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A one-dimensional discrete lattice of dimers is known to possess topologically protected edge
states when inter-dimer coupling is stronger than intra-dimer coupling. Here, we address richer
topological properties of photonic superlattices having arbitrary number of elements in each unit cell.
It is shown that the superlattice provides tunable number of topologically protected edge/interface
states depending on certain restrictions on intra- and inter-dimer couplings maintaining inversion
symmetry of the lattice. Simultaneous and stable propagation of multiple topological interface
states, their interference pattern and stable oscillation are reported. As a practical application, the
configuration can be used for topologically protected mode-division multiplexing through a narrow
route in photonic devices.

Quest for new artificial materials and structures with
non-trivial properties is at the heart of material science,
optics and photonics research for continuously driving
modern technology forward. The notion of topology and
symmetry are most powerful tools in this endeavor. Both
play a central role not only to understand elementary
carrier particles and quasi-particles in natural systems,
but also to tailor their properties in synthetic materi-
als. In recent years, different topologically robust phases
in various dimensions are discovered in electronic [1, 2],
and engineered photonic [3, 4] systems. A conceptu-
ally simple one-dimensional (1D) topological system is
the Su-Schrieffer-Heeger (SSH) model [5], initially intro-
duced to explain charge transfer in polymer of acetylene
molecules. This model features two distinct topological
phases: a trivial phase characterized by a fully gapped
energy spectrum, when inter-dimer coupling is less than
intra-dimer coupling; and a non-trivial phase charac-
terized by strongly localized zero-energy edge state ly-
ing within band gap, when couplings arrangement is
reversed [6]. The most important feature, however, is
that the edge state is topologically protected, being ro-
bust against various forms of disorder. In photonics and
plasmonics, the SSH chain can be implemented with
locally coupled cavities or waveguides with two alter-
nating tunneling constants. Consequently, the topologi-
cal zero mode in 1D has been theoretically investigated
widely [7–20], and observed in recent experiments [21–
27] with various systems either at the edge of an array
or at the domain wall of two arrays with different dimer-
izations.

In this article, we theoretically address superlattices
with complex unit cell structures and reveal the si-
multaneous existence of topologically protected multiple
edge/interface states. Contrary to a lattice of dimers,
which is always inversion symmetric and topological,
a multi-partite lattice can be non-symmetric and non-
topological. It is shown that the Zak phases of the
corresponding Bloch bands are quantized provided the
coupling coefficients are such that the superlattice is
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inversion symmetric; failing to which Zak phase takes
arbitrary values [28, 29]. In a multi-band superlattice
the topological properties of a particular band gap is
determined by sum of the Zak phases (mod 2π) of all
occupied bands below this gap [10, 30]. Based on an-
alytical and numerical investigations on unit cells with
different number of elements, we find that all the band
gaps of a topological superlattice are non-trivial if inter-
cell coupling is greater than some particular value at
which the largest band gap in the system closes. In this
case, robust localized edge states emerge inside all the
topologically non-trivial gaps. Furthermore, the num-
ber of topological states are shown to be controlled by
only tunning the inter-cell coupling parameter, when
intra-cell couplings are kept unchanged. Because of the
“particle-hole” symmetry of the system, topological edge
states can be created (annihilated) in pairs for non-
zero energies. Beam dynamics of multiple edge states,
characterized by propagation constants residing in dif-
ferent band gaps, shows stable light propagation with
breather like oscillation. Note that breathing oscilla-
tion of photonic Bloch waves—the Bloch oscillation—in
a non-topological system was observed earlier in engi-
neered waveguide array [31, 32]. Here we report similar
oscillatory dynamics of non-Bloch states (i.e. localized
edge states) in a topological waveguide array interface.
The theoretical model, presented here, promises a prac-
tical application in topologically protected and robust
mode-division multiplexing in photonic networks and
devices through multiple orthogonal and robust edge-
channels available in the system.

Multi-band superlattice. Consider a 1D discrete and
periodic coupled system of (M × J) elements placed
in M unit cells each composed of J components
[Fig. 1(a)]. Corresponding Hamiltonian in the nearest-
neighbor tight-binding approximation is given by

H =

M∑

m=1

J−1∑

j=1

tja
†
m,jam,j+1 + τa†m,Jam+1,1 + h.c. (1)

where a†m,j (am,j) is the Bosonic creation (annihilation)
operator at the j-th site in the m-th unit cell, tj are
the intra-cell tunneling amplitude from site j to adja-
cent site j + 1, and τ is the inter-cell tunneling ampli-
tude. Here, tj and τ are real and dimensionless, while
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onsite potential is constant (assumed to be zero for sim-
plicity). In photonics, the elements of a multipartite
lattice can be considered as engineered waveguides or
cavity resonators. However, a wide variety of other phys-
ical phenomena e.g. in ultracold bosons in optical lat-
tice [33], sound propagation in acoustics network [34],
qubit transfer in a quantum network [35] etc, can also
be modeled by equation (1). For a given energy, β, the
stationary solution of the system is sought in the form

|ψ(t, β)〉 = e−iβt
∑
m,j

Am,j a
†
m,j|0〉, where |0〉 is the vac-

uum with zero amplitude in all the sites. In order to ob-
tain the site amplitudes Am,j , we substitute the expres-

sion of |ψ〉 in the Schrödinger equation i∂|ψ〉∂t −H |ψ〉 = 0,
and obtain the following set of equations written in a
matrix form

HA = βA, (2)

where A = [A1, A2, ..., AMJ ]
T with An ≡ Am,j =

〈m, j|ψ(0, β)〉 such that n = (m − 1)J + j. H is a
(MJ ×MJ) tridiagonal matrix with diagonal elements
are all zero and principal off-diagonals are formed by
the band (t1, t2, ..., tJ−1, τ). The discrete spectrum, β,
of a finite system can be obtained using the numerical
diagonalization technique with an open boundary con-
dition: A0 = AMJ+1 = 0 i.e. energy exchange out-
side the lattice is not allowed. For J = 1 and 2, our
model reduces to widely studied homogeneous lattice
and topological Su-Schrieffer-Heeger lattice model, re-
spectively. Of interest is the superlattice with J > 2
and coupling parameters which are symmetric with re-
spect to the center of the unit cell. Surprisingly, in this
case, the spectrum of the system appears in two dis-
tinct forms (as shown in figure 1(b-g) for particular ex-
amples): spectrum with (without) bound states inside
all the (J − 1) energy gaps when the inter-cell coupling
τ is greater (less) than some particular values depend-
ing on intra-cell couplings (details are described below).
Furthermore, the states deep in the gap are found to
be localized at the edges of the lattice (an example is
shown in fig 2(e) for J = 4). The topological origin for
the appearance of such edge modes is explained in the
following.

Topological characterization. In order to better un-
derstand the topological properties of the superlattice,
we perform Fourier transform on the creation and an-
nihilation operators: am,j =

∑
k

eikamãk,j/
√
M , for all j

and m. Here a is the lattice constant, and ã†k,j(ãk,j) is

the plane wave creation (annihilation) operator with the
crystal momentum k ∈ [−π/a, π/a]. The Hamiltonian
in the reciprocal space, therefore, reduces to

H̃ =
∑

k

J−1∑

j=1

tj ã
†
k,j ãk,j+1 + τeika ã†k,J ãk,1 + h.c. (3)

which can be cast into the convenient form H̃ =∑
kATH(k)A, where A = [ãk,1, ..., ãk,J ]

T ; the kernel H
represents the Bloch Hamiltonian of the system and a
central object of investigation for topological properties

FIG. 1: (a) A schematic of a photonic superlattice with J el-
ements in each unit cell. tj and τ are intra-cell, and inter-cell
couplings, respectively. Eigenspectrum, β, of superlattices
with J = 3, 5 and 6 elements in a unit cell are shown in (b,c),
(d,e) and (f,g), respectively. Emergence of bound states in-
side the energy gap are seen in (c,e,g). The parameters chosen
are (b) t1 = t2 = 0.2, τ = 0.1; (c) same as in (b) but τ = 0.5;
(d) t1 = t4 = 0.2, t2 = t3 = 0.15, τ = 0.05, (e) same as in (d)
but τ = 0.5; (f) t1 = t5 = 0.2, t2 = t3 = t4 = 0.15, τ = 0.05;
(g) same as in (f) but τ = 0.5.

of the lattice. In this case, the band structure and corre-
sponding normalized Bloch wave functions are given by
H(k)|uj(k)〉 = βj(k)|uj(k)〉. The topological properties
of a band gap in a 1D system is characterized by the
sum of Zak phases of all the isolated bands below the
corresponding band gap [30, 36]:

γ =
∑

j∈occ.
γj , γj = i

∫ π/a

−π/a

dk 〈uj(k)|
d

dk
|uj(k)〉. (4)

Here, sum is considered over all occupied bands below a
particular band gap, and γj (mod 2π) is the Zak phase
of the isolated j-th band. The topological properties of
a particular band gap is therefore not affected by the
upper bands [10]. We have found that either 0 or π
quantization of the Zak phase is possible only when the
system possesses inversion symmetry; as first pointed out
by Zak [28, 29], the relationship between quantization of
γj and the quantization of the band center are intimately
connected. When there is no such symmetry the values
of γj is found not to quantize and takes arbitrary values
[a numerical example is shown below in Fig. 2(g)].

In a generic case, it is straightforward to show that the
Bloch Hamiltonian H is time-reversal symmetric, i.e.,
TH(k)T−1 = H∗(−k) = H(k), whenever all the cou-
pling amplitudes are real. While it is inversion symmet-
ric, i.e., ΠH(k)Π−1 = H(−k), provided that tj = tJ−j
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FIG. 2: Topological properties of a superlattice with four elements in a unit cell. (a) and (c) show the band structures together
with corresponding Zak phases for a t1t2t1τ lattice with two different sets of parameters. The first and third gaps in (a), and
all the gaps in (c) are topologically non-trivial. (b) and (d) show discrete spectra corresponding to the band structures of
(a) and (c), respectively. These spectra show emergence of edge states inside respective topologically non-trivial gaps. In (e),
mode intensities |An|

2, for the states indicated by arrows in (d), are shown. The states are exponentially localized in 1,2, and
4; whereas state at 3 is extended in bulk. The parameters chosen are t1 = 0.2, t2 = 0.15, for all the figures in (a· · · e); while
τ = 0.24 in (a,b) and 0.5 in (c,d,e), respectively. (f) Shows the spectra of a topological superlattice when inter-cell coupling
τ is tuned by keeping intra-cell couplings t1/2 fixed. Note that, as mentioned in the text, first and third band gaps close

when τ = t2 = 0.15, while middle gap closes when τ = t21/t2 = 0.27. In this case, quantization of Zak phases is observed as
shown [in the right-hand side panels of (f)] for all the bands. (g) Same as in (f) but for a non-topological (t1t2t3τ ) lattice with
anisotropic coupling parameters (t1 = 0.3, t2 = 0.1, t3 = .45) i.e. no inversion symmetry in the system. In this case, although,
bound states inside gaps are visible, but they are not topological as corresponding Zak phases are not quantized. The band
inversion, as a result of band gap closing and reopening, is not observed in (g).

for all j; here Π = σx ⊗ σx is the anti-diagonal matrix
with non-zero entries as 1 and plays the role of an in-
version operator [6]. Remarkably, all the band gaps in a
system with inversion symmetry are found to be topo-
logically non-trivial (trivial) i.e. sum of γj (mod 2π)
for all bands below that gap is π (0) if τ > τmax({tj})
(τ < τmin({tj}). Here, τmax and τmin are the values
of τ , depending on intra-cell coupling parameters {tj},
for which the largest and smallest band gaps in the sys-
tem disappears, respectively. In general, the values of
τmax/min can be evaluated numerically when J is large.
However, in order to get analytical insight, below we
elaborate our findings for a superlattice with four ele-
ments in a unit cell (J = 4).

For J = 4, the Bloch Hamiltonian is given by

H(k) =




0 t1 0 τe−ika

t1 0 t2 0
0 t2 0 t3

τeika 0 t3 0


 , (5)

which satisfies inversion symmetry in the following two
coupling schemes: t1t1t1τ and t1t2t1τ . We consider the
latter case for the following discussion. The dispersion

relation, in this case, is given by

cos ka = f(β) =
β4 − (2t21 + t22 + τ2)β2 + t41 + t22τ

2

2t21t2τ
,

(6)
which gives four energy bands, as shown in figure 2(a,c).
The band edges are obtained (after solving |f(β)| = 1)
as

β±
1 = [±t2 − (T + τ)]/2, β±

2 = [t2 ± (T − τ)]/2,

β±
3 = −β∓

2 , β
±
4 = −β∓

1 ,
(7)

where T =
√

4t21 + (t2 − τ)2. Hence, the energy gaps

∆β = |β+

j −β−
j+1| between j-th and (j+1)-th bands are

given by

∆β12 = ∆β34 = |t2 − τ |, ∆β23 = |t2 + τ − T |. (8)

This shows that the first and third band gaps close
when τ = t2, while second gap closes for τ = t21/t2.
In this case, we found two extreme cases: when τ >
max(t2, t

2
1/t2), the Zak phases for the isolated band are

γ1 = γ4 = π and γ2 = γ3 = 0, implying that all the three
band gaps are topologically non-trivial. While all the
gaps are topologically trivial, when τ < min(t2, t

2
1/t2),
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because in this case Zak phases for all the isolated bands
are quantized to zero. For τ in the intermediate values
between these two extreme cases, the number of topolog-
ically non-trivial band gaps is less than three. Hence, the
number of topological states can be controlled by tun-
ning the inter-cell coupling parameter when all other pa-
rameters are fixed. Particular examples of these findings
are illustrated in Fig. 2(a-e) together with numerically
evaluated spectrum and edge states; while the full spec-
trum versus a parameter sweep is shown in Fig. 2(f,g)
for both a topological and a non-topological (i.e. with-
out inversion symmetry) lattice. In the former case, the
band inversion as a result of band gap closing and re-
opening is observed. This phenomena of band inversion
is absent in the latter case. As shown in Fig. 2, the band
structures (and spectra) appear to be mirror symmetric
with respect zero energy i.e. β(k) = −β(k), as a conse-
quence of the particle-hole symmetry of the Hamiltonian:
ΣyHΣ−1

y = −H∗, where Σy = σx ⊗ σy (the particle-hole
symmetry relation holds provided H satisfies inversion-
symmetry condition mentioned above). This symmetry
also explains the simultaneous appearance of two edge
states at the same edge for ±β with β 6= 0 [36]. There-
fore, the edge states, in this case, can always be cre-
ated/destroyed in pairs for non-zero energies in a super-
lattice with J > 2.

Based on similar analytical and numerical investiga-
tions for J = 1, · · · 8, we conjecture here that above
mentioned results hold in general cases. The examples
shown earlier in Fig. 1(b,d,f) are, in fact, topologically
trivial; whereas those shown in Fig. 1(c,e,g) are topolog-
ically non-trivial. Owing to the topology, two band gaps
of different topological properties can not be adiabati-
cally transformed one into other without creating a edge
state inside the non-trivial gap. Consequently, topologi-
cally protected interface states can be induced in all the
topologically non-trivial band gaps when two lattices of
different topological properties are combined to form an
interface (see Fig. 3 for examples).

Dynamics of interface states propagation. As an ap-
plication of the theory we have simulated the dynam-
ics of the interface states propagation in photonic ar-
ray composed of waveguides evanescently coupled to
each other. Light evolution in such a structure is gov-
erned by the coupled-mode equation which is equivalent
to the Schrödinger equation mentioned above [37, 38].
The propgation distance z here plays the role of time
in Schrödinger equations, and the spectral parameter β
plays the role of a normalized propagation constant. The
array supermode is described in terms of the individ-
ual waveguide mode amplitudes, and the details of the
field between the waveguides is encoded into a single
parameter—the coupling constant. Couplings between
waveguides can be achieved when two waveguides are
brought sufficiently close together that the evanescent
fields overlap. By lithographic technique the separation
between waveguides, and hence the coupling modulation,
can be precisely controlled [27]. As shown schematically
in Fig. 3(a), a topological interface can be created by
combining two waveguide systems of different topolog-

FIG. 3: (a) A schematic of two evanescently coupled waveg-
uide superlattices of different topological band gap proper-
ties. In the left-hand side panels of (b), we have shown the
light intensity evolution, |An(z)|

2, through the interfaces of
such superlattices when each unit cell contains J = 1, · · · , 5
elements, respectively. A single site at n = 25 is excited in
all these cases. Corresponding propagation-constant spectra
are shown at the right-hand side panels. Linear dispersion
and propagation of one interface state are seen when J = 1
and 2, respectively. For J = 3, 4 and 5, stable propagation
of 2, 3 and 4 interface states are seen. The particular cou-
pling arrangements, used to create topological interfaces, are
shown over the respective panels of intensity evolution; right-
(left-) hand side represents topologically non-trivial (trivial)
coupling schemes. The parameters for J = 1, 2 are τ = 0.5
and t1 = 0.2. For J = 3, 5, 4 we considered same set of
parameters as in Fig. 1(c),(e) and 2(d), respectively.

ical properties [e.g., in the Fig. 3(a), waveguide array
in the right (left) represents a topologically non-trivial
(trivial) array]. Light propagation in such interfaces
is simulated by directly integrating the coupled-mode
equation: iȦ(z) + HA(z) = 0, with initial condition
An(0) = δnn′ , i.e. light injection at the interface site
n′. The solution have following succinct form

An(z) =
∑

ℓ

[
eiHz

]
nℓ
Aℓ(0). (9)
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FIG. 4: Robustness against disorder. (a) Shows the coupling
amplitudes of an unperturbed waveguide lattice for which the
beam dynamics was shown in Fig. 3(b) for J = 4. (c) and
(d) shows the robust beam dynamics when random coupling
disorder is added to the lattice; the disorder strengths are
shown in (b). In (c) a single site at n = 25 is excited, while

in (d) an initial Gaussian beam An(z = 0) = e−(n−25)2/3 is
considered. (e) shows the propagation-constant spectrum for
the lattice with added disorder.

Figure 3(b) shows the intensity evolutions, |An|2, in the
superlattices composed of J = 1, 2, 3, 4 and 5 elements.
For J = 1, which is always topologically trivial, well
known linear dispersion is observed. For J = 2 (corre-
sponds to the widely studied SSH lattice) propagation of
one interface mode is seen. On the other hand, for J > 2,
stable interference pattern is seen, which is the signa-
ture of simultaneous propagation of multiple interface
states corresponding to different propagation constants.
The interface states form a breather like oscillation while
propagating in space (similar phenomena are observed
because of soliton-soliton interaction in non-linear op-
tics [39]). Note that there is no nonlinearity present in
the system under consideration; the formation of sta-
ble breathers is due to interference of topological linear
modes of different propagation constants.

It is worth mentioning here that the oscillation of op-
tical waves can also appear in non-topological and linear
lattices—e.g., the Bloch oscillation—which was observed
in engineered waveguide array with a linearly increasing

effective-index gradient across the array [31, 32]. How-
ever, in our case the stable oscillation can be observed
with zero-refractive index modulation i.e. with waveg-
uides having identical individual propagation constant.
A single site excitation, in case of the Bloch oscillation,
spread symmetrically over the whole array before refo-
cusing into the initial guide. In contrast, in the topo-
logical array the energy of the excitation remains con-
fined within few sites at the interface [as shown in the
Fig. 3(b)]. This is because, in the later case, the states
inside different band gaps are predominantly localized at
the interface; while the excitation energy, in the former
case, is distributed over the Bloch states residing in the
entire bulk.

Finally, we have verified the stability, of interface
states propagation, against moderate disorder in all the
cases investigated in figure 3(b). In particular, the ro-
bustness against random disorder (of strength 0-15% of
t2) is illustrated in Fig. 4 for a superlattice with J = 4.
Stable propagation is observed for both a single site exci-
tation [Fig. 4(c)] and a Gaussian wave packet [Fig. 4(d)].

In summary, we have put forwarded an elegant
approach to create tunable number of topologically
protected edge/interface states in a superlattice consists
of complex unit cell structures with suitably coupled
elements respecting inversion symmetry. The coexis-
tence of multiple topological states, their controllability
(by manipulating coupling amplitudes), and stable
propagation dynamics, addressed here, can be used
for ‘topological’ mode division multiplexing for a
single-wavelength carrier wave through a narrow route
in photonic devices. The breather like oscillations
reported here can be observed in realistic experiments
on silicon-on-insulator waveguide platform by using
ultrafast optical metrology. As a final note, despite
its conceptual simplicity, the model can be used for a
description of diverse 1D topological phenomena related
to electronic, plasmonic, polaritonic, mechanical, and
acoustic systems and can be generalized for energy
non-conserving (i.e. non-Hermitian) systems.
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