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The nonlinear Schrödinger equation (NSE) provides a powerful tool for the analysis of 

ultrafast nonlinear-optical dynamics, including a vast class of optical solitons. Here, we show, 

however, that the photon-number integral of the NSE differs from the physical number of 

photons, conserved by more general field evolution equations. This difficulty is traced to the 

optical shock term, which is dropped in the NSE, making nonlinear coupling in NSE-based 

models frequency-independent and leading to unphysical predictions for ultrabroadband, 

octave-spanning field waveforms.  

 

 

I. INTRODUCTION 

The photon number is one of the key parameters in the quantum treatment of optical fields. In 

quantum optics, photon-number analysis is central to the understanding and characterization 

of a vast class of quantum states of light [1, 2]. In nonlinear optics, such analysis helps 

identify fundamental conservation laws [3, 4], providing important physical insights into the 

limitations on frequency conversion efficiency in optical parametric amplification, as well as 

in sum- and difference-frequency generation processes [5]. 

Although the number operator is consistently defined for a broad class of quantizable 

fields [6], the photon number in its most physically transparent form is defined as a product 

of operators creating and annihilating photons of well-defined frequency [1, 2]. This 

definition of the photon number is broadly accepted for the analysis of a vast variety of 

quantum-optic phenomena, including squeezed light and quantum entanglement, as well as 

quantum information processing, storage, and communication schemes [7 - 9]. 



Ultrafast optical physics, however, operates with broadband photon packets [10, 11]. 

Nonlinear-optical interactions of ultrashort laser pulses often involve multiple energy-

exchange pathways coupling photon packets that belong to fundamentally inseparable 

spectral--temporal modes of the optical field [12, 13]. Spectral and temporal transformation 

of optical field waveforms with octave- and multioctave-spanning spectra, referred to as 

supercontinuum radiation [14 - 17], is one of the most prominent examples of nonlinear 

dynamics of this type. With energy exchange occurring in unresolved spectral--temporal 

modes of the classical field, standard photon-number conservation laws become inapplicable. 

This leaves a disconcerting no man's land in the realm of quantum nonlinear optics where the 

concepts and machinery of quantum physics would be needed most to help extend concepts 

and methods of ultrafast lightwave technologies to the rapidly growing and highly promising 

area of single-photon nonlinear optics [18 - 21]. 

Here, we focus on photon-number conservation in the nonlinear wave dynamics of 

broadband optical field waveforms and their quantum-field counterparts -- broadband photon 

packets. Within a vast parameter space, the classical-field evolution of such waveforms is 

described by the nonlinear Schrödinger equation (NSE). The quantized version of the NSE 

provides a powerful tool for the description of a broad variety of quantum nonlinear-optical 

processes. A vast class of physically significant and practically important phenomena in 

ultrafast nonlinear optics, including a broad variety of soliton regimes and elementary self-

phase modulation (SPM) scenarios, are adequately described in terms of NSE field-waveform 

solutions with symmetrically broadened spectra and symmetric pulse shapes. Here, we show, 

however, that the spectral and temporal symmetry of NSE solutions is inconsistent with 

simultaneous energy and photon-number conservation. We will also demonstrate that the 

photon-number integral of the NSE differs from the physical number of photons, conserved 

by more general field evolution equations. This difficulty is traced to the optical shock term, 

which is dropped in the NSE, making nonlinear coupling in NSE-based models frequency-

independent and leading to unphysical predictions in the case of ultrabroadband, octave-

spanning field waveforms. 

 

II. FIELD EVOLUTION EQUATIONS 

For the sake of definiteness, we focus here on the nonlinear dynamics of broadband field 

waveforms in optical fibers. With the guided-wave geometry in mind, we represent the 

Fourier transform of the field as [3, 22] 



( ) ( ) ( )zAyxFzyxE ,,,,,,  = ,         (1) 

where x and y are the transverse coordinates, z is the longitudinal coordinate, ω is the 

frequency, and F(ω, x, y) is the dimensionless function describing the transverse field profile 

found by solving the transverse part of the wave equation. 

A generic frequency-domain equation for the unidirectional evolution of an ultrashort 

optical pulse in a medium with a third-order optical nonlinearity is then written as [22, 23] 
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Here, β(ω) is the propagation constant, 0 is the central frequency of the input laser field, 

( ) ( )  2232 c= , ( ) ( ) ( ) ( )  dzAtfztAFP
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,,ˆ  −= , A(θ, z) is the time-domain 

field amplitude, found as a Fourier transform of A(ω, z), χ(3) is the pertinent third-order 

susceptibility,  •F̂  is the Fourier transform operator, c is the speed of light in vacuum, 
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,, , ( ) ( ) ( ) ( ) Rf −+= 1 , R(θ) is the Raman 

response function, and  and 1 ‒   are the fractions of the instantaneous (Kerr) and delayed 

(Raman) nonlinearity in the overall nonlinear response. The Raman effect involves inelastic 

scattering of light, which does not conserve energy, as some energy of the optical field is 

spent on the excitation of a Raman-active vibration.  

When transformed to the time domain, Eq. (2) leads to [22, 23] 
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To reduce the full field evolution equation (3) to the NSE [22], 
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one needs to truncate the sum in k on the left-hand side of Eq. (3) to the k = 2 term, require 

the nonlinearity to be purely instantaneous,  = 1, and set Ŝ = 0. The truncation of the sum in 

k in Eq. (3) is equivalent to neglecting high-order dispersion effects. The  = 1 condition 

implies that the Raman effect is ignored and the entire nonlinear response is assumed to be 



instantaneous, which is not always justified [24]. Finally, setting Ŝ  = 0, we ignore the 

frequency dependence of the nonlinear coupling constant and neglect shock-wave effects. 

Spectrally symmetric broadening is an important feature that is common of a broad 

class of well-known solutions of Eq. (5), including a family of celebrated soliton solutions 

[22, 25, 26]. Specifically, for the fundamental soliton solution, a hyperbolic secant pulse 

shape translates into a symmetric spectrum of the same, hyperbolic secant shape [22, 27]. In 

soliton breathing scenarios [22, 25, 26], optical waveforms display signature cycles in both 

the time and frequency domain. As a part of this oscillatory dynamics, the stage of pulse 

compression and spectral broadening is followed by pulse stretching and spectral 

compression, in which the pulse exhibits its multisoliton structure.  

 

III. PHOTON-NUMBER CONSERVATION  

When the dispersion term is dropped in Eq. (5), the NSE is reduced to a canonical SPM 

equation. This equation dictates a signature symmetric spectral broadening of a laser pulse [3, 

4, 22], whose bandwidth undergoes an unbounded growth as a function of the laser peak 

power, optical nonlinearity, and the propagation distance with no limits from above or below. 

Quite disconcerting, there is nothing in this theory that would prevent the low-frequency 

wing of the spectrum from reaching the zero frequency ‒ a big electrodynamic no-no. 

Notably, when applied to single-cycle field waveforms, the NSE (5) also predicts symmetric 

spectra that extend all the way down ‒ and even beyond ‒ the zero frequency.  

Spectral blue shifting related to pulse self-steepening has long been identified as a key 

effect that prevents this long-wavelength catastrophe in SPM-induced spectral broadening. 

Helpful approximate analytical expressions have been derived for the bandwidths of SPM-

broadened spectra [28], offering important physical insights into SPM regimes that yield 

octave-spanning spectra and showing that the zero frequency is happily avoided. 

Here, we focus on the fundamental, conservation-law aspects behind this blue shifting 

effect whereby low frequencies in nonlinearity-broadened octave-spanning spectra are 

suppressed and the zero frequency is avoided. To this end, we examine the classical photon-

number constant of motion of the field-evolution equation (2), as identified by Blow and 

Wood [23],  
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To relate Eq. (6) to photon-number conservation, we follow a standard field-

quantization procedure, treating the spectral field amplitude A(ω, z) in a waveguide mode 

with an effective refractive index neff as an operator [7, 9]  

( ) ( )za
cn

zA
eff

,ˆ,ˆ

21


















=


,          (7) 

where ( )za ,ˆ   is the annihilation operator such that  
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.         (8) 

The time-domain annihilation operator is defined through a Fourier transform 
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We also introduce the time- and frequency-domain photon density operators, 

( ) ( ) ( )zazazn ,ˆ,ˆ,ˆ †  =           (10) 

and  
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Photon density operators defined by Eqs. (10) and (11) have the units of time and 

frequency, respectively. We can now combine Eqs. (6), (7), and (10) to find 
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We have kept the 1/σ factor in Eq. (12) for the sake of accuracy. However, in most 

cases, this factor can be safely dropped from the constant of motion of Eqs. (6) and (12), as σ 

is usually a very weak function of the frequency. For a generic Gaussian waveguide mode, σ 

is plain constant. 

Provided that the frequency dependence of σ is negligible, Eq. (12) reduces to 
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We can see now that, while the single-frequency photon density operator ( )zn ,ˆ   is not 

a constant of motion of Eq. (2), the integral of this operator over the entire spectrum is.  

It is instructive to compare this result with photon-number conservation in NSE-based 

models. The NSE Hamiltonian 0Ĥ  is known to commute with the photon number operator 

0N̂  [29]. As a consequence, 0N̂  is a constant of motion of the input‒output Heisenberg 

evolution equation  
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We are going to show now that the photon number operator 0N̂  that the NSE 

Hamiltonian 0Ĥ  commutes with is different from the photon number operator N̂  conserved 

by the full field evolution equation (2). Unlike Eq. (2), the NSE [Eq. (5)] sets Ŝ  = 0. In the 

spectral representation, this implies that the frequency variable ω in the expression for Γ in 

the field evolution equation is replaced by the central frequency of the laser pulse ω0. With 

such a replacement, the factor ( ) ( )
effcn 32=  in Eq. (2) becomes 
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subtract this product from its complex conjugate, and integrate the resulting equation over the 

entire bandwidth of the laser pulse to find 
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When σ can be considered frequency-independent, Eq. (15) becomes 
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In quantum terms, Eq. (16) translates into 
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where  
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is the photon density and the field is quantized such that  
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Unlike the field-quantization procedure defined by Eqs. (7) - (9), field quantization (19) 

isolates the central frequency ω0 as a constant pre-integral factor. With such a quantization, 

the pulse-energy operator is expressed as 
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We see that, nominally, the NSE conserves both energy and the number of photons. 

However, the photon number 0N̂  conserved by the NSE is different from the photon number 

N̂  corresponding, in the classical domain, to the physical number of photons 
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conserved by the full field evolution equation (2). Instead, as can be seen from Eq. (20), the 

NSE conserves the ratio of the pulse-energy integral of motion over 0 , with  the photon-

number conservation equation in NSE-based models, 0ˆ
0 = zN , being a trivial 

consequence of energy conservation, 0ˆ
0 = zE . In other words, photon-number 

conservation in NSE-based models operates on an assumption that all the photons have the 

same frequency ω0.  

 

IV. MANLEY‒ROWE RELATIONS 

In this section, we will discuss photon-number conservation in NSE- and GNSE-based 

models from the viewpoint of Manley‒Rowe relations [30, 31] and show that, while the 

photon-number conservation equation (13) is consistent with these relations, its simplified 

NSE counterpart, expressed by Eq. (17), is not. As a simple, yet physically instructive 

argument, we consider a four-wave mixing ω1 + ω2 → ω3 + ω4 of spectrally nonoverlapping 

optical fields with bandwidths Δq, such that pqq  − , p, q = 1, 2, 3, 4. When applied to 

such a process, Eq. (6) yields 
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When the fields are narrowband enough so that 1/Ω and neff vary slowly within each 

bandwidth Δq compared to the spectral intensity ( ) 2
, zA  , Eq. (21) gives  
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where q  ≈ ωq is a median frequency within the bandwidth Δq and 
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With Eq. (23) rewritten as  
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where ( ) ( ) ( )0qqq PzPzP −= , we arrive at a Manley‒Rowe-type relation for the power flows 

δPq in individual FWM-coupled fields, valid for any z. When all the four fields are 

monochromatic, q  = ωq, Eq. (24) becomes a standard Manley‒Rowe relation.  

Although written for a special case of spectrally isolated narrowband fields, Eq. (24) 

offers an important insight into Eq. (6) for a classical field and Eq. (13) for a quantized field 

as Manley‒Rowe-type relations. As one of the key results of this analysis, Eq. (6) generalizes 

the Manley‒Rowe relations, formulated in their canonical form for monochromatic fields, to 

intrapulse nonlinear-optical processes in which an optical nonlinearity couples spectrally 

unresolved, often overlapping components of an ultrashort laser pulse.  

We have also seen that, unlike the full field evolution equation, its simplified NSE 

counterpart [Eq. (5)] fails to fulfill the Manley‒Rowe-type relations of the form of Eq. (6). 

Connection to the the Manley‒Rowe relations is lost in NSE-based models at the point where 

the frequency-dependent coupling factor ‒ Γ in Eq. (2) ‒ is replaced by a frequency-

independent constant. In the time domain, this replacement translates into an Ŝ  = 0 

simplification. With the Ŝ  term dropped and high-order dispersion [terms with k ≥ 3 in Eq. 

(3)] neglected, NSE-type field evolution equations yield spectrally and temporally symmetric 

solutions. The spectral symmetry implies that sidebands ω0 ± Ω have equal spectral intensity, 

S(ω0 + Ω) = S(ω0 ‒ Ω). On the other hand, with the FWM ω0 + ω0 → (ω0 + Ω) + (ω0 ‒ Ω) 

being the process behind ω0 ± Ω sideband generation, the number of ω0 + Ω photons has to 

be equal to the number of ω0 ‒ Ω photons, N(ω0 + Ω) = N(ω0 ‒ Ω). Since S(ω) =  N(ω), 

the spectral symmetry, S(ω0 + Ω) = S(ω0 ‒ Ω), is incompatible with N(ω0 + Ω) = N(ω0 ‒ Ω) 

unless Ω = 0. Remarkably, it is precisely the Ω = 0 approximation that enables the NSE-based 

models. Indeed, the coefficient in front of the nonlinear term in the full pulse evolution 

equation (2) reads ( ) cncn +== 022  . The NSE of Eq. (5), on the other hand, 

operates with the nonlinear coupling coefficient cn 020  = , which is treated as a 

frequency-independent constant with Ω = 0. Thus, although the NSE is certainly applicable to 

ultrashort pulses and, moreover, provides a powerful tool for the description of soliton 

dynamics, it reconciles S(ω0 + Ω) = S(ω0 ‒ Ω) with N(ω0 + Ω) = N(ω0 ‒ Ω) by assigning the 

same frequency ω0 to all the frequency components that constitute the spectrum of the pulse. 



In quantum terms, this allows the pulse energy to be calculated, as suggested by Eq. (20), 

simply as the number of photons times the photon energy at the central frequency 0 . 

 

V. SPECTRAL SYMMETRY AND PHOTON-NUMBER CONSERVATION 

Analysis of the Manley‒Rowe relations presented in the previous section offers important 

insights into why NSE-based models fail to simultaneously satisfy energy and photon-

number conservation. This analysis is especially instructive when spectral broadening can be 

traced back to elementary FWM processes, where Stokes and anti-Stokes photons at 

frequencies ω0 ± Ω are generated in pairs as a result of annihilation of two pump-field 

photons at frequency ω0. However, supercontinuum generation scenarios in optical fibers and 

laser filaments are often much more complicated. 

In this section, we focus on the spectral and temporal symmetry of NSE solutions and 

show that this symmetry is inconsistent with simultaneous energy and photon-number 

conservation. To this end, we represent the energy and the photon number as 
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where S(ω, z) is the spectral density, which changes as a function of z due to optical 

nonlinearity as prescribed by the appropriate field evolution equation. 

The energy and photon-number conservation equations can then be written as 
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If the field evolution equation yields a solution with symmetric spectrum, so that for 

any z, ( ) ( )zSzS ,, 00 −=+  , the energy conservation equation (27) gives 
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The number of photons as a function of z is then given by 
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We first consider the FWM process ω0 + ω0 → (ω0 + Ω0) + (ω0 ‒ Ω0), in which two 

pump-field photons at frequency ω0 are converted to Stokes and anti-Stokes photons at 

frequencies ω0 ± Ω0. To model this process, we take ( ) ( )000 0,  sS =+  and 

( ) ( )0000 , =   szS . 

When applied to a pulse with such a spectrum and combined with the requirement of  

spectral symmetry, ( ) ( )zSzS ,, 00 −=+  , the energy conservation equation (29) gives 

s+ = s‒ = s0 = E0/2. Eq. (30) for the number of photons, on the other hand, leads to N0 = N(0) = 

2s0/( 0 ) = E0/( 0 ). Taking the integral in Eq. (30), we find 
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As can be seen from Eq. (31), N(z) > N0 for any nonzero Ω0, showing that the condition 

of photon-number conservation [Eq. (28)] is not satisfied. 

Next, we consider a laser pulse with a flat spectrum whose bandwidth Δ(z) is a growing 

function of z, reflecting the spectral broadening of the pulse. When applied to a pulse with 

such a spectrum, the energy conservation equation (27) gives 
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Taking the integral in Eq. (32), we find 
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In the limiting case of Δ(z) << ω0, ( ) ( )  ( )  ( ) 0
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Eq. (33) reduces to ( ) ( ) 000 NEzN   . Thus, in this approximation, the photon number 

is an integral of motion. However, in a more general case, when the spectral broadening can 

no longer be included by keeping only the first term in the Taylor-series expansion of the 

natural logarithm in Eq. (33), the photon number, as can be seen from this equation, becomes 

a function of the propagation path z and is no longer a constant of motion. In a particular case 



of broader, but still small bandwidths, such that ( ) ( ) ( ) ( ) 300 31  zzz + , Eq. (33) 

yields 
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In this regime, the photon number does not remain constant, but grows quadratically 

with ( ) 0z . 

We consider now a more general case when the pulse bandwidth is small enough so that 

the Taylor-series expansion ( ) 2

0
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 can be used in the integrand in Eq. 

(30). Integration in Eq. (30) then yields 

( ) ( )














 
++

0

2

0

2

0

0

1,
2

dzSzN





.        (35) 

With Eq. (29) taken into account,  
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In a particular case of a flat spectrum with a bandwidth Δ(z), Eq. (36) recovers Eq. (34). 

In its general form, Eq. (36) is, of course, much more general as it is applicable within a 

much broader class of spectral profiles. As an important result, since the second term in Eq. 

(36) is positive definite, we find that ( ) ( )00 EzN   and the photon number is a growing 

function of z within the entire range of applicability of Eqs. (35) and (36). This result, 

obtained here analytically, is confirmed by numerical simulations, presented below in this 

paper. 

 

VI. OPTICAL SHOCK AND ASYMMETRY OF SPECTRAL ‒ TEMPORAL MODES 

To show how frequency-dependent nonlinear wave coupling, translating into the shock term 

in the time-domain field evolution equation [Eq. (3)], suppresses low-frequency generation as 

a part of spectral broadening, eventually limiting the spectral bandwidth from below, we use 

the following elementary SPM-theory estimate on the nonlinearity-induced spectral 

broadening [3, 22]: 

z
I

0

00


  ,           (37) 



where I is the field intensity and τ0 is the pulse width. Eq. (37) predicts an unbounded growth 

of the spectral bandwidth as a function of the propagation length z, field intensity I, and the 

nonlinearity n2. 

We now replace κ0 in Eq. (37) by the frequency-dependent coupling coefficient 

cn  2=  to find for the Stokes and anti-Stokes parts of SPM broadening 
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Solving this equation for  , we find 

0
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where ( )02 cIznQ = . 

An estimate of Eq. (39) is valid only for |Q| < 1. For |Q| << 1, Eq. (39) gives 
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It is remarkable and encouraging that this elementary qualitative treatment reproduces 

the key results of a much more rigorous analysis of extreme regime of SPM-induced 

broadening [28]. Indeed, when applied to a field ( ) ( ) ( ) ztiztAztA ,exp,, = , Eq. (3) with βk 

= 0 for k ≥ 2 and  = 1, yields the following set of coupled equations for the field amplitude 

( )ztA ,  and phase ( )zt, : 
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We solve Eqs. (41) and (42) iteratively, neglecting pulse-shape changes in the first-

order approximation. With the boundary conditions set as ( ) ( )0

2

0

2
cosh0, tAtA =  and 

( ) 00, =t , the solution of Eq. (42) for the phase is then written as [28] 
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The resulting spectral broadening is  
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Eq. (44) leads to the following expressions for the maximum Stokes and anti-Stokes 

shifts [28]: 

( )  14
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For |Q| << 1, Eq. (45) yields 
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It is instructive to compare Eq. (46), which has been derived through the analysis of the 

first-order solution to Eq. (42) for the phase ( )zt, , with Eq. (40), obtained by using much 

simpler qualitative arguments. Remarkably, Eqs. (40) and (46) differ only by a numerical 

factor of 1/2 in front of the small, ~|Q|2 correction. When only the leading term is kept in Eqs. 

(40) and (46), both equations recover the standard result of the elementary SPM theory, 

20 Q  . As |Q| increases, due to a growth in the propagation length, input field 

intensity, or nonlinearity n2, the Stokes part of SPM-induced broadening becomes suppressed, 

while its anti-Stokes counterpart is enhanced, giving rise to an asymmetry in SPM-broadened 

spectra. In contrast to the elementary SPM theory, which, as can be seen from Eq. (37), does 

not set any upper bound on   and, hence, on − , Eqs. (40) and (46) prohibit spectral 

broadening down to the zero frequency. Indeed, reaching this frequency would require 

0 = − . This condition, however, can never be fulfilled, according to Eqs. (40) and (46), 

due to the growing ~|Q|2 correction, which makes sure that spectral broadening is asymmetric 

so that −  is always smaller than 0 .  

As another important insight, our qualitative treatment of spectral broadening based on 

Eqs. (38) ‒ (40) provides a reasonably accurate estimate on the propagation length within 

which spectral broadening ceases to be symmetric. To estimate this spatial scale, we observe 

that Q = 1 is achieved at  

( ) ( ) nllTIncl 00200 2  = ,         (47) 

where T0 is the field cycle and ( )Inclnl 20=  is the nonlinear length. 



Eq. (47) exactly recovers the spatial scale [22] within which a shock wave tends to 

build up at one of the pulse edges (the trailing edge of the pulse for n2 > 0), leading to pulse 

self-steepening. Importantly, neither our qualitative treatment [with Eqs. (38) ‒ (40)] nor the 

first-order solution of the coupled equations (41) and (42) implies or assumes any pulse 

distortion. On the contrary, when searching for the first-order solution to Eq. (42) for the 

phase, we explicitly assume that the pulse shape remains unchanged. Still, our result for l0 

[Eq. (47)] is identical to the expression for the length of pulse self-steepening [22].  

To gain physical insights into this finding, we consider an implicit solution to Eq. (41) 

[22, 28], 
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where ( ) ( )0,0  A= . 

Eq. (48) is instructive in showing that the peak of the pulse propagates slower (for n2 > 

0) or faster (for n2 < 0) than the pulse edges, leading to pulse self-steepening and eventually 

giving rise to a shock wave in the trailing (for n2 > 0) or leading (for n2 < 0) edge of the pulse. 

As is also readily seen from Eq. (48), corrections to the pulse shape due to self-steepening are 

of the same order of smallness in |Q| as the asymmetry of the spectral broadening. As a 

consequence, the delay (advancement in materials with negative n2) of the peak of the pulse 

relative to its edges, ( )Izcns 2 , becomes equal to the pulse width τ0 on a typical scale, 

( )Incls 20 , equal to l0 as defined by Eq. (47).  

This is, of course, much more than a mere coincidence. That the spectral asymmetry 

builds up simultaneously with the pulse-shape asymmetry is a manifestation of the 

inseparability of the spectral--temporal mode of the field. This inseparability is lost in an 

iterative treatment of Eqs. (41) and (42), which searches for spectral corrections assuming no 

changes in the pulse shape as its first order iteration. This hits us back in the next iteration, as 

we realize that the leading corrections to the pulse shape are of the same order in |Q| as the 

corrections giving rise to spectral asymmetry. With these arguments in mind, we conclude 

that simultaneous conservation of energy and the photon number in nonlinear-optical 

processes leads to an asymmetry of spectral‒temporal modes of broadband field waveforms. 

 

VII. QUANTITATIVE ANALYSIS 



As a specific example, Figs. 1 ‒ 3 display the results of numerical simulations performed for 

ultrashort laser pulses with an initial pulse width of 180 fs, central wavelength 0 = 3.2 µm, 

and pulse energy E0 = 45 µJ -- a typical short-pulse output of multicascade optical parametric 

amplifiers [32] ‒ undergoing soliton transformations in a gas-filled antiresonance-guiding 

single-ring hollow-core photonic-crystal fiber (PCF) [33, 34]. Fibers of this class have been 

shown to provide a powerful resource for multioctave supercontinuum generation in the near- 

and mid-infrared [35, 36]. Transmission bands and dispersion of these fibers are controlled 

by the size of the fiber core and the geometry of the antiresonance ring structure.  

Simulations presented in Figs. 1 ‒ 3 were performed for an antiresonance-guiding PCF 

where a hollow core with a diameter Dc  70 µm is bounded by an array of six identical silica 

rings, each having a diameter d  37 µm and a wall with a thickness of t  0.59 µm. A fiber 

with such a design provides a high transmission and anomalous dispersion within the entire 

spectrum of 3.2-µm 180-fs pulses, allowing these pulses to be coupled into solitons inside the 

fiber. The fiber is filled with argon at a pressure p = 5.0 bar. Optical nonlinearity of argon is 

entirely due to the Kerr effect, i.e.,  = 1. The Kerr-effect nonlinear refractive index for argon 

is estimated as n2  1.35×10–19(p/pa) cm2/W, pa is the atmospheric pressure. Keeping our 

focus on photon-number conservation, we neglect in our simulations ionization effects, which 

can be easily included in the GNSE [37 - 40]. Such effects can play a moderate role within 

the studied parameter space, slightly enhancing the blue shift and finely tuning phase 

matching features, but do not lead to dramatic changes in field waveform dynamics [26]. 

Parameters of the input laser pulse, the fiber design, and the gas pressure are chosen in our 

simulations in such a way as to examine photon-number conservation in multioctave field 

waveforms. To isolate the role of the frequency dependence of nonlinear wave coupling and 

pulse self-steepening, the waveguide loss has been neglected in our simulations. This is a 

clear idealization, especially for NSE calculations, where the long-wavelength part of the 

spectrum is allowed to reach the far-infrared range (Fig. 1a) due to no low-frequency bound 

on spectral broadening in NSE-based models. 

Numerical simulations performed with the use of the NSE, shown in Figs. 1a and 1c, 

reveal a typical breathing soliton dynamics, as expected for pulses with a soliton number N  

6. As a part of this breathing dynamics, the stage of pulse compression and spectral 

broadening (z < 26 cm in Figs. 1a, 1c) is followed by pulse stretching and spectral 

compression, in which the pulse exhibits its multisoliton structure. As a typical property of 

NSE solutions, field waveforms with a symmetric input pulse shape experience perfectly 



spectral broadening (Fig. 1a). The broadest spectral bandwidth is achieved at the point of 

maximum pulse compression (z  26 cm).  

As the soliton pulse evolution shown in Figs. 1 ‒ 3 is accompanied by pulse self-

compression to pulse widths on the order of the field cycle, the applicability of pulse 

evolution equations (2) and (3) needs to be re-examined. These equations remain applicable 

even in the case of subcycle pulse widths [26, 37 - 39] as long as ionization effects are 

negligible (which is the case in the considered parameter space) and the characteristic spatial 

scales, such as the dispersion length ld = τ2/max{|β2(ω)|}, the nonlinear length lnl = 

c(ω0n2Imax)-1, and the self-steepening length lSS = 0.4τω0c(ω0n2I)-1 meet the conditions βld, 

βlnl, βlss >> 1 within the entire frequency interval centered at ω0 and the relative mismatch of 

the phase and group and velocities is small, |β(ω0)– ω0β1(ω0)|/β(ω0) << 1. For the shortest 

pulse width in our simulations,   3 fs, and the maximum field intensity, Imax  95 TW/cm2, 

we find for the typical parameters of our pulse compression scenario βld ≈ 2∙103, βlnl ≈ 2∙104, 

βlss ≈ 104, and |β(ω0)– ω0β1(ω0)|/β(ω0)  10-3. This confirms that all the applicability criteria 

for pulse evolution equations (2) and (3) are fulfilled. 

With the NSE setting no low-frequency bound on spectral broadening, the long-

wavelength wing of the spectrum stretches at the point of maximum pulse compression all the 

way down to the far-infrared (Figs. 1a, 2a). Obviously, NSE predictions become unphysical 

in this regime. As highlighted in Section III, there is nothing in NSE-based models that would 

prevent the low-frequency wing of the spectrum from reaching the zero frequency – the result 

that is clearly at odds with the fundamentals principles of electrodynamics. Although these 

stages of spectral broadening do not represent the actual evolution of a laser pulse, they are 

still shown in Figs. 1a and 2a to facilitate comparison with the predictions of the GNSE, 

where the unphysical low-frequency wing of the spectrum is suppressed by the optical shock 

wave. 

Since the spectrum in NSE-based models is symmetric, the energy of the high-

frequency wing of the spectrum has to be equal to the energy of the low-frequency wing (Fig. 

2a). With a typical energy of a photon in the far-infrared being much less than the energy of a 

photon in the visible, this can only be achieved at a cost of extra photons (Fig. 2a). To 

quantify this effect, we examine the behavior of the photon-number integral (21) as a 

function of the propagation path of the pulse. In Fig. 1e, we plot the normalized photon-

number variation δN(z)/N0 = [N(z) ‒ N0]/N0, where N0 = N(0), as a function of z. The 

deviation of N(z) from N0 is seen to exhibit a well-resolved peak centered at the point of 



maximum pulse compression and, hence, maximum spectral broadening. On a larger scale, 

δN(z) display oscillations, following pulse-compression ‒ pulse stretching cycles in soliton 

breathing dynamics.  

Importantly, while the photon number is not conserved by NSE dynamics, the energy 

has to remain constant as a fundamental constant of motion of the NSE. To check the 

invariance of energy, the normalized energy deviation [E(z) ‒ E0]/E0, where 

( ) ( ) += dzAzE
2

0 ,  and E0 = E(0), is also plotted in Fig. 1e as a function of z. As is 

readily seen from this plot, the energy remains constant with a very high accuracy throughout 

the entire NSE soliton breathing dynamics. 

Figures 1b, 1d, 1f, and 2b present simulations performed with the use of the GNSE [Eq. 

(3)] without high-order (k > 2) dispersion terms and with  = 1 (the nonlinear response of 

argon has no Raman component anyway). This version of the GNSE is equivalent to the NSE 

with added Ŝ  term. In this model of pulse evolution, the asymmetry of spectral broadening is 

lost (Figs. 1b, 2b). Remarkably, this loss of spectral asymmetry and, hence, temporal pulse 

profile (Fig. 1d) is needed to restore the photon number N(z) to its status as a constant of 

motion without letting the energy E(z) lose this status. With the asymmetry brought into the 

spectral broadening by the Ŝ  operator, both the photon number and the energy are conserved, 

as can be seen in Fig. 1f, with a high accuracy through all the phases of the NSE soliton 

breathing dynamics. 

Figure 3 present the results of GNSE simulations performed with and without the Ŝ  

term. As a general tendency (Figs. 3a, 3c), high-order dispersion distorts the waveform and 

induces soliton instabilities via a resonant energy exchange between solitons and dispersive 

waves. Coupling between ideal NSE solitons and dispersive waves is prohibited by 

momentum conservation. Higher order dispersion can, however, phase-match solitons and 

dispersive waves, inducing intense dispersive-wave radiation. Even though these effects give 

rise to a spectral asymmetry and suppress the long-wavelength wing of the spectrum (cf. Figs. 

1a and 3a), without the Ŝ  term, they do not help conserve the number of photons (Fig. 3e). 

Although predictions of the GNSE without the Ŝ  term do not represent the actual evolution 

of a laser pulse near the point of maximum pulse compression, we still show these stages of 

spectral broadening in Fig. 3a to facilitate comparison with the predictions of the full GNSE, 

where the unphysical low-frequency wing of the spectrum is suppressed by the optical shock 

wave. Even though soliton instabilities induced by high-order dispersion open a channel 



whereby solitons can lose both energy and photons, these effects do not change the total 

energy and the total photon number of the overall field, consisting of the solitonic part and 

nonsoliton, dispersive-wave radiation, since the energy and the photon number lost by the 

solitonic part of the field are transferred to the dispersive wave. 

Similar to NSE modeling, deviations of N(z) from N0 become dramatic near the point of 

maximum pulse compression, where the maximum spectral bandwidth is achieved (Figs. 3a, 

3c, 3e). With the Ŝ  term added, the short-wavelength wing of the spectrum is radically 

enhanced, while the low-frequency part of the spectrum is further suppressed (Fig. 3b), 

yielding a spectral‒temporal mode that simultaneously conserves both the energy and the 

number of photons (Fig. 3f). 

Figure 4 illustrates a typical dynamics of a laser pulse in the regime of normal 

dispersion. Except for the sign of β2, which is now taken positive, β2 = 55 fs2/cm, all the 

parameters in these simulations are taken the same as in Fig. 1. Instead of the signature 

soliton breathing, observed in Fig. 1, the laser pulse in Fig. 4 undergoes temporal stretching 

(Figs. 4c, 4d), due to the normal dispersion, and spectral broadening (Figs. 4c, 4d), which is 

mainly due to SPM. At large z (z > 30 cm in Figs. 4b, 4d), the laser pulse shape becomes 

asymmetric (Fig. 4d), while its spectrum displays a signature blue shift (Fig. 4b) due to the 

shock term in Eq. (3). 

As the most important finding, we see that, similar to the case of anomalous dispersion 

(Figs. 3e, 3f), the NSE does not conserve the photon number (Figs. 4e, 4f). Since the spectral 

bandwidth is now a monotonic function of z (Fig. 4a), the δN(z)/N0 ratio calculated with the 

NSE also grows with z monotonically (purple line in Fig. 4e), while [E(z) ‒ E0]/E0 remains 

constant at any z (blue line in Fig. 4e). This result agrees well with Eq. (36). Similar to the 

regime of anomalous dispersion, with the Ŝ  term added to the field evolution equation, the 

photon number N(z) is restored in its status as a constant of motion (purple line in Fig. 4f) 

without letting the energy E(z) lose this status (blue line in Fig. 4f).  

 

 

VIII. CONCLUSION 

To summarize, we have shown that, the spectral and temporal symmetry of NSE solutions is 

inconsistent with simultaneous energy and photon-number conservation. We have 

demonstrated that the photon-number integral of the NSE differs from the physical number of 

photons, conserved by more general field evolution equations. This difficulty is traced to the 



optical shock term, which is dropped in the NSE, making nonlinear coupling in NSE-based 

models frequency-independent and leading to unphysical predictions in the case of 

ultrabroadband, octave-spanning field waveforms. 
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Fig. 1. Spectral (a, b) and temporal (c, d) evolution, as well as normalized photon-number 

δN(z)/N0 (purple line) and energy δE(z)/E0 (blue line) variations along z (e, f) for a laser pulse 

with an initial pulse width of 180 fs, central wavelength 0 = 3.2 µm, and pulse energy E0 = 

45 µJ in a hollow fiber with β2 = ‒ 55 fs2/cm and  = 1 (corresponding to a pure Kerr 

nonlinearity, with no Raman effect) simulated by solving (a, c, e) the NSE [Eq. (5)] and (b, d, 

f) the GNSE [Eq. (3)] without high-order (k > 2) dispersion terms. 

 



 

 

 
 

 

Fig. 2. The spectral intensity (blue line) and the photon number (green line) as a function of 

the frequency at the point of maximum pulse compression for a laser pulse with an initial 

pulse width of 180 fs, central wavelength 0 = 3.2 µm, and pulse energy E0 = 45 µJ in a 

hollow fiber filled with argon ( = 1) at p = 5.0 bar. Simulations are performed by solving (a) 

the NSE [Eq. (5)] and (b) the GNSE [Eq. (3)] without high-order (k > 2) dispersion terms. 

The spectrum of the input field is shown by grey shading. 

 



 
 

 

Fig. 3. Spectral (a, b) and temporal (c, d) evolution, as well as normalized photon-number 

δN(z)/N0 (purple line) and energy δE(z)/E0 (blue line) variations along z (e, f) for a laser pulse 

with an initial pulse width of 180 fs, central wavelength 0 = 3.2 µm, and pulse energy E0 = 

45 µJ in a hollow fiber filled with argon ( = 1) at p = 5.0 bar simulated by solving (a, c, e) 

the GNSE [Eq. (5)] with high-order (k > 2) dispersion terms, but with Ŝ  = 0 and (b, d, f) the 

full GNSE  [Eq. (3)]. 

 

 



 
 

Fig. 4. The same as in Fig. 1, but with β2 = 55 fs2/cm. 

 


