that in the reference frame of the oscillating 
absorber (see eq. (15) and Fig. 1b), , since 

. Using the vibrating reference frame allows one to consid-

erably simplify the interpretation of changes in the photon waveform at the absorber exit.  
 
 
III. ANALYTICAL STUDY 
 
As follows from (1), (15), and (18), propagation of photon through vibrating absorber results in 
transformation of the slowly-varying amplitude of the single-photon wave packet and the pho-
ton’s waveform (Fig.1b, upper part). This transformation can be interpreted in different ways. In 
the laboratory reference frame, it results from coherent forward scattering of the photon by the 
resonant nuclei with absorption or emission of acoustic phonons having the frequency of vibra-
tion. In the reference frame of the oscillating absorber, as seen from (9) and (15), this transfor-
mation originates from temporal interference of the frequency constituents of multi-spike contin-
uous spectrum of the transmitted field. Analysis of such an intricate interference can be simpli-
fied if the relation (15) is represented as a superposition of the exponentially decaying spectral 
components with carrier frequencies , whose amplitudes acquire an additional tem-
poral modulation owing to propagation through the resonant medium (Fig.1b, lower part), 

. (19a) 
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where using solution from [23, 28], one can write the time-dependent term  of the kth 

outgoing spectral component as, 

, (19b) 

, , and  is the Mössbauer thickness of 

the absorber. The temporal modulation of the slowly-varying amplitude of an arbitrary kth spec-
tral component (19b) is the well-know dynamical beats [23, 24, 26, 29]. Its intensity, 

, (19c) 

was observed (in the case of absence of vibrations of both the source and absorber) for the first 
time in [23]. 

The dynamical beats of the kth spectral component arise from selective interaction of its 
frequency constituents with the absorber transition. Since the bandwidth of the component is 
comparable to the linewidth of the resonant transition, it is not absorbed as a whole. Instead, its 
spectrum is altered due to different influence of the resonant absorption and resonant dispersion 
on its frequency constituents [23, 24, 26, 29]. Interference of the altered frequency constituents 
within the spectral contour results in dynamical beats of the kth component. They become well 
visible if the bandwidth of the component is comparable to or larger than the linewidth of the 
resonant transition of an optically deep absorbing medium.  

An alternative way to consider the output field in the vibrating reference frame (9), (15), 
(19a) is to represent it in the form of a superposition of the incident field and resonant-
coherently-forward-scattered field. Using (5) one can rewrite the slowly-varying amplitude (15), 
(19a) as  

. (19d) 

Here the first term in curly brackets is the exponentially decaying spectral component with carri-
er frequency  of the incident frequency-modulated field (5c) (with accounting for 
the global photoelectric absorption) and the second term is the resonant-coherently-forward-
scattered field at the corresponding frequency. Comparing (19a) and (19d) one can write the 
time-dependent term  of the kth  forward-scattered-field component as 

, (19e) 

Similar to dynamical beats, the kth spectral component of the resonant-forward-scattered 
field has the amplitude modulation caused by the temporal interference of its spectral constitu-
ents within the spectral profile. 

The interference of frequency constituents within each spectral component (19c) or (19e) 
of the superposition (19a) or (19d) is accompanied by the temporal interference between the 
spectral components as a whole. In other words, the dynamical beats (19b) interfere with each 
other, while the coherently-scattered-field components (19e) interfere both with each other and 
with the incident frequency-modulated field (4), (5). Let us consider this interference in more 
detail in the case where the oscillation frequency is much larger than linewidths of the source 
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and absorber,  and the central frequency of some mth spectral component of the in-

cident field in the oscillating reference frame (5a)-(5d),  (where m is an integer 

number), is resonant to the frequency  of transition |1ñ↔|2ñ of the absorber, . Then 
similar to [20] one can assume that only the resonant mth spectral component interacts with this 
transition, while the other spectral components experience only the nonresonant photoelectric 
absorption. In such a case one has  and  for , while 

 and . Thus the slowly varying 

amplitude of the output field in the oscillating reference frame (15) has a form of a superposition 
of the off-resonant spectral components transmitted without resonant interaction, and the mth 
component, whose amplitude constitutes the dynamical beats:  

, (20a) 

, (20b) 

, (20c) 

According to (20), the time dependence of intensity of the output radiation (18) can be now ex-
pressed in the following form, 

,
 (21a) 

where  

,  (21b) 

 (21c) 

 (21d) 

Equations (21) can be written in the equivalent compact form 

, (21e) 

which coincides with the result of [20]. 
As follows from Eqs. (20)-(21), both the slowly-varying amplitude of the single-photon 

wave packet, , and the waveform of the photon, , transmitted through an opti-

cally deep vibrating absorber, acquires two types of amplitude modulation. The first type is de-
scribed by formulae (20b), (21b). It contributes into the total photon detection probability (21a) 
via relation (21b). This modulation is due to the absorber’s vibration and was discussed in detail 
in [21]. Its origin can be explained as follows. At the entrance to the medium the spectrum of the 
photon (5a)-(5d) in the vibration reference frame constitutes a set of approximately 2p+1 equi-
distant spectral components separated by the frequency of oscillations. The amplitude of the nth 
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component is determined by Bessel function  of order -n. The central phase of the nth 
component is determined by a sign of the corresponding Bessel function, as well as by the phase 
term . Due to self-consistency of the incident spectrum, represented by the relation 

, the incident field (5) is frequency-modulated and does not have any ampli-

tude modulation apart from the exponential factor . Elimination of the resonant 

mth component as a whole, assumed in (20b), destroys the balance between the spectral compo-
nents in the superposition. This results in appearance of amplitude modulation, which allows 
producing a train of short pulses under certain conditions [19-21]. Below just such conditions 
providing formation of pulses are considered and hence this off-resonant part of the incident 
field is marked by a superscript “pulse”. 

However, as discussed above, the resonant mth spectral component is not eliminated as a 
whole but comes out of the absorber being reduced and spectrally transformed. In time domain 
its amplitude constitutes the dynamical beats described by the second term in (20a) (Fig.1b, 
green curve). So, both the slowly-varying amplitude of the single-photon wave packet (20a) and 
the waveform of the photon (21a), (21e) are shaped also owing to dynamical beats of the reso-
nant mth sideband described by formulae (20c), (21c). According to (21a), (21c), the waveform 
of dynamical beats of the resonant mth sideband can be written as 

. (22) 

As follows from (22), the waveform of dynamical beats of the mth sideband constitutes a se-
quence of dips and humps in the time-dependent detection probability, . Timing of dips 
and humps of the dynamical beats is determined by zeros and extrema of Bessel function 

, where , and thus by Mössbauer thickness of the absorber. In the case 

of a small Mössbauer thickness, the first dip and hump are situated far on the tail of the wave-
form of the transmitted photon and are negligible. With increasing value of the Mössbauer thick-
ness the dips and humps are shifted towards the front of the waveform and become well visible. 

The third term in (21a) represented by relation (21d) is due to interference of the dynam-
ical beats with an amplitude modulation (pulses) caused by an absorber's vibration. This interfer-
ence may be constructive or destructive subject to the phase relation between the fields constitut-
ing pulse(s) and dynamical beats at the exit from the absorber. This interference leads to increase 
or decrease of the pulse height. Timing of dynamical beats with respect to the front of the wave-
form is governed by Mössbauer thickness of the absorber, , while position of the pulses pro-

duced via absorber's vibration is determined by the initial phase of vibration, . Therefore, the 

maximum amplitude of pulses can be achieved via the joint optimization of the parameters  

and  as follows from the formulas for the interference term in (21d,e). In the next section the 
optimization problem is studied analytically and numerically. 

 
 

IV. OPTIMIZATION OF γ-RAY PULSE FORMATION VIA RESONANT SUPPRES-
SION OF THE PHASE- MISALIGNED SIDEBAND 
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Maximization of a pulse amplitude and minimization of pulse duration implies finding the 
optimal values of the following parameters: , , , , , . As shown in [20, 21], 
the quasi-monochromatic photon field can be transformed into a regular train of pulses subject to 

, i.e., via suppression of the ±1st ( ) sideband of the photon field in the oscil-

lating reference frame by tuning it to the absorber resonance (choosing ). It was shown 
also that maximizing amplitude of pulses is achieved in the case of maximization of the deleted 
sideband implemented at . These conditions have clear interpretation in the vibrating 
reference frame. In this case, the field of the incident photon consists of five spectral components 
with considerably nonzero amplitudes, namely, the -2nd, -1st, 0th, 1st, and 2nd component (Fig.1b, 
Fig.2). In the case of , and , considered in Fig. 2, the central phases (the initial 
phases at the central frequencies) of the 0th, -1st, and -2nd components equal zero, while the cen-
tral phases of the 1st and 2nd sidebands equal π and 2π, respectively. Thus, the central phases of 
the -2nd, -1st, 0th, and 2nd (phase 2π is equivalent to phase 0) spectral components are aligned 
along the horizontal line, while the central phases of the 2nd, 1st, 0th, and -2nd (phase 0 is equiva-
lent to phase -2π) spectral components are aligned along the inclined (diagonal) line. Such a 
phase alignment holds also in the case  and  (when the nth spectral component ac-

quires an additional phase shift ). However, a nonzero value of  changes the slope of 

the lines, while a nonzero value of  shifts the lines as a whole in vertical direction. Such a 

phase matching and specific amplitudes of the spectral components, proportional to , re-

sults in the absence of amplitude modulation of the incident photon field (4), (5), apart from the 
exponential decay . Deletion of either the 1st or -1st sideband (assuming elimina-

tion of the sideband as a whole) via tuning it to the absorber resonance (by a proper choice of 
constant velocity  (Fig.1b) of the source versus the absorber) destroys this balance and allows 
keeping only the phase-aligned components, whose interference in time domain leads to for-
mation of a pulse train. If incomplete resonant absorption of the sideband is taken into account 
then the produced pulses interfere with the corresponding dynamical beats. As follows from 
Eqs. (20), (21), transition from deletion of the 1st sideband to deletion of the -1st sideband shifts 
the pulses with respect to the front of the waveform by a half-cycle of absorber’s vibration. So, 
for definiteness we shall consider the case of absorber resonance with the -1st sideband. 

Optimal value of the modulation index can be explained in terms of the coherent-forward-
scattered field. According to (19d,e) a resonant interaction of the -1st sideband with absorber 
leads to the output field amplitude in the form , where 

the first term represents the incident frequency-modulated field (4), (5) and 

 is proportional to the amplitude of appeared forward-

scattered field. The forward-scattered field is fully coherent with the resonant -1st sideband and 
has the same carrier frequency. Temporal constructive interference of the forward-scattered field 
with the incident field leads to formation of pulses. The maximal pulse amplitude can be 
achieved subject to maximal value of  which corresponds to maximization of  

implemented at  where  is the normalized amplitude of the -1st spectral sideband. 
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Hence, maximizing the amplitude of the resonant 1st or -1st sideband of the incident field is the 
necessary condition for obtaining the highest pulse amplitude. 

Let us find the values of  and , maximizing the peak intensity of the produced pulses 

in case, where the modulation index is  and absorber is tuned to the resonance with the -1st 
sideband, . First, let us consider the finite values of  and a small value of the ratio 

, such that only the resonant -1st sideband interacts with the absorber transition and the 
analytical results (20)-(22) are valid. The output photon waveform (21) is locally maximized (for 
arbitrary value of p), if . For  this corresponds 

to  and hence 

, (23a) 
where k is an integer number labeling the modulation peaks. Under the condition (23a), equa-
tions (21) can be written in the form 

 (23b) 
were 

, (23c) 

 (23d) 

It follows from (21) that 

, (24a) 

, (24b) 

. (24c) 

At  local maxima are peaks of pulses, so that equations (23) and (24) describe the time 
dependence of the peak intensity of the pulses. The function  is the waveform of the in-
cident photon attenuated as a whole by the photoelectric absorption only. It has maximum, 

, at  and . The function  determines the value of pulse peaks over 

 accounting for interference of pulses due to vibration with dynamical beats of the -1st 
component. As follows from (23d) and (24), if interference is absent or negligible 
(  or  occurred in deeps of dynamical beats or if , re-

spectively), then . The function  takes the maximum value, 

, when the minimum of  is achieved at . 

This occurs at the first hump of dynamical beats (21c), (22), (24b) resulting in a maximum con-
structive interference between the pulses (20b) and dynamical beats (20c). Maximization of the 
interference term (24c) gives the largest enhancement in pulse amplitude, 

. On the other hand, if some pulse peak coincides with the sec-

ond hump of dynamical beats (21c), (22), (24b) corresponding to the first local maximum of 

MT 0J
optp

1 0w-D = MT

1ag W!

[ ]0 0cos sin( ) ( ) 1lab labp mt J t JW + + W + = - 1m = -

0 0sin( ) (2 1)lab labp kt J t J pW + -W - = +

0labt JW + = (2 1)k p+

( ) ( )0 1 2( )peak
out lab lab labI I F Ft t t=

( )1( ) e s labT
lab labF e e tt q t - -G=

( )( )
( ){ }

0
2 2

2 max 1 max 1

2

1 0

( ) 2Re

1 ( ) 1 2

aipulse DB pulse DB
lab

lab

F A A A A e

J p J b

t Jt

t

- W +
- -= + +

é ù= + -ë û

[ ]2 2
max 11 ( )pulseA J p= +

( )2 2 2
1 1 0( ) 2DB

labA J p J bt- =

( )( ) ( )[ ]0
max 1 1 0 12Re 2 ( ) 2 1 ( )aipulse DB

labA A e J p J b J pt J t- W +
- = - +

optp p=

1( )labF t

max
1 1F = 0eT = 0labt = 2 ( )labF t

1( )labF t

( )0 2 0labJ bt = ( )0 2 1labJ bt ! 1labbt !

2 ( ) 2.5labF t ! 2 ( )labF t
max

2 2( ) 3.3labF Ft = ! ( )0 2 0.4labJ bt -! 2 3.8labbt @

( )( )0
max 1 max

2Re 0.7aipulse DBA A e t J- W +
- !



, achieved at , the maximum destructive interference (minimum 

value of the interference term (24c), ) between the pulses 

(20b) and dynamical beats (20c), occurs. In this case dynamical beats reduce the pulse amplitude 
resulting in .  

In order to maximize the product  one should simultaneously maximize 

Mössbauer thickness (in order to reduce  in the exponent  keeping unchanged the op-

timal value of ) and minimize . However,  is proportional to  and 

is ultimately determined by the percentage of the resonant nuclei: the higher percentage of the 
resonant nuclei, the smaller physical thickness L of the absorber and, hence, the smaller photoe-
lectric attenuation. Hence minimization of  can be done via enrichment of the absorber with 
the resonant nuclei. Similar to [19], we assume that 57Fe nuclei are embedded into stainless steel 
which is a compound Fe:Cr:Ni at 70:19:11 wt%. However, unlike [19] where the natural abun-
dance ~2.2% of 57Fe in iron fraction was used, in order to minimize , we assume the commer-
cially available 90% enrichment of iron fraction by nuclide 57Fe with natural broadening of spec-

tral line of the resonant transition, implying  and . Taking into 

account that the photoelectric absorption coefficient in stainless steel is  

[30], we get . Let us maximize Eq. (23b) for the above parameters values. Finding 

the partial derivatives of  over  and , and equating them to zero after some transfor-
mations we get: 

 (25a) 

 (25b) 

Eq. (25b) has a solution . Substituting it into Eq. (25a) we find 

 (25c) 

The roots of this equation are . The respective values 

of absorber Mössbauer thickness are . According to 

(23), these values of  and  correspond to the following values of the peak pulse intensi-

ty: . Thus, the largest maximum, 

 of pulse height is achieved at  and , corresponding 

to the physical thickness of the film . The respective optimal values of the initial 
phase of vibration are . The waveform corresponding to these opti-

mal parameter values is plotted in Fig.3 for . In this case, according to (23c), 

one has , where  is the waveform of the incident photon 

represented by black dashed curve in Fig.3. It can bee seen that because of the exponential de-
pendence of , the value  is achieved slightly earlier, at 
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, than the first hump of dynamical beats, occurred at . For  

the respective times are  for maximum of pulse height, and  for the first 
hump of dynamical beats. 

The accuracy of obtained analytical results decreases with increasing value of . This 
is because the other spectral components of the photon field are also influenced by the resonant 
absorption and primarily by the resonant dispersion, which lead to (i) change of central phases of 
the spectral components and (ii) distortion of amplitudes and primarily phases of Fourier constit-
uents within the spectral contour of each component. As a result, the exact solution for the wave-
form of the output photon (18) and the corresponding optimal values of  and  deviate 
from the results of the analytical study. 

Let us trace the dependence of these deviations as a function of the frequency of absorber’s 
vibration. In Figs 4a,b we show the optimal values of (a) Mössbauer thickness, , and (b) 
the moment of formation of pulse with the highest intensity, , found via the numerical 
analysis of Eq. (18), versus the frequency of vibration. Figure 4c shows the frequency depend-
ence of maximum intensity of the highest pulse (maximum of the peak detection probability), 

. In all the Figs. 4a-c the nu-

merical results are compared with the analytical solution. As can be seen, at high frequencies of 
vibration, , the results of numerical optimization and the analytical solution 
almost coincide. This means that maximum of the peak detection probability practically does not 
depend on the vibration frequency and is  as has been found within the analytical 

model. This value is achieved at  and can be implemented with an absorber of Möss-
bauer thickness  irrespective of the vibration frequency. This is because at such vibra-

tion frequencies and Mössbauer thickness only the -1st spectral component of the photon field is 
really altered during propagation through the absorber. As shown in [19], the pulse repetition 
rate equals the vibration frequency and pulse duration is defined by inverse of the product of 
phase-aligned components and the vibration frequency. Therefore the shortest pulse duration that 
could be produced by the discussed technique is limited by the highest available vibration fre-
quency of piezo-transducer with the desired amplitude and linewidth. The maximum frequency 
of the diamond piezoelectric transducer is 970 MHz [31]. In this case the regular pulse sequence 
shown in Fig. 3 can be produced with pulse duration of about 190 ps. The polyvinylidene fluo-
ride (PVDF) piezo-electric transducers operating at frequencies up to 24 GHz [32] allows pro-
ducing pulses to 7.7 ps. 

At frequencies below 150 MHz the discrepancy between the analytical and numerical re-
sults increases as the frequency decreases, reaching maximum at the lowest considered vibration 
frequency (Fig.4). This is caused by increasing influence of nuclear transition on the off-resonant 
spectral components of the photon field. At the considered vibration frequencies  one 
can neglect the resonant absorption of the off-resonant spectral components. However, the reso-
nant dispersion can noticeably modify the phase relations both between the frequency constitu-
ents within each off-resonant spectral component and between central phases of spectral compo-
nents owing to their different phase incursion during propagation through the medium. Accord-
ing to (13b), (14), the phase incursion of an arbitrary spectral constituent of the photon field with 
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frequency  at the absorber exit is . This means that, 

for instance, the phase misalignment at carrier frequencies of the closest to nuclear transition -2nd 
and 0th components behind the absorber is . At 

, , and  (the first circle in Fig. 4a-c) the phase misa-

lignment is . Such phase distortions noticeably change the temporal interference pat-

tern, optimal values of , , and , as well as the highest peak pulse intensity  
(Fig.4, difference in pulse shape is well-visible in Figures 3,7,8). The changes in the temporal 
interference pattern are taken into account in relations (19), (20). They can be interpreted via 
generation of the off-resonant spectral components of the forward-scattered field with time-
dependent amplitudes (19d), and the temporal interference of the forward-scattered-field compo-
nents with both pulses and dynamical beats of the -1st spectral component (20) as following 

. (26) 

As shown in Fig. 4, for every vibration frequency there is some optimal Mössbauer thickness, 
, and initial vibration phase, , at which the constructive interference of the terms in (26) 

results in the highest peak pulse intensity  at the corresponding moment . At vibra-
tion frequencies  large distortions of the output spectral components, caused 
by off-resonant forward-scattered field, hamper pulse formation via resonant absorption of the -
1st component [  is less than that followed from the analytical model neglecting the off-
resonant forward-scattered field (Fig. 4c)]. As the vibration frequency growth, the phase misa-
lignment at optimal conditions becomes smaller in spite of increasing optimal Mössbauer thick-
ness (for example, at  and  the phase misalignment is ). 

Moreover, at  contribution of the off-resonant forward-scattered field at the 

moment  becomes constructive leading to enhancement in peak pulse intensity [  be-
comes larger than that followed from the analytical model (Fig. 4c)]. At vibration frequency 

 the constructive interference of all the transmitted frequency constituents (of 
all the terms in (26)) results in a global maximum of photon peak detection probability, 

, that occurs at  and  upon . It should be men-

tioned that the optimal quite high Mössbauer thickness,  is experimentally feasible 
since it corresponds to the physical thickness of the stainless steel film . This global 
maximum is shown in Fig.5a by gray spot at the coordinate plane of the Mössbauer thickness, 

, and the initial phase of absorber’s vibration, . As can be seen, deviation of either  or 

 from their optimal values results in decrease of the peak detection probability, 

 (where  corresponds to the top of the highest pulse) 

because of violation of the constructive interference condition.  
A peak detection probability qualitatively similar to the one displayed in Fig.5a could be 

plotted also in the above discussed case of high vibration frequency, , where 
contribution of the phase distortion is negligible, while the constructive interference between the 
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pulses due to vibration and dynamical beats of the -1st spectral component would provide the 
largest value of  at  and . This is because at  the in-

sufficiently attenuated resonant -1st sideband of the photon field spoils the pulse formation. At 
 the -1st sideband is attenuated stronger. As a result, constructive interference of the 

remaining in-phase components leads to formation of the pulses with higher amplitude. Howev-
er, with increasing  the nonresonant photoelectric absorption coefficient  also grows (in the 

considered case ), leading to attenuation of the photon field as a whole and reduc-
tion of the output photon detection probability. The photoelectric attenuation plays the major role 
in formation of maximum photon detection probability at relatively low percentage of the reso-
nant nuclei, i.e., upon the condition . Otherwise (including the case ) the 
above discussed interference can not be neglected. 

The temporal interference plays the major role in formation of “jump” in dependences of 
 and , as well as a kink of function  at  

(Fig. 4). As can be seen from Fig. 4с, starting from frequency , the temporal 
interference between the constituents of the outgoing field (26) is able to produce at the same 
vibration frequency  two maxima,  (filled marks) and  (open marks) in the 

peak detection probability of the output field achieved at the corresponding values  and  
(filled and open marks, respectively, in Fig 4a) as well as  and  (filled and open marks, 

respectively, in Fig 4b). This is illustrated in Fig.5b for  by two grey spots sit-
uated at larger Mössbauer thickness (corresponding to earlier instant  (open blue circle) in 
Fig.4b) and at smaller Mössbauer thickness (corresponding to later instant  (filled red rhomb) 

in Fig.4b). At  one has  under  and  
(filled circles and open rhombs in Fig. 4a-c, respectively). However, maximum peak detection 
probability decreases with increasing vibration frequency. At the same time, the second maxi-
mum in the peak detection probability, achieved at smaller Mössbauer thickness and later times 
(red open rhombs in Fig4), grows. Starting from vibration frequency , smaller 
Mössbauer thickness and later moments provide larger value of peak detection probability and 
become optimal (open rhombs become filled rhombs). At frequencies  maxi-
mum in peak detection probability at high Mössbauer thickness and early times disappears. At 
the coordinate plane of the Mössbauer thickness, , and the initial phase of absorber’s vibra-

tion, , the peak detection probability at this frequency range has a similar look with single grey 

spot as in the case  displayed in Fig.5a. 
The spectrum of the output photon field in the oscillating reference frame under the most 

optimal conditions providing the highest peak detection probability, , at 

, , and , is shown in Fig. 6. The -1st sideband is almost 
fully absorbed (except for the spectral wings corresponding to dynamical beats in time represen-
tation), and only the phase-aligned -2nd, 0th, 1st and 2nd spectral components remain. However, 
the spectral phase of the field (shown by red dashed curve) is noticeably distorted with respect to 
that in Fig. 2 due to interaction of nonresonant components with the absorber transition. The cen-
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tral phases of the -2nd and 0th components are shifted at  from dashed green line. In the 
time domain interference of the remaining spectral components of the photon field leads to for-
mation of the pulse train shown in Fig. 7 with the highest peak detection probability, 

. For chosen vibration frequency the duration of the first pulse is about 6 ns. 
Black dash-dotted curve shows the waveform of the photon at the absorber entrance and clearly 
demonstrates that although the photon field undergoes both resonant and photoelectric absorp-
tion, the peak detection probability of the transmitted photon is more than two times higher, than 
the peak detection probability at the absorber entrance. Red dotted curve, plotted according to 
equation (23), traces the pulse height versus time, , at the same parameter values ( , 

) with accounting for the dynamical beats of the -1st sideband only. Its maximum indi-
cates the highest detection probability under that approximation. It can be seen that taking into 
account the off-resonant spectral components of the forward-scattered field and their temporal 
interference with both pulses due to vibration and dynamical beats of the -1st component leads to 
increase in the highest detection probability and its shift towards photon's front edge. 

The numerically plotted pulses [according to exact formula (18)], and the curve [plotted 
according to approximate formula (23)] roughly tracing their peaks (blue and red lines in Fig. 7) 
allow to track the periodic dependence of peak detection probability of the photon on the initial 
phase of absorber's vibration, shown in Fig. 5. In accordance with the analytical solution, the op-
timal value of the initial phase of vibration is  (where k is an integer 

number). At this value of  the respective kth pulse from the produced pulse train (21), centered 

at , is tuned to maximum of the envelope (23). Deviation of the initial 

phase of vibration from its optimal value leads to a shift of the position of the kth pulse from the 
maximum of the envelope, and reduction of its intensity. However, whether the kth pulse is shift-
ed to the right or to the left, a neighboring (either k -1 or k +1) pulse moves towards the peak of 
the envelope, and after a  shift of the initial phase of vibration it occupies the optimal posi-
tion. 

In order to illustrate the effect of joint optimization of the absorber optical depth and the 
initial oscillation phase, in Fig. 8 we compare the optimized photon waveform, produced at the 
frequency of vibration , to the waveform, plotted for the parameter values 
used in the experiment [19]. The photon waveform in the proof-of-principle experiment [19] (red 
dotted curve) was produced in a stainless steel film with natural abundance, 2.2%, of 57Fe in iron 
fraction. This resulted in strong photoelectric absorption, . As a result the peak pulse 

intensity was ). The only enrichment of the stainless steel absorber by the res-

onant nuclei to 90% in iron fraction results in reduction of photoelectric absorption to  
and increasing the photon transmission as a whole. As a result, the peak pulse intensity also in-
creases to  (green dashed curve). Although the peak pulse intensity in this 
case only slightly exceeds the intensity at front of the incident photon, the enhancement in peak 
pulse intensity due to enrichment is about 3.5 times. However, the pulse contrast, defined as the 
difference between intensities at maximum and the left minimum, is only 

. Optimization of the absorber’s Mössbauer thickness ac-

counting for interference of pulses with dynamical beats and the off-resonant forward-scattered 
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field (blue solid curve), results in (i) enhancement in peak pulse intensity to  and 

(ii) enhancement in the pulse contrast to . Thus, the optimization allows 

producing the true pulses with maximum detection probability of the transformed photon consid-
erably exceeding the maximum detection probability of the photon emitted by the source.  

 
V. γ-RAY PULSE FORMATION VIA FLIP OF PHASE- MISALIGNED SIDEBAND 

 
Up to now we considered the possibilities for transforming the waveform of the incident 

photon into the pulse train via suppression of the anti-phase (phase-misaligned) -1st sideband of 
the photon field by means of its resonant absorption. However, instead of suppression, this side-
band can be made in-phase (phase-aligned) with respect to the other sidebands of the photon 
field via the resonant dispersion of the absorber. In order to do this, one needs to provide π 
phase-shift at the central frequency of the -1st sideband, which implies detuning of its central fre-
quency from the frequency of the resonance by the value 

. (27) 

Similarly to the case of absorption of the -1st sideband, studied above, we performed a numerical 
search for the optimal conditions, maximizing the output photon detection probability (18) after 
transmission through the resonant absorber, which provides π phase-shift of the -1st sideband of 
the photon field. At the frequency of vibration  the optimal parameters are 

, , and . The corresponding waveform of the output 
photon is shown in Fig. 9 by red dashed line along with the optimized waveform for the case of 
suppression of the -1st sideband, plotted by black solid line. The spectrum of the output photon 
field in the vibrating reference frame in the case of π phase-shift of central frequency of the -1st 
sideband is shown in Fig. 10. One may expect that, since instead of deletion of the anti-phase 
sideband of the photon field it is tuned in-phase with the others, the peak detection probability of 
the output photon should increase. This is true starting from the third pulse in the train and for 
the overall detection probability of the output photon (the detection probability within a suffi-
ciently long time-interval), as well as for the case of time-averaging of detection probability over 
the instants of formation of excited state of radiating nucleus [22]. At the same time, the highest 
detection probability, achieved at the peak of the first pulse, is larger in the case of suppression 
of the -1st sideband via the resonant absorption. In order to understand this, one needs to take into 
account the effect of group velocity dispersion on the field of the -1-st sideband. As follows from 
Eqs. (9), (13), and (14), the real part of wavenumber of the photon field strength in the vibrating 
reference frame is 

. (28) 

This leads to the expression for the group velocity, , in the form 

. (29) 
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Since the -1st sideband of the photon field is much closer to the resonance than the others, one 
may take into account the effect of the group velocity dispersion only on this sideband. Thus, for 

the -1st sideband one has , while for the other spectral components 

one can assume  (since in the considered case ). This difference in group veloc-

ities leads to a delay of the field of the -1st sideband with respect to the others by the value 

. In the optimal case considered in Figs. 10 and 11 the delay is 

, which gives a good estimate for the moment of time, at which π phase-shift of the 
-1st sideband provides the biggest increase in the amplitude of the pulses, with respect to the case 
of suppression of this sideband, see Fig. 9. In a sufficiently thick absorber, , the opti-

mal value of detuning satisfies the relation , so that the group delay of the -1st 

sideband is . Thus, the delay of the -1st sideband decreases with increasing ab-

sorber thickness, as shown in Fig. 10, where we plot the analytically calculated envelopes of the 
pulses, produced from the waveform of the incident photon (i) via π phase-shift of the -1st side-
band, Eqs. (18), (27), and (ii) via the resonant absorption of this sideband, Eq. (21). The calcula-
tions were done for  and 150, and optimal values of the other parameters. For all 
the considered values of Mössbauer thickness, the highest detection probability is achieved in the 
case of suppression of the -1st sideband via the resonant absorption. However, the resonant dis-
persion provides an additional tool for manipulation of the photon waveform and allows one to 
get higher average detection probability of the transmitted photon. 

 
VI. CONCLUSION 

 
In this paper we discussed the ultimate capabilities for transformation of the exponentially 

decaying waveform of a Mössbauer 14.4 keV photon from 57Co radioactive source into a regular 
sequence of the shortest pulses with the highest temporal photon detection probability in an opti-
cally deep sinusoidally vibrating 57Fe recoilless resonant absorber. We showed that the shortest 
pulse duration that could be produced by the discussed technique is limited by the highest avail-
able vibration frequency of piezo-transducer and at present be as short as 7.7 ps. The highest 
temporal detection probability of the photon is determined by the optimal conditions (optical 
depth of the absorber, frequency and initial phase of its vibration) providing simultaneously (i) 
the largest amplitude of both incident and resonant-coherently-forward-scattered fields of the 
single-photon wave packet, and (ii) the constructive interference of these fields. In the case of 
stainless steel absorber with 90% enrichment by 57Fe nuclide in iron fraction, the highest achiev-
able peak detection probability of photon at the exit from the absorber is shown to be about two 
times higher than the peak detection probability of photon emitted by the source. It is achieved 
under the experimentally feasible conditions with a stainless steel film of  physical 
length, vibrating with  frequency.  

Manipulating a single-photon waveform can be used for quantum information processing 
as well as for the development of a table-top single-photon source of hard x-ray /γ-ray pulses for 
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the Mössbauer spectroscopy of various non-stationary processes with time resolution up to ten 
picoseconds. 
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Fig. 1. (Color online) (a) Energy diagram in the left side of this figure illustrates a decay of 
57Co nucleus with a half-life of  days from the state |dñ to the state |cñ, followed by a 

cascade decay: |cñ→|bñ and |bñ→|añ with emission of a 122 keV and 14.4 keV photons (shown by 
blue and red lines, respectively). Energy diagram in the right side of this figure shows the quan-
tum transition in 57Fe nucleus from the ground state |1ñ to the excited state |2ñ induced by a re-
coilless 14.4 keV photon.  

(b) Illustration of the experiment [19] for transformation of the exponentially decaying sin-
gle-photon waveform into the regular pulse sequence in the laboratory reference frame (upper 
part) and in the reference frame of the vibrating absorber (lower part). Radioactive source “S” (a 
foil with 57Co radionuclide) emits 14.4 keV recoilless g-ray photon (red pulse). A stainless steel 
foil “A” with 57Fe nuclei vibrates in the laboratory reference frame along the propagation axis 

 according to (3). The source is uniformly moved at velocity Vs to properly shift the carrier 
frequency of the photon with respect to the resonance frequency of the absorber due to the Dop-
pler effect. At the exit from the absorber quasi-monochromatic single-photon wave packet turns 
into regular pulse train. Its waveform is registered by detector “D”. This effect has clear interpre-
tation in the reference frame co-moving with the absorber (lower part). In the absorber reference 
frame a field of the emitted photon looks as a set of quasi-monochromatic components described 
by Eq.(5c). All components are phase-locked except for one antiphased component marked by a 
green color. Due to the uniform motion of the source, the antiphased (green) component is tuned 
to the resonance with an absorber’s transition. At the exit from the absorber it is strongly attenu-
ated and transformed into the dynamical beats. Influence of the absorber resonance on the off-
resonant components in optically deep absorber also leads to their dynamical beats [see 
Eqs.(19)]. Temporal interference of the output spectral components results in a pulsed photon’s 
waveform that is the same in both reference frames (see the text). 
 

1/2 272T !

labz

zlab=za+R sin(Wt+J0) zs=z0+Vs t 

  

zlab 

  

tlab = t-zlab/c 

In
te

ns
ity

 I o
ut

 tlab = t-Zlab/c E s
(t

la
b)

 
tlab = t-Zlab/c E o

ut
(t

la
b)

 

za zsa =z0+Vs t -R sin(Wt+J0) 

    E s
(t

a)
 

ta = t-za/c w 

za 

E o
ut

(t
a)

 
ta = t-za/c w 

b 

A 
S 

D 



 

Fig. 2. (Color online) Fourier transform of the incident photon field, emitted by 57Co radio-
active source, in the reference frame of the oscillating 57Fe absorber. The photon energy is  

= 14.4 keV. The bandwidth of each sideband is  = 1.13 MHz. The frequency of absorb-

er's vibration is  = 40 MHz. The initial phase of vibration is . The initial phase of 

the photon field is . The bold blue solid line corresponds to the squared modulus of spec-
tral amplitude of the field, while bold dashed red line shows its spectral phase. The phases at the 
central frequencies (central phases) of the (a) -2nd and -1st, (b) 0th, and (c) 1st and 2nd spectral 
components are shown by (a) orange, (b) black, and (c) lavender asterisks, respectively. The cen-
tral phases of the -2nd and 2nd sidebands, shifted by -2π, are shown by black circles. The central 
phases of the -2nd, -1st, 0th and 2nd spectral components are aligned along the light dash-dotted 
cyan horizontal line, while the central phases of the -2nd, 0th, 1st and 2nd spectral components are 
aligned along the light dash-dotted green diagonal line. 
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Fig. 3. (Color online) Time dependence of the photon detection probability, , 

normalized to the peak detection probability of the photon at the absorber entrance, , (red 
pulses) for the vibration frequency 970 MHz corresponding to the analytical solution (21) that in 
this case practically coincides with general solution (18) at this vibration frequency. Tops of 
pulses are described by relation (23a). Red dashed curve is the pulse envelope, , (23). 
Black dashed curve is the waveform of the incident photon. Green curve in a lower panel is the 
dynamical beats of the -1st sideband of the photon field (in the vibrating reference frame) plotted 
according to (22) for m=-1. Pulse duration is about 190 ps. Maximum of pulse height and the 
first hump of dynamical beats occur at  and , respectively. 
 

 

Fig. 4. (Color online) Vibration frequency dependencies of the optimal values of (a) Möss-
bauer thickness of the absorber, , and (b) the moment of formation of the highest pulse, 

, as well as (c) of the corresponding intensity of the highest pulse, , shown by 
filled marks at discrete frequency values with step multiple to 5 MHz. Blue and red filled and 
open marks are numerical optimization of Eq. (18), red dotted line is optimization (25) of the 
analytical solution (23). At  two values,  and  in (a) as well as 

 and  in (b) are shown by filled and open marks, respectively. These values correspond to 

the maximum peak pulse intensity,  [the respective filled marks in (c)] and to the lower 
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maximum,  [the respective open marks in (c)] which appears at frequency 

 and disappears at (having values out of the displayed re-
gion). For example, at frequency  the first (from the left) filled red rhombs in 

(a) and (b) label values  and , respectively corresponding at this frequen-

cy to the maximum peak pulse intensity  [also labeled by the filled red rhomb in 

(c)]. The lower value, , in (c) corresponds to  in (a) and  in (b) 
and is labeled by open circles. More detailed discussion is given in the text and in Fig. 5b.  

 

 

Fig. 5. (Color online) Peak detection probability of the photon, normalized to peak detec-
tion probability at the absorber entrance,  (where  corre-

sponds to the top of the highest pulse) versus the Mössbauer thickness, , and the initial phase 

of absorber’s vibration,  at the determined value of . The calculations are based on Eq. (18) 

where the -1st sideband of the photon field is tuned to the resonance (  and ). 
The frequency of vibration is  for (a) and  for (b). The max-

imum value for (a) is  achieved at ,  and 

. In the case (b) there are two maxima:  

(see also Fig.4c, the first filled red rhomb) is achieved at  (see also Fig.4a, the first 

filled red rhomb), , and  (see also Fig.4b, the first filled red 

rhomb); as well as  (see also Fig.4c, the first open circle), 

achieved at  (see also Fig.4a, the first open circle), , and 

 (see also Fig.4b, the first open circle).  
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Fig. 6. (Color online) The same as in Fig. 2, but after transmission of the photon through 
the resonant absorber tuned to the resonance with the -1st sideband of the photon field, under the 
global optimum conditions: , , , and . 
The spectrum corresponds to blue curve in Fig. 7. 

 
 

 

Fig. 7. (Color online) Time dependence of the photon detection probability normalized to 
the peak detection probability of the photon at the absorber entrance, , corresponding to the 
spectrum in Fig. 6. Blue solid curve shows the general solution (18). Pulse duration is about 6 ns. 
Black dash-dotted curve is the waveform of the incident photon. Red dotted curve shows the 
analytical solution for the pulse envelope (23) at the same parameter values but accounting for 
the dynamical beats of the -1st sideband only. 
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Fig. 8. (Color online) Time dependence of detection probability of γ-ray photon transmit-
ted through vibrating stainless steel foil. The frequency of vibration for all curves is 

. Red dotted curve corresponds to the parameter values used in the experi-
ment [19]: , , natural abundance, 2.2%, of 57Fe in iron fraction. Green dashed 
curve is plotted at the same parameter values but for 90% of 57Fe in iron fraction. Blue solid 
curve is the result of optimization: 90% of 57Fe in iron fraction, , . The ab-
sorber is tuned to resonance with the -1st sideband of the photon field in the oscillating reference 
frame. Black dash-dotted curve is the waveform of the incident photon at the absorber entrance. 

 

 

Fig. 9. (Color online) Output photon waveforms in the cases of (i) suppression of the -1st 
sideband of the photon field via its resonant absorption (black solid line) and (ii) π phase-shift of 
the  -1st sideband via the resonant dispersion (red dashed line). The frequency of vibration is 

. Highest excess of the red curve over the black one is achieved for the pulse 
centered at . 
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Fig. 10. (Color online) The same as in Fig. 2, but after transmission of the photon through 
the resonant absorber. The absorber parameters: , , and  are 
chosen in such a way that the photon field at the central frequency of the -1st sideband acquires a 
π phase-shift. All (five) the considerably nonzero spectral components of the output photon field 
are phase-aligned. 

 

 

Fig. 11. (Color online) Envelopes of the pulse trains, corresponding to the output photon 
waveforms, produced via absorption of the -1st sideband of the photon field (solid lines) and via 
its π phase-shift (dashed lines). The frequency of absorber’s vibration is . Red 
color and stars correspond to the curves plotted for , blue color and circles indicate the 

curves, plotted for , black color and squares mark the curves, corresponding to 
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